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Profile HMM:s for sequence families

So far we have concentrated on the intrinsic properties of single sequences, such
as CpG islands in DNA, or on pairwise alignment of sequences. However, func-
tional biological sequences typically come in families, and many of the most
powerful sequence analysis methods are based on identifying the relationship of
an individual sequence to a sequence family. Sequences in a family will have
diverged from each other in their primary sequence during evolution, having sep-
arated either by a duplication in the genome, or by speciation giving rise to corre-
sponding sequences in related organisms. In either case they normally maintain
the same or a related function. Therefore, identifying that a sequence belongs to
a family, and aligning it to the other members, often allows inferences about its
function.

If you already have a set of sequences belonging to a family, you can perform
a database search for more members using pairwise alignment with one of the
known family members as the query sequence. To be more thorough, you could
even search with all the known members one by one. However, pairwise search-
ing with any one of the members may not find sequences distantly related to the
ones you have already. An alternative approach is to use statistical features of the
whole set of sequences in the search. Similarly, even when family membership is
clear, accurate alignment can be often be improved significantly by concentrating
on features that are conserved in the whole family.

How, in brief, do we identify such features? Just as a pairwise alignment cap-
tures much of the relationship between two sequences, a multiple alignment can
show how the sequences in a family relate to each other. Figure 5.1 shows a
multiple alignment of seven sequences from the large globin family (hundreds
of globin sequences are available in the protein sequence databases). The three
dimensional structure has been obtained for each protein in the alignment shown,
and the sequences have been aligned on the basis of aligning the eight alpha
helices of the conserved globin fold, and also on the basis of aligning certain
key residues in the sequences, such as two conserved histidines (H) which are
the residues which interact with an oxygen-binding heme prosthetic group in the
globin active site.

It is clear that some positions in the globin alignment are more conserved than
others. In general the helices are more conserved than the loop regions between
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Helix AAAAAAAAAAAAAAAA  BBBEBBBBBBBBBBBBCCCCCCCCCCC
HBA_HUMAN --------- VLSPADKTNVKAAWGKVGA--HAGEYGAEALERMFLSFPTTKTYFPHF
HBB_HUMAN -------- VHLTPEEKSAVTALWGKV—---NVDEVGGEALGRLLVVYPWTQRFFESF
MYG_PHYCA --------- VLSEGEWQLVLHVWAKVEA--DVAGHGQDILIRLFKSHPETLEKFDRF
GLB3_CHITP --------=~ LSADQISTVQASFDKVKG-~---~ DPVGILYAVFKADPSIMAKFTQF
GLB5_PETMA PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAQEFFPKF
LGB2_LUPLU ---~----- GALTESQAALVKSSWEEFNA--NIPKHTHRFFILVLEIAPAAKDLFS-F
GLB1_GLYDI --------- GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-F
Consensus Ls.... vaWkv. . g . L.. £.pP. F F
Helix DDDDDDDEEEEEEEEEEEEEEEEEEEEE FFFFFFFFFFFF
HBA_HUMAN -DLS----- HGSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL -
HBB_HUMAN GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHL---D--NLKGTFATLSELHCDKL-
MYG_PHYCA KHLKTEAEMKASEDLKKHGVTVLTALGAILKK----K-GHHEAELKPLAQSHATKH-
GLB3_CHITP AG-KDLESIKGTAPFETHANRIVGFFSKIIGEL--P~--NIEADVNTFVASHKPRG~
GLB5_PETMA KGLTTADQLKKSADVRWHAERIINAVNDAVASM--DDTEKMSMKLRDLSGKHAKSF -
LGB2_LUPLU LK-GTSEVPOQNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG~
GLB1_GLYDI SG----AS---DPGVAALGAKVLAQIGVAVSHL- - GDEGKMVAQMKAVGVRHKGYGN
Consensus t .. .« V..Hg kv. a a...l o .al. 1l H
Helix FFGGGGGGGGGGGGGGGGGGG HHHHHHHHHHHHHHHHHHHHHHHHHH
HBA_HUMAN -RVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR-~-~-—
HBB_HUMAN -HVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH--=-~~
MYG_PHYCA -KIPIKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG
GLB3_CHITP --VTHDQLNNFRAGFVSYMKAHT--DFA-GAEAAWGATLDTFFGMIFSKM--——-——
GLBS5_PETMA -QVDPQYFKVLAAVIADTVAAG----~~-—- DAGFEKLMSMICILLRSAY-------
LGB2_LUPLU --VADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA--—

GLB1_GLYDI KHIKAQYFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADISGALISGLQS —————
Consensus V. £ 1 . .. Cee. £ . aa. k. . 1 sky

Figure 5.1 An alignment of seven globins from Bashford, Chothia &
Lesk [1987]. To the left is the protein identifier in the SWISS-PROT
database [Bairoch & Apweiler 1997]. The eight alpha helices are shown as
A~H above the alignment. A consensus line below the alignment indicates
residues that are identical among at least six of the seven sequences in upper
case, ones identical in four or five sequences in lower case, and positions
where there is a residue identical in three sequences with a dot.

them, and certain residues are particularly strongly conserved. When identifying
a new sequence as a globin, it would be desirable to concentrate on checking that
these more conserved features are present. How to obtain and use such informa-
tion will be the subject of this chapter.

As might be expected, our approach to consensus modelling will be to make
a probabilistic model. In particular, we will develop a particular type of hid-
den Markov model well suited to modelling multiple alignments. We call these
profile HMMs after standard profiles, which are closely related non-probabilistic
structures introduced previously for the same purpose by Gribskov, McLachlan
& Eisenberg [1987]. Profile HMMs are probably the most popular application of
hidden Markov models in molecular biology at the moment [Eddy 1996].

We will assume for the purposes of this chapter that we are given a correct
multiple alignment, from which we will build a model that can be used to find
and score potential matches to new sequences. The multiple alignment could
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be built from structural information, like the globin alignment shown here, or it
could come from a sequence-based alignment procedure, such as those discussed
in Chapter 6.

Much of this chapter makes use of the theory presented in Chapter 3 for general
HMMs. The most important algorithms will be presented again in the specific
form relevant to profile HMMs. There is also an extensive discussion of how to
estimate optimal probability parameters from multiple sequence alignments.

S.1 Ungapped score matrices

One general feature of protein family multiple alignments, which can be seen
in Figure 5.1, is that gaps tend to line up with each other, leaving solid blocks
where there are no insertions or deletions in any of the sequences. We will start
by considering models for these ungapped regions.

As an example, consider the E helix of Figure 5.1. A natural probabilistic
model for such a region would be to specify independent probabilities e;(a) of
observing amino acid a in position i (we use letter e because these will turn out
to be the emission probabilities of the hidden Markoy model when we introduce
gaps). The probability of a new sequence x according to this model is then

L
P(x|M) = nei(xi),
=1
where L is the length of the block, 21 in this case. As usual, we are in fact more
interested in the ratio of this probability to the probability of x under a random
model, and so to test for membership in the family we evaluate the log-odds ratio

ei(x;)
log .
=1 qxi

S =

L
1=

The values log f{% behave like elements in a score matrix s(a,b), where the
second index is position i, rather than amino acid b, For this reason, such an
approach is known as a position specific score matrix (PSSM). A PSSM can be
used to search for a match in a longer sequence x of length N by evaluating the

score S; for each starting point j in x from 1 to N — [, + 1, where L is the length
of the PSSM.

5.2 Adding insert and delete states to obtain profile HMMs

Although a PSSM captures some conservation information, it is clearly an inad-
€quate representation of all the information in a multiple alignment of a protein
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5.2 Adding insert and delete states to obtain profile HUMs 103

family. We have to find some way to take account of gaps. It is possible to com-
bine the scores of multiple ungapped block models, and this is the approach taken
by Henikoff & Henikoff [1991] in the BLOCKS database. However, we will pur-
sue here the aim of developing a single probabilistic model for the whole extent
of the alignment.

One approach is to allow gaps at each position in the alignment, using the
same gap score y(g) at each position, as in pairwise alignment. However, this
is also ignoring information, because the alignment gives us explicit indications
of where gaps are more and less likely. We want to capture this information to
give us position sensitive gap scores, just as the emission probabilities gave us
position sensitive substitution scores.

The approach we take is to build a hidden Markov model (HMM), with a repet-
itive structure of states, but different probabilities in each position. This will pro-
vide a full probabilistic model for sequences in the sequence family. We start
off by observing that the PSSM can be viewed as a trivial HMM with a series of
identical states that we will call match states, separated by transitions of proba-
bility 1.

kegn—» > e M b —p —1 End

J

Alignment is trivial because there is no choice of transitions. We rename the
emission probabilities for the match states to ey, (a).

The next step is to deal with gaps. We must treat insertions and deletions sep-
arately. To handle insertions, i.e. portions of x that do not match anything in
the model, we introduce a set of new states I;, where I; will be used to match
insertions after the residue matching the ith column of the multiple alignment.
The I; have emission distribution ey, (a), but these are normally set to the back-
ground distribution g4, just as for seeing an unaligned inserted residue in a pair-
wise alignment. We need transitions from M; to [;, a loop transition from I; to
itself, to accommodate multi-residue insertions, and a transition back from I; to
M, ;1. Here is a single insert state of this kind:

Begin p—p I\/Ij > —»{ End

We denote insert states in our diagrams by diamonds. The log-odds cost of an
insert is the sum of the costs of the relevant transitions and emissions. Assuming
that e;,(a) = g, as described above, there is no log-odds contribution from the
emission, and the score of a gap of length & is

lOganIj + loganMjH -+ (k — l)loga]j[j .
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From this you can see that the type of insert state shown corresponds to an affine
gap scoring model.
Deletions, i.e. segments of the multiple alignment that are not matched by

any residue in x, could be handled by forward ‘jump’ transitions between non-
neighbouring match states:

However, to allow arbitrarily long gaps in a long model this way would require a
lot of transitions. Instead we introduce silent states D ; as described in Section 3.4:

D.

J

! .

Begin M; > End

Because the silent states do not emit any residues, it is possible to use a sequence
of them to get from any match state to any later one, between two residues in
the sequence. The cost of a deletion will then be the sum of the costs of an
M — D transition followed by a number of D — D transitions, then a D - M
transition. This is at first sight exactly analogous to the cost of an insert, although
the path through the model looks different. In detail, it is possible that the D — D
transitions will have different probabilities, and hence contribute differently to the
score, whereas all the I — I transitions for one insert involve the same state, and
S0 are guaranteed to have the same cost.

The full resulting HMM has the structure shown in Figure 5.2. This form
of model, which we call a profile HMM, was first introduced in Haussler et al.
[1993] and Krogh et al. [1994]. We have added transitions between insert and
delete states, as they did, although these are usually very improbable. Leaving

them out has negligible effect on scoring a match, but can create problems when
building the model.

D

J

Begin| | NIJ | End

Figure 5.2 The transition structure of a profile HMM. We use diamonds to
indicate the insert states and and circles for the delete states.
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3.3 Deriving profile HMMs from multiple alignments 105

Profile HMMs generalise pairwise alignment

We have seen how the costs of using gap states in a profile HMM mirror those
used in pairwise alignment with affine gaps. To help make clear the relationship,
it is useful to consider the degenerate case where the multiple alignment from
which we build the HMM contains just one sequence.

Let us compare Figure 5.2 with Figure 4.2. If we call the example sequence y,
then Figure 5.2 is an unrolled version of Figure 4.2, with the y; emissions each
coming from a separate copy of the pair HMM. The states M ; correspond to a
sequence of match states M, the I; to corresponding incarnations of X, and the D ;
to incarnations of Y. To achieve as close a correspondence as possible, the natural
values for the match emission probabilities em;(a) are py../q,,, the conditional
probabilities of seeing a given y; in a pairwise alignment, and for the transition
probabilities ay,;, = aw;p;,, =& and ay,;;, = ap,p,,, = ¢ forall {.

In formal terms our profile HMM is effectively the hidden Markov model ob-
tained by conditioning the pair HMM of Figure 4.2 on emitting sequence y as
one of the sequences in its alignment. Because of this, the Viterbi equations for
finding the most probable alignment of x to our profile HMM are essentially the
same as those for the most probable alignment of x and y to the pair HMM de-
scribed in Chapter 4. If we convert them into log-odds ratio form we recover our
standard affine gap cost pairwise alignment equations of (2.16), as we will see
below. Any differences are due to slightly different Begin and End arrangements.

5.3 Deriving profile HMMs from multiple alignments

Although it is nice to see that the profile HMM is doing the same sort of dynamic
programming as we have used before for pairwise alignment, this is not why we
introduced them. The key idea behind profile HMMs is that we can use the same
structure as shown in Figure 5.2, but set the transition and emission probabilities
to capture specific information about each position in the multiple alignment of
the whole family. Essentially, we want to build a model representing the consen-
sus sequence for the family, not the sequence of any particular member.

There are a number of different ways to derive the parameter values from a
multiple alignment of the sequences in the family. To provide an example for
illustrating these methods, Figure 5.3 shows a short section of the globin align-
ment shown in Figure 5.1.

Non-probabilistic profiles

A model similar to the profile HMM was first introduced by Gribskov, McLachlan
& Eisenberg [1987] who coined the name ‘profile’ (see also Gribskov, Liithy &
Eisenberg [1990]). However, they did not have an underlying probabilistic model,
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HBA_HUMAN . . VGA--HAGEY...
HBB_HUMAN .V----NVDEV. .
MYG_PHYCA .VEA--DVAGH. ..
GLB3_CHITP . . VKG~-~-—- D...
GLBS5__PETMA .. VYS--TYETS. ..
LGB2_LUPLU .FNA--NIPKH...
GLB1_GLYDI . IAGADNGAGV. . .

* % % * %k %k k k

Figure 5.3 Ten columns from the multiple alignment of seven globin protein
sequences shown in Figure 5.1. The starred columns are ones that will be
treated as ‘matches’ in the profile HMM.

but rather directly assigned position specific scores for each match state and gap
penalty, for use in standard ‘best match’ dynamic programming. They set the
scores for each consensus position to the averages of the standard substitution
scores from all the residues seen in the corresponding multiple alignment column.

For example, they would set the score for residue a in column 1 of our example
to be

35(V.a)+ 1s(F.a)+ Ls(1,a)

where s(a,b) is the standard substitution matrix. They also set gap penalties for
each column using a heuristic equation that decreased the cost of a gap (either
insertion or deletion) according to the length of the longest gap observed in the
multiple alignment spanning the column.

Although this seems an intuitively obvious way to combine information, and it
has been used effectively by many people for finding new members of families,
it does produce anomalies. For example, column 1 is much more strongly con-
served than column 2 in the example shown in Figure 5.3, but the information
in column 1 will be smeared out Just as much by the substitution matrix as that
in column 2. If we had an alignment with 100 sequences, all with a cysteine (C)
at some position, then the implicit probability distribution for that column for an
‘average’ profile would be exactly the same as would be derived from a single
sequence. This does not correspond to our expectation that the likelihood of a
cysteine should go up as we see more confirming examples.

In addition to these observations about substitution scores, the scores for gaps
do not behave as expected. For example, from the alignment in Figure 5.3 the
score for a deletion would be set to be the same in column 2, where there is a
deletion in one séquence, HBB_HUMAN, as in column 4, where there is a deletion
opening in five of the seven sequences. It would be more reasonable to set the
probability of a new gap opening to be higher in column 4.

Changes have been made to non-probabilistic profiles to address these and

other
1996].

whe
prol

It
mer
eve:
that
and



p
1e
n
.

[ e ) <

(¥

3.3 Deriving profile HMMs from multiple alignments 107

other problems [Thompson, Higgins & Gibson 1994b; Gribskov & Veretnik
1996], and we shall return to some of these later.

Basic profile HMM parameterisation

Let us turn back to hidden Markov model profiles. Like all HMMs, these have
emission and transition probabilities. Assuming that these probabilities are non-
zero, a profile HMM can model any possible sequence of residues from the given
alphabet. It therefore defines a probability distribution over the whole space of
sequences. The aim of the parameterisation process it to make this distribution
peak around members of the family.

The parameters we have available to control the shape of the distribution are
the values of the probabilities, and also the length of the model. There is a lot to
say about setting these optimally. We give here the basic methods from Krogh et
al. [1994]. After sections on database searching and variants for local alignment,
we will return to an extended discussion of alternative parameter estimation tech-
niques.

The choice of length of the model corresponds more precisely to a decision on
which multiple alignment columns to assign to match states, and which to assign
to insert states. The profile HMM we derived above from the single sequence y
had a match state for each residue y;. However, looking at Figure 5.3 it seems
clear that the consensus sequence for this region should only have eight residues,
and that the two non-starred residues in GLE 1_GLYDI should be treated as an
insertion with respect to the consensus. For the time being we will use a heuristic
rule to decide which columns should correspond to match states, and which to
inserts. A simple rule that works well is that columns that are more than half gap
characters should be modelled by inserts.

The second problem is how to assign the probability parameters. We regard the
alignment as providing a set of independent samples of alignments of sequences
x to our HMM. Since the alignments are given, we can estimate the parameters
directly using equations (3.18) from Section 3.3. We just count up the number of
times each transition or emission is used, and assign probabilities according to

Qg = Akl and ek(a) = M
2o Aw Yo Ex(a)

where k and / are indices over states, and a;; and ¢, are the transition and emission
probabilities, and Ay, and E are the corresponding frequencies.

In the limit of having a very large number of sequences in our training align-
ment, this will give an accurate and consistent estimate of the probabilities. How-
ever, it has problems when there are only a few sequences. A major difficulty is
that some transitions or emissions may not be seen in the training alignment,
and so would acquire zero probability, which would mean they would never be
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33 33 33 40 33 33 33 33 50

Figure 5.4 A hidden Markov model derived Sfrom the small alignment
shown in Figure 5.3 using Laplace’s rule. Emission probabilities are shown
as bars opposite the different amino acids Jor each match state, and tran-
sition probabilities are indicated by the thickness of the lines. The I — 1
transition probabilities times 100 are shown in the insert states. (Figure
generated automatically using the SAM package.)

allowed in the future. More broadly, we are not using any previous knowledge
about protein alignments, as the earlier non-probabilistic methods did implicitly,
by using an independently derived substitution matrix. As a minimal approach
to avoid zero probabilities, we can add pseudocounts to the observed frequencies
(as in Chapters 1 and 3). The simplest pseudocount method is Laplace’s rule:
to add one to each frequency. We discuss better ways to choose the pseudocount

values, and other approaches to estimating the parameters, at greater length below
in Section 5.6.

Example: Parameters for an HMM based on Figure 5.3

Let us assume that we use Laplace’s rule to obtain parameters for an HMM corre-
sponding to the alignment in Figure 5.3. Then em, (V) =6/27,em,(1) = em,(F)=
2/27, and ey, (a) = 1/27 for all residue types a other than v, I, F. Similarly,
amm, = 7/10,am,p, = 2/10 and ay,;, = 1/10 (following column 1 there are six
transitions from match to match, one transition to a delete state, in HBB_HUMAN,
and no insertions). Figure 5.4 shows the complete set of parameters for the HMM
in diagrammatic form. O

5.4 Searching with profile HMMs

One of the main purposes of developing profile HMM s is to use them to detect po-
tential membership in a family by obtaining significant matches of a sequence to
the profile HMM. We will assume for now that we are looking for global matches.
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5.4 Searching with profile HUMs 109

In practice, as for pairwise alignment, one of the local alignment methods may be
more sensitive for finding distant matches. We discuss these in the next section.

We have a choice of ways to score a match to a hidden Markov model. We
can either use the Viterbi equations to give the most probable alignment 7* of a
sequence x together with its probability P(x,7*|M), or the forward equations to
calculate the full probability of x summed over all possible paths P(x|M).

In either case, for practical purposes the result we want to consider when eval-
uating potential matches is the log-odds ratio of the resulting probability to the
probability of x given our standard random model

P(x|R) =[]a.

We therefore show here versions of the Viterbi and forward algorithms that are
designed specifically for profile HMMSs, and which result directly in the desired
log-odds values. Note that changing to log-odds does not change the result; we
could have subtracted the random model log score afterwards. However, it is
cleaner and more efficient. Another practical reason for working in log-odds
units is to avoid problems of underflow when working with raw probabilities, as
we discussed in Section 3.6.

Viterbi equations

Let VjM(i) be the log-odds score of the best path matching subsequence x; ; to
the submodel up to state 7, ending with x; being emitted by state M ;. Similarly
le(i ) is the score of the best path ending in x; being emitted by I;, and VjD(i ) for
the best path ending in state D ;. Then we can write

, em; (x;) ,
VMGi) = log — tmax) VL, ~1)+logay,_,w,,
VMG — D +logay,, .,
g e, () ) ( ) +logawm,,
Vj(z) = log + max Vj(1—1)+loga1j1j, (5.1

Xi

VPG —1)+logap,; ;
Vi, +logaw,_,p,,
VP = max{ VE () +logar, p,,
V2, () +logap, ..
These are the general equations. In a typical case, there is no emission score
er;(x;) in the equation for VjI(i) because we assume that the emission distribution
from the insert states I j 18 the same as the background distribution, so the proba-

bilities cancel in the log-odds form. Also, the D — I and I — D transition terms
may not be present, as discussed above.
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We need to take a little care over initialisation and termination of the dynamic
programming. We want to allow the alignment to start and end in a delete or insert
state, in case the beginning or end of the sequence does not match the first or the
last match state of the model. The simplest way to ensure this mechanistically is
to rename the Begin state as My and set VM(0) =0 (as we did in Chapter 3). We
then allow transitions to Ip and D,. Similarly, at the end we can collect together
possible paths ending in insert and delete states by renaming the End state to
M;,; and using the top relation without the emission term to calculate Vﬁl(n)
as the final score. '

If these recurrence equations are compared with those for standard gapped dy-
namic programming in (2. 16), it can be seen that apart from renaming of variables
this is the same algorithm, but with the substitution, gap-open and gap-extend
scores all depending on position in the model, J.

LL/ength

. it is
Forward algorithm the
The recurrence equations for the forward algorithm are similar to the Viterbi bet
equations, but with the max() operation replaced by addition. We define vari- ‘.éf ‘
ables FM(i), F/({) and FP(i) for the partial full log-odds ratios, corresponding to i via
vM@), V(i) and VP(i). The recurrence equations are then: : eac
em;(x;) % il

, M; (X : ¢

FMi) = Jog ¥ +log [an—le exp (FM, (i - D) 5
i " Ex
+ay_ o exp (F_ (i = 1) +ap,_,, exp (F2.G-D)]; Frc

, ey, (x;) .

Fj'(z) = log— . +log [anIj exp (Fj.M(z - 1) - :;r
+ayy, exp (F(i — D) +ap,, exp (F(i — D)]; do
F}'D(i) = log [an—le €Xp (Fjrfl @) +ay;_ip, exp (FjI—l Q) g (\3
+ ap;_p; exp (F/'D—l("))]' | .
Initialisation and termination conditions are handled as for the Viterbi case, with B:
F3"(0) being initialised to 0, an
Although these appear a little complicated, in a practical implementation the th
operation log(e* +e”) can be performed efficiently to adequate accuracy by func- th
tion lookup and interpolation; see Section 3.6, th
to
Alternatives to log-odds scoring gl

In some of the earlier papers on HMMs, rather than calculating the log-odds score gl
relative to a random model, the logarithm of the probability of the sequence given

the model was used directly. This was called the LI score for ‘log likelihood’:
LL(x) =log P(x|M). The LL score is strongly length dependent, so for searching :
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Figure 5.5 To the left the length-normalized LL score is shown as a function
of sequence length. The right plot shows the same Jor the log-odds score.

it is not good enough to use a simple threshold. It is better to use LL divided by
the sequence length, but even that is not always perfect, because the dependence
between LL and sequence length is not linear (see example below).

A way to get around this is to estimate an average score and a standard de-
viation as a function of length and then use the number of standard deviations
each sequence is away from the average. This is called the Z-score, and is also
illustrated in the example below.

Example: Modelling and searching for globins

From 300 randomly picked globin sequences a profile HMM was estimated from
scratch, i.e. starting from unaligned sequences using procedures we will explain
in Chapter 6. A simple pseudocount regulariser was used. The estimation was
done several times and the model with the highest overall LL score was picked.
(We used the default settings of the SAM package, version 1.2; Hughey & Krogh
[1996]).

With this model a database of about 60 000 proteins (SWISS-PROT release 34;
Bairoch & Apweiler [1997]) was searched using the forward algorithm. The LL
and log-odds scores were found for each sequence. For the null model we used
the amino acid frequencies of the 300 sequences in the training set. In Figure 5.5
the length-normalised scores are shown for all the globins in the training set, all
the other globins in the database and all the rest of the proteins with lengths up
to 300 amino acids.! The globin sequences are clearly separated from the non-
globins apart from a few in the ‘twilight zone.’

The main difference between the two is in the variance of the score for non-
globins, which is lower for the log-odds score, and therefore the separation is
clearer. However, just choosing a cut-off of zero for the log-odds would miss a

! A few dubious globins and other strange sequences were removed from these data.
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Figure 5.6 The Z-score calculated Jrom the LL scores (left) and the log-odds (right).

lot of real globins in the search. This is because the profile HMM is not broad
enough: it is too concentrated on a subset of the globins. Although there are ways
to address this problem directly that we will return to later in the chapter, it is also
possible to take a pragmatic approach to the separation of signal from noise given
the results of the search, and calculate Z-scores for each hit.

To calculate Z-scores, a smooth curve is fitted to the LL or log-odds score of the
non-globin sequences (a method is outlined in Krogh et al. [1994]). A standard
deviation is then estimated for each length (or rather a little interval around it),
and for each score the distance from the smooth curve is calculated in units of the
standard deviation. This is the Z-score. The result (still as a function of sequence
length) is shown in Figure 5.6.2

It is evident that it is now possible to find a threshold which will separate most
globins from all other sequences. It is also clear that the score based on log-odds
is much better for discrimination, with approximately three times the signal to
noise ratio of the LL score. The reason for this is that dividing by the probability
of the random model adjusts for the residue composition of the sequence. Without
doing that, sequences with similar residue compositions as globins will tend to

score more highly than sequences containing different residues, increasing the
variance of the noise. O

Alignment

Aside from finding matches, the other principal use of profile HMM:s is to give
an alignment of a sequence to the family, or more precisely to add it into the mul-
tiple alignment of the family. This is primarily the subject of the next chapter,

2 There is no analytical result about the shape of these score distributions. The global align-
ment distribution is probably not exactly a Gaussian [Waterman 1995], but it appears to be

a good approximation. For local alignments the extreme value distribution may be more
reasonable, as discussed in Chapter 2
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5.5 Profile HMM variants for non-global alignments 113

on multiple alignment methods, which covers alignment with profile HMMs at
length. For now, we will just point out that the natural solution is to take the high-
est scoring, or Viterbi, alignment. This is obtained by tracing back on the Viterbi
variables V.'(i), exactly as with pairwise alignment. Beyond this, all the methods
of Chapter 4 can be applied, to explore variants, and to assess the reliability of
the alignment.

5.5 Profile HMM variants for non-global alignments

We have seen that there is a very close relationship between the Viterbi alignment
of a sequence to a profile HMM and the global dynamic programming compar-
ison between two sequences using affine gap penalties, which we described in
Chapter 2. It is therefore possible to generalise all the variations of dynamic pro-
gramming, such as those that find local, repeat and overlap matches, to use profile
HMM:s.

However, we have developed probabilistic models much more fully since
Chapter 2, and this time we want to take more care to ensure that the result of
converting to a local algorithm remains a proper probabilistic model, i.e. that
we assign each sequence a true probability so that the sum over all sequences
Y, P&xIM)=1. Our approach to doing this is to specify a new model for the
complete sequence x, which incorporates the original profile HMM together with
one or more copies of a simple self-looping model that is used to account for the
regions of unaligned sequence. These behave very like the insert states that we
added to the profile itself. We call them Sflanking model states, because they are
used to model the flanking sequences to the actual profile match itself.

The model for local (Smith-Waterman style) alignment is shown here:

Begin| ! | End

Q Q

The flanking model states are shown as shaded diamonds. Notice that as well
as specifying the emission probabilities of the new states, which will normally
of course be g,, we must specify a number of new transition probabilities. The
looping probability on the flanking states should be close to 1, since they must
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account for long stretches of sequence. Let us set these to (1 — n). Note also that

we have made use of silent states, shown as shaded circles, as ‘switching points’
to reduce the total number of transitions.

The next issue is how to set all the transition probabilities from the left flank-
ing state to different start points in the model. One option is to give them equal
probabilities, /L. Another is to assign more probability to starting at the begin-
ning of the model. The default option in the HMMER Ppackage for profile HMMs
[Eddy 1996] assigns probability n /2 to the start of the profile, and n/(2(L — 1))
to the other positions, favouring matches that start at the beginning of the model.

If all the probability is assigned to the first model state, then it forces this model
to match only complete copies of the profile in the searched sequence, ensuring
a type of ‘overlap’ match constraint. This can be appropriate when, for example,
the HMM represents a protein domain that you expect to find either present as a
whole or absent. However, to allow for rare cases where the first residue might be

missing, it may be wise in such cases to allow a direct transition from the flanking
state into a delete state, as shown here:

Begin > » » > »] End

It is clear that by tinkering with the transition connections and probabilities a
wide variety of different models can be produced, each potentially useful in dif-

ferent circumstances. A final example similar to the first model for local matches
is

Begin & 1 End

which allows repeat matches to subsections of the profile model, like the repeat
algorithm variant in Chapter 2.

Note that all these variants of transition connectivity and probability assign-
ment affect not only the types of match that are allowed, but also the score. More

restric
founad
matct

Exer
5.1

52

Ast
grea:
on tl
prob
taile
cour

the :
sligl
posi
spot

exa
will
Fa
wil
eas
cot
the

col
Oont



1)

lel

5.6 More on estimation of probabilities 115

restrictive transition distributions will give higher match scores if a good match is
found, so are preferable if they can be designed to represent the types of correct
matches that are expected.

Exercises

5.1 Show that if the random model is the same as that described in Chapter 4
(a succession of two states looping on themselves with probability (1 —
1)), with 7 the same as in the flanking models, the local alignment model
gives update equations like those of equation (2.9).

5.2 Explain the reasons for any differences.

5.6 More on estimation of probabilities

As promised above, we now return to the subject of parameter estimation at
greater length. Although our discussion for most of this section will be focused
on the emission probabilities, analogous methods can be used for the transition
probabilities. The aim here is to introduce methods that can be used. A more de-
tailed mathematical discussion about the estimation of probabilites from sample
counts is given in Chapter 11 (p. 311).

The most straightforward approach to parameter estimation would be to give
the maximum likelihood estimates for the parameters. We will change notation
slightly from that used before. Given observed frequencies Cja Of residue a in
position j of the alignment, maximum likelihood estimates for ey ;(a), the corre-
sponding model parameters, are

Cja

em;(a) = 5 - 5.2)

As we described above, a clear problem with this is that if there are no observed

examples of a particular outcome then its probability is estimated as zero. This

will frequently occur. For example, in the alignment of Figure 5.3 only v, T and

F are present in the first column. However, it is quite likely that other amino acids

will occur in that position amongst all the other globin sequences in biology. The

easiest way to deal with this problem is to add pseudocounts to the observed

counts c;,. Below, we first discuss the pseudocount approach at greater length,
then give some more complex alternatives.

Simple pseudocounts

A very simple and much-used pseudocount method is to add a constant to all the
counts, which prevents the problem with zero probabilities. When the constant is
one, as we used above in our example, this is called ‘Laplace’s rule’. A slightly
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more sophisticated method is to add a quantity proportional to the background
distribution, giving

Cjia+ Aq,
Za’ Cja' +A ’

where c;, are the real counts, and 4 is the weight put on the pseudocounts as
compared to the real counts. Values of A of around twenty seem to work well for
protein alignments.

This form of regularisation has the appealing feature that em;(a) is approxi-
mately equal to g, if very little data is available, i.e. all the real counts are very
small compared to A. At the other extreme, where a large amount of data is avajl-
able, the effect of the regulariser becomes insignificant and em;(a) is essentially
equal to the maximum likelihood solution. So, at this intuitive level, pseudo-
counts make a lot of sense.

Adding pseudocounts amounts to adding some fake imagined data into the
alignment, based on our general knowledge of proteins, to represent all the other
things that might happen. They thus correspond to prior information about pro-
tein families, before having seen the specific data for the family in the form of the
alignment. This statement can be formalised in a Bayesian framework. Bayes’
equation tells us how to combine data, D, with a prior probability distribution
over the parameters P(6) to give a posterior distribution over 6, from which we
can take either the maximum or the mean as our best estimate,

P(D|6)P(6)
P(D)

eMj (a) =

(5.3)

P@|D)=

In our case the parameters 9 are our model probabilities. The pseudocount
method given above corresponds in this Bayesian framework to assuming a
Dirichlet prior distribution with parameters a, = Ag, over the probabilities: see
Chapter 11 for mathematical details.

Dirichlet mixtures

The problem with the simple pseudocounts, as compared to the substitution ma-
trix based methods, is that only the most rudimentary prior knowledge can be
contained in a single pseudocount vector. For this reason we need a lot of ex-
ample data in the alignment to get good estimates of the parameters. Experience
suggests that to achieve good discrimination typically fifty or more examples are
desirable when modelling proteins.

In order to include better prior information, it was therefore suggested by
Brown et al. [1993] that one should use a mixture of Dirichlet distributions as the
prior. The idea is that there might be several different sets of pseudocount pri-
orsal,... ok corresponding to different types of alignment environments, where
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3.6 More on estimation of probabilities 117

a"j corresponds to Aq, in the example above. One set might be relevant for ex-

posed loop environments, one for buried small residue environments, etc. Given
our counts c;, we first estimate how likely each prior distribution % is (based on
how well it fits the observed data), then combine their effects according to these
posterior probabilities:

Cja +ak
em;(@)= ) Pklej))=——1a
M/ ; ! Za/(Cja’ +a:/)

where the P(k|c;) are the posterior mixture coefficients. We calculate these by
Bayes’ rule,

P P(c;k)
2 PiP(;lk)

where the p; are the prior probabilities of each mixture component, and P(cjlk)
is the probability of the data according to Dirichlet mixture k. The equation for
P(c;|k) has a frightening looking form, which is in fact fairly simple to calculate:

(Za9a)! T (X, cja+0b) T (2, o)
[Tacia! T1,T(cja+ak) T, T(ak)’

where I'(x) is the gamma function, a standard function over the reals related to the
factorial function on the integers. For further details and an explanation of this
equation, see Chapter 11, where we also describe how the mixture component
distributions ¥ are obtained.

Using this type of approach, it seems that good profile HMMs can be fit to
alignments with as few as ten or twenty examples [Sjélander et al. 1996].

P(klc]) =

P(cjlk) =

Substitution matrix mixtures

An alternative approach to using a mixture of Dirichlets is to adjust the pseudo-
counts in a single Dirichlet formulation, using information from the observed
counts and a substitution matrix. This is not a theoretically well-founded ap-
proach, but it makes intuitive sense as a heuristic, combining features of the non-
probabilistic profile methods and the Dirichlet pseudocount methods.

The first step is to convert the matrix entries s(a,b) into conditional proba-
bilities P(bla). If we assume that the substitution matrix entries are derived as
log-odds ratios, as in Chapter 2, then s(a,b) = log(P(a,b)/q.qs,), which is the
same as log(P(bla)/ P(b)), so P(bla) = qre*@? . We can in fact derive P(bla)
values from an arbitrary score matrix s(a,b) given background probabilities qa;
see below.

Given conditional probabilities P(b|a) we can generate pseudocounts as fol-
lows. Let f;, be the maximum likelihood probabilities derived from the counts,
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SO fia =cCja/ Y, Cja'- Using these we set pseudocount values with

%a=A)  f;Palb),
b

where A is a positive constant comparable to the one we used with simple pseudo-
counts [Tatusov, Altschul & Koonin 1994; Claverie 1994; Henikoff & Henikoff
1996]. We then use essentially the same equation as (5.3) to obtain the model
parameters:

Cjia +Qjq
Za’ Cja' +aja’ .

There is no obvious statistical interpretation for this type of pseudocount, but
the idea is quite natural: amino acid ; contributes to pseudocount J in proportion
to its abundance in the column and the probability of its changing to amino acid J-
The formula interpolates between the treatment of pairwise alignments and the
maximum likelihood solution. The substitution matrix term dominates if there
are small numbers of sequences (especially if A > 1), and values close to the
maximum likelihood estimate are obtained when the number of counts is large
(more precisely when the total number of counts C; > A).

There are various choices for the scaling constant A of the pseudocounts. For
instance A = | was used in Lawrence er al. [1993], but this appears to be too
weak in practice. Claverie [1994] suggests A = min(20, N), and Henikoff &
Henikoff [1996] suggest A = 5R, where R is the number of different residue
types observed in the column (i.e. the number of a for which Cja > 0).

eMj(a) =

Deriving P(b|a) Jrom an arbitrary matrix

Even if a score matrix s(a,b) was not derived as a log-odds matrix, as long as cer-
tain conditions are fulfilled it 1s possible to find a scale factor A such that As(a,b)
will behave correctly when interpreted as a log-odds matrix [Altschul 1991]. The
conditions are that the matrix is negatively biased, i.e. 2 ab9a955(a,b) < 0, and
that it contains at least one positive entry.

What we want is a set of values rij for which

1
s(a,b) = ~log 2
daqb
where r,; can be interpreted as the probability for the pair a,b. This equation is
easily inverted, so we get the pair probabilities expressed in terms of the substi-

tution matrix r,, = daqp eXp(As(a,b)). To be legitimate probabilities the rap have
to sum to one. We therefore need to find a A such that

FO) =) " gagre® @ — 1 =y, (5.4)
ab

b

One such value is A = 0, but clearly this is not what we want. The two conditions
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5.6 More on estimation of probabilities 119

we gave above turn out to be sufficient to ensure there is another, positive solution
to this equation; see the exercises below.

The resulting value of A is called the natural scaling factor of the substitution
matrix. This probabilistic interpretation of the substitution matrix leads to an en-
tropy measure for the matrix of > apTablog(ra /4aqs), which is a useful quantity
for characterising and comparing substitution matrices [Altschul 1991].

Exercises

5.3 Use the negative bias condition to show that S (&) is negative for small
enough A. Hint: calculate f'(0), the derivative of Sf(A)atr =0.

5.4 Use the second condition, that there is at least one positive s(a,b), to
show that f(A) becomes positive for large enough A.

5.5 Finally, show that the second derivative of SF(A) is positive, and from this
and the results of the previous two exercises that there is one and only
one positive value of A satisfying (5.4).

Estimation based on an ancestor

There is a more principled and direct way to use the information in substitution
matrices for estimating the HMM probabilities than that described above. This
approach does not use pseudocounts. Instead, it assumes that all the observed se-
quences have been derived independently from a common ancestor, and generates
an estimate of the residue present in a given position in that common ancestor (or
rather a posterior probability distribution for what that residue was). From this
We can estimate the probability of seeing each residue in a new descendant of the
ancestor, different from those in the sample.

Assume we have example sequences x* with residues xj’.‘ in column j of the
alignment (we have adjusted our notation slightly; this xf is not the jth residue
in sequence x* if there are gaps, but it is a convenient notation for what we need
here). Once again, we need the conditional probabilities P(bla) derived from the
substitution matrix. Let the residue in the common ancestor be y;. Then we can
use Bayes rule to calculate the posterior probability that yi=a

qa [T P(xfla)
2o 9a [1 P(xFlay
Note that we needed a prior distribution for residues at the common ancestor,
which we set to g, because that is our background probability for amino acids in
the absence of further information.

We can now calculate the HMM emission probabilities as the predicted proba-
bilities for a new sequence

P(y; = alalignment) = (8.5)

ewm,(a) =) " P(ala’)P(y; = ' |alignment). (5.6)

a
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One problem with this approach is that, as we noticed above, different columns
vary widely in their degree of conservation. Indeed, that is one of the proper-
ties that we wanted to exploit when using alignments to estimate profile HMM:.
However, using a single substitution matrix implies assuming a fixed degree of
conservation. As we discussed in Chapter 2, matrices typically come in families
varying in their level of implied conservation. Examples are the PAM [Dayhoff,
Schwartz & Orcutt 1978] and the BLOSUM [Henikoff & Henikoff 1992] series
of matrices. We can therefore significantly improve the approach in (5.5) and
(5.6) if we optimise over choice of matrix from a family. This way, a very con-
served column might use a conservative matrix, such as PAM30, and a very varied
column would use a divergent matrix, such as PAMS00.

How do we choose the optimal matrix? A natural approach is to maximise the
likelihood of the observed data

PGj,xM D=3 g, [] Pxtla,r) (5.7)
a k

where ¢ is the matrix family parameter (¢ for evolutionary time). It would also be
possible to use a Bayesian approach here, proposing a prior distribution over ¢,
then combining this with (5.7) in Bayes’ rule to obtain a posterior distribution for
t, and summing over this in (5.6). However, that would require signficantly more
computation.

The maximum likelihood time-dependent approach is closely related to the
‘evolutionary weights’ method in the PROFILE package [Gribskov & Veretnik
1996]. However, that method estimates different evolutionary times ¢ for each
possible ancestral amino acid, and also adjusts the resulting weights with respect
to a set of baseline probabilities; for details see Gribskov & Veretnik [ 1996].
There are also strong connections between the methods of this subsection and
those discussed later in Chapter 8 when building phylogenetic trees using maxi-
mum likelihood methods.

Testing the pseudocount methods

All the methods mentioned above have been tested in various ways. Direct tests,
in which profiles were constructed and used for searching, were carried out ex-
tensively by Henikoff & Henikoff [1996]. The best method turned out to be the
substitution matrix based method (5.6), with A = 5R as described above; the
Dirichlet mixture regulariser came a reasonably close second. Other tests gave
different results [Tatusov, Altschul & Koonin 1994; Karplus 1995], so it is not
clear which method is best, and it is likely that this will depend on the application
and the details of the mixture components or substitution matrix used.

An interesting method was for testing various regularisers was given by
Karplus [1995]. Instead of performing a huge number of database searches, he
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asked the following question:> How well can an amino acid distribution be ap-
proximated from a small sample? Columns were extracted from a large set of
deep alignments (the BLOCKS database; Henikoff & Henikoff [1991]). Imagine
we take a small sample of size n with counts 5o from a column with complete
counts C,. From the sample counts s, we can estimate the probabilities e(a) of
other symbols that might occur in the same column, using one of the methods
described above (we use a subscript s to remind ourselves that this estimation is
dependent on the sample counts). We can also estimate the probabilities of other
symbols directly from the frequencies with which they occur in all columns of
the database together with the probability P(s|C) of drawing s from a column C
(given by the multinomial distribution). This estimate is given by:

P(als) = columns ¢ PGIC)Ca
Zcolumns c P(s10)IC|

where |C| denotes the number of symbols in the column C. P(a|s) can only
be calculated up to a sample size of n = 5, but this is also the most interesting
regime, because it is for small sample sizes that regularisation is most crucial.
We can now use the relative entropy — Za P(a|s)loges(a) to compare the ‘ideal’
probability P(a|s) with that given by the regulariser. Summing over all samples
s of size n gives a measure

E,= Z P(s) (—}:P(amloge,(a)), (5.8)

s,ls|=n

where P(s) is the probability of drawing the sample s averaged over all columns
in the database. This can be calculated using P(s) = Zc P(s|O)|C)/ Zc [C].

Karplus proposed that a good regulariser should minimise E,. He showed that
several of the more complex regularisers described above resulted in estimators
that were very close to optimal, in the sense that £, was very smallup ton = 5.
Of course, we are ultimately interested in database searches, and it is not evident
that the regulariser obtaining the lowest value of E, will actually be best for
searching. It is likely that the typical similarities in the source alignment database
are not the same as the ones that we will be searching for with our HMM.

As well as evaluating methods, Karplus’ approach can also be used to set the
free parameters in the various methods described above, for example the total
number of pseudocounts A to use in (5.3). For any value of A we can calcu-
late E,, from our database of columns, either directly or by some sort of random
sampling, and in fact we can also calculate the gradient of the relative entropy
with respect to A. We can therefore find the value of A that minimises this av-
erage relative entropy, using gradient descent methods [Press et al. 1992], or by

3 This page has been rewritten for the second printing.
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other optimisation methods. In principle this can be done for any sample size n,
yielding parameters dependent on 7.

5.7 Optimal model construction

parameters.

In the profile HMM formalism, it is assumed that an aligned column of sym-
bols corresponds either to emissions from the same match State or to emissions
from the same insert state. [t therefore suffices to mark which columns come

MAP match-insert assignment

The MAP construction algorithm recursively calculates a number S i, which is the
log probability of the optimal model for the alignment up to and including column
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