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are given a general function for y(g) then we can still use all the dynamic pro-
gramming versions described in Section 2.3, with adjustments to the recurrence
relations as typified by the following:

Fi—1,j—D)+s(x;,y)),
F(i, j) = max Fk,j)+yv(i-=k), k=0,...,i—-1, (2.15)
FG,k)+y(j—k), k=0,...,j—1.

which gives a replacement for the basic global dynamic relation. However, this
procedure now requires O(n’) operations to align two sequences of length n,
rather than O(n?) for the linear gap cost version, because in each cell (i, j) we
have to look at i + j + 1 potential precursors, not Just three as previously. This is
a prohibitively costly increase in computational time in many cases. Under some
conditions on the properties of y() the search in & can be bounded, returning the
expected computational time to O(n?), although the constant of proportionality
is higher in these cases [Miller & Myers 1988].

Alignment with affine gap scores

The standard alternative to using (2.15) is to assume an affine gap cost structure
asin (2.5): y(g) = —d — (g — 1)e. For this form of gap cost there is once again an
O(n?) implementation of dynamic programming. However, we now have to keep
track of multiple values for each pair of residue coefficients (i, j) in place of the
single value F(i, j). We will initially explain the process in terms of three vari-
ables corresponding to the three separate situations shown in Figure 2.4, which
we show again here for convenience.
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Let M(i, j) be the best score up to (i, j) given that x; is aligned to y; (left case),
I:(i, ) be the best score given that x; is aligned to a gap (in an insertion with
respect to y, central case), and finally /,(i, j) be the best score given that y; is in
an insertion with respect to x (right case).

The recurrence relations corresponding to (2.15) now become

MG —1,j~ D) +s(x;,y;),

M(@i,j) = max L =1, =D +sx,y)), (2.16)
I(i =1, = D +s(xi,y));
T M@G-1,j)—d,
I,G,j) = maX{Ix(i_l’j)_e;

L. = max[ly(i,j— D—e.

In these equations, we assume that a deletion will not be followed directly by an



30 2 Pairwise alignment

Figure 2.9 A diagram of the relationships between the three states used for
affine gap alignment.

insertion. This will be true for the optimal path if —d — ¢ is less than the lowest
mismatch score. As previously, we can find the alignment itself using a traceback
procedure.

The system defined by equations (2.16) can be described very elegantly by the
diagram in Figure 2.9. This shows a state for each of the three matrix values, with
transition arrows between states. The transitions each carry a score increment,
and the states each specify a A(i, j) pair, which is used to determjne the change
in indices i and j when that state is entered. The recurrence relation for updating
each matrix value can be read directly from the diagram (compare Figure 2.9 with
equations (2.16)). The new value for a state variable at (i, j) is the maximum of
the scores corresponding to the transitions coming into the state. Each transition
score is given by the value of the source state at the offsets specified by the A(i, j)
pair of the target state, plus the specified score increment. This type of description
corresponds to a finite state automaton (FSA) in computer science. An alignment
corresponds to a path through the states, with symbols from the underlying pair
of sequences being transferred to the alignment according to the A(i, j) values in
the states. An example of a short alignment and corresponding state path through
the affine gap model is shown in Figure 2.10.

It is in fact frequent practice to implement an affine gap cost algorithm using
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Figure 2.10 An example of the state assignments for an alignment using
the affine gap model.
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