SEQUENCE COMPARISON AND
DATABASE SEARCH

In this chapter we present some of the most practical and widely
used methods for sequence comparison and database search. Se-
quence comparison is undoubtedly the most basic operation in
computational biology. It appears explicitly or implicitly in ail
subsequent chapters of this book. It has also many applications
in other subareas of computer science.

—
BIOLOGICAL BACKGROUND

-

Why compare sequences? Why use a computer to do that? How to compare sequences
using computers? These are the main questions that will concern us in this chapter. We
will answer the first two in this section, and devote the rest of the chapter to the last one.

Sequence comparison is the most important primitive operation in computational bi-
ology, serving as a basis for many other, more compiex, manipulations. Roughly speak-
ing, this operation consists of finding which parts of the sequences are alike and which
parts differ. However, behind this apparently simple concept, a great variety of truly dis-
tinct problems exist, with diverse formalizations and sometimes requiring completely
different data structures and algorithms for an efficient solution.

As examples, we will give a list of problems that often appear in computational bi-
ology. In these examples we use two notions that will be precisely defined in later sec-
tions. One is the similarity of two sequences, which gives a measure of how similar the -
sequences are. The other is the alignment of two sequences, which is a way of placing
one sequence above the other in order to make clear the correspondence between similar
~ characters or substrings from the sequences. The examples (and the whole chapter) also
use basic concepts about strings, which are defined in Section 2.1. Here are the examples.

1. We have two sequences over the same alphabet, both about the same length (tens
of thousands of characters). We know that the sequences are almost equal, with

47

48 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

only a few isolated differences such as insertions, deletions, and substitutions of
characters. The average frequency of these differences is low, say, one each hun-
dred characters. We want to find the places where the differences occur.

2. We have two sequences over the same alphabet with a few hundred characters
each. We want to know whether there is a prefix of one which is similar to a suf-
fix of the other. If the answer is yes, the prefix and the suffix involved must be
produced.

3. We have the same problem as in (2), but now we have several hundred sequences
that must be compared (each one against all). In addition, we know that the great
majority of sequence pairs are unrelated, that is, they will not have the required
degree of similarity.

4. We have two sequences over the same alphabet with a few hundred characters
each. We want to know whether there are two substrings, one from each sequence,
that are similar.

5. We have the same problem as in (4), but instead of two sequences we have one
sequence that must be compared to thousands of others.

Problems like (1) appear when, for instance, the same gene is sequenced by two differ-
ent labs and they want to compare the results; or even when the same long sequence is
typed twice into the computer and we are looking for typing errors. Problems like (2) and
(3) appear in the context of fragment assembly in programs to help large-scale DNA se-
quencing. Problems like (4) and (5) occur in the context of searches for local similarities
using large biosequence databases.

We will see in this chapter that a single basic algorithmic idea can be used to solve all
of the above problems. However, this may not be the most efficient solution. Sometimes
less general but faster methods are better suited to each task.

The use of computers hardly needs justification when we deal with large quantities
of data, as in searches in large databases. Yet, even in cases where we could conceivably
do comparisons “by hand,” the use of computers is safer and more convenient, as the
following examples, taken from a paper by Smith and coworkers [176], illustrate.

In a 1979 paper, Sims and colleagues examined similar regions from the DNA of
two bacteriophages [173]. They presented an alignment between regions of the H-gene
from phages St-1 and G4 containing 11 matches (that is, 11 columns in which there are
equal characters in both sequences). The procedure they used to obtain good alignments
was described as the “insertion of occasional gaps to maximize homology [number of
identities]).” Smith and colleagues [176], however, produced 12 matches in an alignment
found by computer, which was certainly overlooked by the first group of researchers.

In another 1979 paper, Rosenberg and Court completed a study aligning 46 promoter
sequences from various organisms [164]. The multiple alignment was constructed start-
ing from the alignment of certain regions reputed relatively invariant and then extending
this “seed” alignment in both directions without introducing gaps. Although the resulting
alignment was good as a whole, the pairwise alignments obtained from it were relatively
poor. This happens fairly frequently in multiple alignments, but in this case Smith and
colleagues found, with the help of a computer, an alignment between two substrings of
the sequences involved that had 44 identical characters over a total of 45. This is cer-
tainly an astonishingly good local alignment, and the fact that it is not even mentioned

by

ties

Int
int
of i
inv
of -
are
sex
car

Co
not
ob

the
twi

an(
det
cus

qu
ali-
as

wi'
on
S€(C
no
eve

tions of
ch hun-

aracters
‘0 a suf-
must be

Juences
he great
equired

aracters
quence,

ave one

) differ-
lence is
“(2) and
INA se-
ilarities

solve all
netimes

1antities
‘eivably
i, as the
te.

INA of
H-gene
here are
nments
mber of
gnment
chers.
romoter
:d start-
tending
sulting
latively
iith and
rings of
5 1S cer-
ntioned

3.2 COMPARING TWO SEQUENCES 49

by Rosenberg and Court must mean again that they were not able to find it by hand.
These two examples show that the use of computers can reveal intriguing similari-
ties that might go unnoticed otherwise.

— .
COMPARING TWO SEQUENCES

2

In this section we study methods for comparing two sequences. More specifically, we are
interested in finding the best alignments between these two sequences. Several versions
of this problem occur in practice, depending on whether we are interested in alignments
involving the entire sequences or just substrings of them. This leads to the definition
of global and local comparisons. There is also a third kind of comparison in which we
are interested in aligning not arbitrary substrings, but prefixes and suffixes of the given
sequences. We call this third kind semiglobal comparison. All the problems mentioned
can be solved efficiently by dynamic programming, as we will see in the sequel.

3.2.1 GLOBAL COMPARISON —
THE BASIC ALGORITHM

Consider the following DNA sequences: GACGGATTAG and GATCGGAATAG. We can-
not help but notice that they actually look very much alike, a fact that becomes more
obvious when we align them one above the other as follows.

GA-CGGATTAG

GATCGGAATAG 3-1)

The only differences are an extra T in the second sequence and a change from A to T in
the fourth position from right to left. Observe that we had to introduce a space (indicated
by a dash above) in the first sequence to let equal bases before and after the space in the
two sequences align perfectly.

Our goal in this section is to present an efficient algorithm that takes two sequences
and determines the best alignment between them as we did above. Of course, we must
define what the “best” alignment is before approaching the problem. To simplify the dis-
cussion, we will adopt a simple formalism; later, we will see possible generalizations.

To begin, let us be precise about what we mean by an alignment between two se-
quences. The sequences may have different sizes. As we saw in the recent example,
alignments may contain spaces in any of the sequences. Thus, we define an alignment
as the insertion of spaces in arbitrary locations along the sequences so that they end up
with the same size. Having the same size, the augmented sequences can now be placed
one over the other, creating a correspondence between characters or spaces in the first
sequence and characters or spaces in the second sequence. In addition, we require that
no space in one sequence be aligned with a space in the other. Spaces can be inserted
even in the beginning or end of sequences.

i
I
il

50 CHAPTER3 SEQUENCE COMPARISON AND DATABASE SEARCH

Given an alignment between two sequences, we can assign a score to it as follows.
Each column of the alignment will receive a certain value depending on its contents and
the total score for the alignment will be the sum of the values assigned to its columns. If
a column has two identical characters, it will receive value +1 (a march). Different char-
acters will give the column value —1 (a mismatch). Finally, a space in a column drops
downits value to —2. The best alignment will be the one with maximum total score. This
maximum score will be called the similarity between the two sequences and will be de-
noted by sim(s,) for sequences s and z. In general, there may be many alignments with
maximum score.

To exercise these definitions, let us compute the score of alignment (3.1). There are
nine columns with identical characters, one column with distinct characters, and one col-
umn with a space, giving a total score of

IxX1I+1x(=1)+1x(=2)=6.

Why did we choose these particular values (+1, —1, and —2)? This scoring system is
often used in practice. We reward matches and penalize mismatches and spaces. In Sec-
tion 3.6.2 we discuss in more detail the choice of these parameters.

One approach to computing the similarity between two sequences would be to gen-
erate all possible alignments and then pick the best one. However, the number of align-
ments between two sequences is exponential, and such an approach would result in an

intolerably slow algorithm. Fortunately, a much faster algorithm exists, which we will °

now describe.

The algorithm uses a technique known as dynamic programming. It basically con-
sists of solving an instance of a problem by taking advantage of already computed solu-
tions for smaller instances of the same problem. Given two sequences s and ¢, instead of
determining the similarity between s and ¢ as whole sequences only, we build up the so-
lution by determining all similarities between arbitrary prefixes of the two sequences. We
start with the shorter prefixes and use previously computed results to solve the problem
for larger prefixes.

Let m be the size of s and n the size of ¢. There are m + 1 possible prefixes of s and
n + 1 prefixes of ¢, including the empty string. Thus, we can arrange our calculations in
an (m + 1) x (n + 1) array where entry (i, j) contains the similarity between s{l..i]and
t{l../].

Figure 3.1 shows the array corresponding to s = AAAC and t = AGC. We placed s
along the left margin and ¢ along the top to indicate the prefixes more easily. Notice that
the first row and the first column are initialized with multiples of the space penalty (—2
in our case). This is because there is only one alignment possible if one of the sequences
is empty: Just add as many spaces as there are characters in the other sequence. The score
of this alignment is —2k, where « is the length of the nonempty sequence. Hence, filling
the first row and column is easy.

Now let us concentrate on the other entries. The key observation here is that we
can compute the value for entry (i, j) looking at just three previous entries: those for
G—1,/),G-=1,j~1),and (i, J — 1). The reason is that there are Just three ways
of obtaining an alignment between s[1..i] and t[1..;], and each one uses one of these

previous values. In fact, to get an alignment for s[1..;]and ¢[1.. /], we have the following
three choices:

B e

3

llows.
ats and
mns. If
1t char-
1 drops
e. This
be de-
ts with

ere are
ne col-

stem is
[n Sec-

to gen-
“align-
lt in an
ve will

ly con-
d solu-
tead of
the so-
‘es. We
roblem

fs and
ions in
.i]and

laced s
ice that
ity (=2
uences

escore

filling

hat we
ose for
2 ways
f these
lowing

e —— rr—————————— - At

3.2 COMPARING TWO SEQUENCES 51
A G C
0 1 2 3
0 0 [* 2 | 4 | 6
A
1 -1 -1
A 1 -2 1 < -1 < -3
A A
1 -1 -1
A 2 -4 -1 0 - -2
I § A A
1 -1 -1
A 3 -6 -3 -2 -1
[§ [§ 3
-1 -1 1
C 4 -8 -5 -4 -1
FIGURE 3.1

Bidimensional array for computing optimal alignments. The
value in the upper left corner of cell (i, j) indicates whether
s[i] = t[j). Indices of rows and columns start at zero.

® Align s(1..i] with ¢[1..j — 1] and match a space with ¢[], or

® Align s[1..i — 1] with¢[1..j — 1] and match s[i] with ¢[j], or

® Align s[1..i — 1] with ¢[1..] and match s[i] with a space.

These possibilities are exhaustive because we cannot have two spaces paired in the
last column of the alignment. Scores of the best alignments between smaller prefixes are

already stored in the array if we choose an appropriate order in which to compute the
entries. As a consequence, the similarity sought can be determined by the formula

52 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

sim(s[1..i], t[l..j-— -2

sim(s[1..i], ¢[1..j]) = max { sim(s[1..i — 1, e[1..j = 1]) + pG, j) (3.2)
sim(s[1..i — 1], ¢[1..j]) — 2,

where p(i, j)is +1 if s[i] = t[jland —1if s[i] # ¢[j]. The values of p(i, j) are written

in the upper left corners of the boxes in Figure 3.1. If we denote the array by a, this
equation can be rewritten as follows:

ali, j — 1] -2
ali, jl=max { ali -1, — 1]+ p(, j) (3.3)
afi - 1, j]-2.

As we mentioned earlier, a good computing order must be followed. This is easy to
accomplish. Filling in the array either row by row, left to right on each row, or column by
column, top to bottom on each column, suffices. Any other order that makes sure a[i, j —
l,ali —1,j—1),anda[i — 1, J1are available when a[i, j] must be computed is fine,
too.

Finally, we drew arrows in Figure 3.1 to indicate where the maximum value comes
from according to Equation (3.3). For instance, the value of a[l, 2] was taken as the max-
imum among the following figures.

all, 1] -2 = -1
al0,1]1-1=-3
al0,2] — 2 = —6.

Therefore, there is only one way of getting this maximum value, namely, coming from
entry (1, 1), and that is what the arrows show.

Figure 3.2 presents an algorithm for filling in an array as explained. This algorithm
computes entries row by row. It depends on a parameter g that specifies the space penalty

Algorithm Similarity
input: sequences s and ¢
output: similarity between s and ¢
m <« |s|
n <« |t|
fori —Otomdo
ali,0] «ixg
for j —~0Otondo
af0,j] < jxg
fori — 1tomdo
for j — 1tondo
afi, j] < max(@a[j — 1, jl1+g,
ali — 1, j = 11+ pG, j),
ali,j—11+¢)
return a{m, n]

FIGURE 3.2

Basic dynamic programming algorithm for comparison of
two sequences.

o N ——

P ——————p——— - ni——— v

et - a ———— < g -

w

(u

ct
in
g

5
St
b
al

th
_al
ir

from

rithm
:nalty

3.2 COMPARING TWO SEQUENCES 53

(usually g < 0) and on a scoring function p for pairs of characters. We have used g =
-2, p(a,b) =1ifa = b, and p(a, b) = —1 if a # b in Figure 3.1.

Optimal Alignments

We saw how to compute the similarity between two sequences. Here we will see how to
construct an optimal alignment between them. The arrows in Figure 3.1 will be useful
in this respect. All we need to do is start at entry (m, n) and follow the arrows until we
get to (0, 0). Each arrow used will give us one column of the alignment. In fact, consider
an arrow leaving entry (i, j). If this arrow is horizontal, it corresponds to a column with
a space in s matched with ¢[j]; if it is vertical, it corresponds to s[i] matched with a
space in ¢; finally, a diagonal arrow means s[i] matched with [j]. Observe that the first
sequence, s, is always placed along the vertical edge. Thus, an optimal alignment can
be easily constructed from right to left if we have the matrix a computed by the basic
algorithm. It is not necessary to implement the arrows explicitly — a simple test can be
used to choose the next entry to visit.

Figure 3.3 shows a recursive algorithm for determining an optimal alignment given
the matrix a and sequences s and ¢. The call Align(m, n, len) will construct an optimal
alignment. The answer will be given in a pair of vectors align-s and align-t that will hold
in the positions 1../en the aligned characters, which can be either spaces or symbols from
the sequences. The variables align-s and align-t are treated as globals in the code. The

Algorithm Align
input: indices i, j, array a given by algorithm Similarity
output: alignment in align-s, align-t, and length in len
ifi =0and j =0 then
len <0
elseif i > Oand ali, j] =a[i - 1, j] + g then
Align(i — 1, j, len)
len < len + 1
align-s(len)] « s{i]
align-tflen] « -
elseifi > Oand j > Oand a[i, j] =ali — 1, j — 1]+ p(i, j) then
Align(i =1, j — 1, len)
len < len + |
align-s(len] « s[i]
align-t{len] « t{j]
else /hastobej>O0andali,jl=ali,j—1]1+g
Align(i, j — 1, len)
len « len + |
align-s{len} « -
align-t{len} « t(j]

FIGURE 3.3

Recursive algorithm for optimal alignment.

54 CHAPTER 3 SEQUENCE COMPARISON AND DATABASE SEARCH

length of the alignment is also returned by the algorithm in the parameter /en. Note that
max(|s|, [¢]) < len < m + n.

As we said previously, many optimal alignments may exist for a given pair of se-
quences. The algorithm of Figure 3.3 returns just one of them, giving preference to the
edges leaving (i, j) in counterclockwise order (see Figure 3.4).

maximum
preference
minimum
preference
FIGURE 3.4
Arrow preference.

As a result, the optimal alignment returned by this algorithm has the following general
characteristic: When there is choice, a column with a space in has precedence over a
column with two symbols, which in turn has precedence over a column with a space in
s. For instance, when aligning s = ATAT withr = TATA, we get

-ATAT
TATA-

rather than

ATAT-
-TATA

which is the other optimal alignment for these two sequences. Similarly, when aligning
§ = AA witht = AAAA, we get

--AA
AAAA

although there are five other optimal alignments. This alignment is sometimes referred
to as the upmost alignment because it uses the arrows higher up in the matrix. To reverse
these preferences, we would reverse the order of the if statements in the code, obtaining
the downmost alignment in this case. A column appearing in both the upmost and down-
most alignments will be present in all optimal alignments between the two sequences
considered.

It is possible to modify the algorithm to produce ail optimal alignments between s
and r. We need to keep a stack with the points at which there are options and backtrack
to them to explore all possibilities of reaching (0, 0) through the arrows. However, there
might be a very large number of optimal alignments. In these cases, it is often advisable

ite that

r of se-
: to the

reneral
over a
Jace in

igning

‘ferred
everse
aining
down-
lences

veen §
ktrack
. there
isable

3.2 COMPARING TWO SEQUENCES 55

to keep some sort of short representation of all or part of these alignments, for instance,
the upmost and downmost ones.

Let us now determine the complexity of the algorithms described in this section.
The basic algorithm of Figure 3.2 has four loops. The first two do the initialization and
consume time O (m) and O (n), respectively. The last two loops are nested and fill the rest
of the matrix. The number of operations performed depends essentially on the number
of entries that must be computed, that is, the size of the matrix. Thus, we spend time
O(mn) in this part and this is the dominant term in the time complexity. The space used is
also proportional to the size of the matrix. Hence, the complexity of the basic algorithm
is O(mn) both for time and space. If the sequences have the same or nearly the same
length, say n, we get O(n*). That is why we say that these algorithms have quadratic
complexity.

The construction of the alignment — given the already filled matrix — is done in
time O (len), where len is the size of the returned alignment, which is O(m + n).

3.2.2 LOCAL COMPARISON

A local alignment between s and ¢ is an alignment between a substring of s and a sub-
string of z. In this section we present an algorithm to find the highest scoring local align-
ments between two sequences.

This algorithm is a variation of the basic algorithm. The main data structure is, as
before, an (m + 1) x (n + 1) array. Only this time the interpretation of the array values is
different. Each entry (i, j) will hold the highest score of an alignment between a suffix
of s[1..i] and a suffix of ¢[1..j]. The first row and the first column are initialized with
zeros.

For any entry (i, j), there is always the alignment between the empty suffixes of
s{1..i]and ¢[1.. /], which has score zero; therefore the array will have all entries greater
than or equal to zero. This explains in part the initialization above.

Following initialization, the array can be filled in the usual way, with a{i, j] depend-
ing on the value of three previously computed entries. The resulting recurrence is

ali j~11+¢
R I ey s
AL TI=maxY o~ 1)1+
0,

that is, the same as in the basic algorithm, except that now we have a fourth possibility,
not available in the global case, of an empty alignment.

In the end, it suffices to find the maximum entry in the whole array. This will be
the score of an optimal local alignment. Any entry containing this value can be used as
a starting point to get such an alignment. The rest of the alignment is obtained tracing
back as usual, but stopping as soon as we reach an entry with no arrow going out. Alter-
natively, we can stop as soon as we reach an entry with value zero.

In general, when doing local comparison, we are interested not only in the optimal
alignments, but also in near optimal alignments with scores above a certain threshold.
References to methods for retrieving near optimal alignments are given in the biblio-
graphic notes.

56 CHAPTER3 SEQUENCE COMPARISON AND DATABASE SEARCH

3.2.3 SEMIGLOBAL COMPARISON

In a semiglobal comparison, we score alignments ignoring some of the end spaces in the
sequences. An interesting characteristic of the basic dynamic programming algorithm is
that we can control the penalty associated with end spaces by doing very simple modi-
fications to the original scheme.

Let us begin by defining precisely what we mean by end spaces and why it might
be better to let them be included for free in certain situations. End spaces are those that
appear before the first or after the last characterin a sequence. For instance, all the spaces
in the second sequence in the alignment below are end spaces, while the single space in
the first sequence is not an end space.

CAGCA-CTTGGATTCTCGG

---CAGCGTGG--~-=~-- (3.4)

Notice that the lengths of these two sequences differ considerably. One has size 8, and the
other has 18 characters. When this happens, there will be many spaces in any alignment,
giving a large negative contribution to the score. Nevertheless, if we ignore end spaces,
the alignment is pretty good, with 6 matches, 1 mismatch, and 1 space.

Observe that this is not the best alignment between these sequences. In alignment
(3.5) below we present another alignment with a higher score (~12 against —19 of the
previous one) according to the scoring system we have been using so far.

CAGCACTTGGATTCTCGG 3.5)
CAGC----- G-T----GG '

In spite of having scored higher and having matched all characters of the second se-
quence with identical characters in the first one, this alignment is not so interesting from
the point of view of finding similar regions in the sequences. The second sequence was
simply torn apart brutally by the spaces just for the sake of matching exactly its char-
acters. If we are looking for regions of the longer sequence that are approximately the
same as the shorter sequence, then undoubtedly the first alignment (3.4) is more to the
point. This is reflected in the scores obtained when we disregard (that is, not charge for)
end spaces: (3.4) gets 3 points against the same — 12 for (3.5).

Let us now describe a variation of the basic algorithm that will ignore end spaces.
Consider initially the case where we do not want to charge for spaces after the last charac-
ter of 5. Take an optimal alignment in this case. The spaces after the end of s are matched
to a suffix of . If we remove this final part of the alignment, the remaining is an align-
ment between s and a prefix of ¢, with score equal to the original alignment. Therefore,
to get the score of the optimal alignment between s and ¢ without charge for spaces after
the end of s, all we need to do is to find the best similarity between s and a prefix of 7. But
we saw in Section 3.2.1 that the entry (i, j) of matrix a contains the similarity between
s[l..i]and #[1../]. Hence, it suffices to take the maximum value in the last row of a, that

18,

sim(s, 1) = m'éica[m, Jl
j=

Notice that in this section we have changed the definition of sim(s, ¢) so that it now in-
dicates similarity, ignoring final spaces in s. The expression above gives the score of the

- -

Y, e e g

:n the
hm is
nodi-

night
2 that
yaces
ice in

'd the
nent,
‘aces,

ment
f the

aces.
arac-
ched
lign-
fore,
after
. But
veen
. that

v in-
f the

3.2 COMPARING TWO SEQUENCES 57

best alignment. To recover the alignment itself, we proceed just as in the basic algorithm,
but starting at (m, k) where k is such that sim(s, t) = a[m, k].

An analogous argument solves the case in which we do not charge for final spaces
in t. We take the maximum along the last column of a in this case. We can even combine
the two ideas and seek the best alignment without charging for final spaces in either se-
quence. The answer will be found by taking the maximum along the border of the matrix
formed by the union of the last row and the last column. In all cases, to recover an op-
timal alignment, we start at an array entry that contains the similarity value and follow
the arrows until we reach (0, 0). Each arrow will give one column of the alignment as in
the basic case.

Now let us turn our attention to the case of initial spaces. Suppose that we want the
best alignment that does not charge for initial spaces in s. This is equivalent to the best
alignment between s and a suffix of ¢. To get the desired answer, we use an (m + 1) x
(n+ 1) array just as in the basic algorithm, but with a slight difference. Each entry (i, j)
now will contain the highest similarity between s[1..i] and a suffix of a prefix, which is
to say a suffix of ¢[1../].

Doing that, it is clear that a[m, n] will be the answer. What is less clear, but nev-
ertheless true, is that the array can be filled in using exactly the same formula as in the
basic algorithm! That is Equation (3.3). The initialization will be different, however. The
first row must be initialized with zeros instead of multiples of the space penalty because
of the new meaning of the entries. We leave it to the reader to verify that Equation (3.3)
works in this case.

We can apply the same trick and initialize the first column with zeros, and by doing
this we will be forgiving spaces before the beginning of ¢. If in addition we initialize
both the first row and the first column with zeros, and proceed with Equation (3.3) for
the other entries, we will be computing in each entry the highest similarity between a
suffix of s and a suffix of ¢. To find an optimal alignment, we follow the arrows from the
maximum value entry until we reach one of the borders initialized with zeros, and then
follow the border back to the origin.

Table 3.1 summarizes these variations. There are four places where we may not want
to charge for spaces: beginning or end of s, and beginning or end of . We can com-
bine these conditions independently in any way and use the variations above to find the
similarity. The only things that change are the initialization and where to look for the
maximum value. Forgiving initial spaces translates into initializing certain positions with
zero. Forgiving final spaces means looking for the maximum along certain positions. But
filling in the array is always the same process, using Equation (3.3).

TABLE 3.1

Summary of end space charging procedures.

Place where spaces are not charged for | Action

Beginning of first sequence Initialize first row with zeros

End of first sequence Look for maximum in last row
Beginning of second sequence Initialize first column with zeros
End of second sequence Look for maximum in last column

