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TREE TERMINOLOGY

Information encoded in trees

• Tree terminology

• Branch lengths

• Similarity, common ancestry and relatedness

• Binary and Non-binary trees

• Rooted and unrooted trees
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Leaves: contemporary   
taxa

4

(Internal) nodes: 
divergence of lineages

Branches: 
ancestral taxa

Terminal branches
“terminate” at the leaves

Root

Root Leaves
(Relative) Time

Gene tree of 
alpha globins
in vertebrates
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Clade: A group of taxa consisting of                                                 
a common ancestor and all of its descendants.
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Clades: 
• HBQ (ϑ) globins
• HBZ (ζ) globins
• The tree

Not a clade: 
• Human globins

Information encoded in trees

• Tree terminology

 Branch lengths vs topology

• Similarity, common ancestry and relatedness

• Binary and Non-binary trees

• Rooted and unrooted trees
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Larracuente et al., Trends in Genetics, 2008
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0.2 substitutions /site

12 Drosophila species 
branches are proportional to the amount of change, 
typically in substitutions per site.

In this tree...
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12 Drosophila species 
This tree is...

an abstract representation of branching order.

Branch lengths do not convey information.
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Larracuente et al., Trends in Genetics, 2008
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0.2 substitutions /site

Branches are proportional to the amount of change, 
typically in substitutions per site.

Branch lengths are proportional to time only if 
the rate of change is constant.

Even if not proportional to time, 
topology still tells us the 
relative timing of events:

x

y

The divergence at node x
came before the 
divergence at node y

Larracuente et al., Trends in Genetics, 2008
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Branches are proportional to the amount of change, 
typically in substitutions per site.

Branch lengths are proportional to time only if 
the rate of change is constant.

When proportional to time, the 
leaf nodes will usually align

which is not the case here.

Ultrametric trees

• The rate of change is the same in 
all lineages

• Branch lengths are proportional 
to time

• The distance from the root to leaf 
is the same for all leaves

• The root is at the midpoint 
between the two most distant 
taxa.
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Warthog SheepPig

1

2
3

1

Ultrametric trees

• The rate of change is the same in 
all lineages

• Branch lengths are proportional 
to time

• The distance from the root to leaf 
is the same for all leaves

• The root is at the midpoint 
between the two most distant 
taxa.
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Warthog SheepPig

1

2
3

1

Root to:
Warthog
Pig
Sheep

3
3
3
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An ultrametric tree has branch lengths that are 
proportional to time.

Ultrametric Not ultrametric

Warthog SheepPig

1

2
3

1 Pig

Whale

Horse

Tapir

13

Chronogram

Phylogram

Information encoded in trees

• Tree terminology

• Branch lengths

 Similarity, common ancestry and relatedness

• Binary and Non-binary trees

• Rooted and unrooted trees
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Similarity versus common ancestry

• The pig is more closely related to the 
whale than to the horse (common 
ancestor is closer to the leaves)
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Pig

Whale

Horse

Tapir

More closely related taxa are not guaranteed to be more 
similar except in ultrametric trees, where the rate of change is 
proportional to time.

• The pig is more similar to the                
horse than to the whale (path is 
shorter)

Similarity versus common ancestry

More closely related taxa are not guaranteed to be more 
similar except in ultrametric trees, where the rate of change is 
proportional to time.
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Warthog SheepPig

1

2
3

1

.

• The warthog is more closely related 
to the pig than to the sheep

• The warthog is more similar to the 
pig than to the sheep

an ultrametric tree



10/2/2025

5

Information encoded in trees

• Tree terminology

• Branch lengths

• Similarity, common ancestry and relatedness

 Binary and Non-binary trees

• Rooted and unrooted trees

17

In a rooted tree, every binary node 
has 2 descendants

18

Binary versus non-binary trees

Tam
arin

Lem
ur

Baboon

Chim
p

Hum
an

Gorilla

Tam
arin

Lem
ur

Baboon

Chim
p

Hum
an

Gorilla

In a rooted tree, a non-binary node or 
polytomy has 3 or more descendants

A tree is binary if every internal 
node is binary

A tree is non-binary if one or more 
internal nodes are non-binary

Information encoded in trees

• Tree terminology

• Branch lengths

• Similarity, common ancestry and relatedness

• Binary and Non-binary trees

 Rooted and unrooted trees

19 20

Root

Root Leaves
(Relative) Time

Unrooted trees versus rooted trees

Previously, I stated 
that going from the 
root to the leaves 
gives us relative 
timing…

This is only for 
rooted trees
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Unrooted trees versus rooted trees

A rooted gene tree gives information 
about the order of events.

An unrooted tree gives information 
about the relationships between taxa.

21

Unrooted trees versus rooted trees

A rooted gene tree gives information 
about the order of events.

The root is a hypothesis and can be 
placed on any branch of the tree

22

An unrooted tree gives information 
about the relationships between taxa.

• There are as many possible roots as there are edges in the tree.

• Each of these is a different hypothesis about the order of events.

One Hypothesis

23

Baboon

Human
Chimp

Marmoset

Lemur

Tamarin

• k leaves
• k-1 edges
• k-1 rooted trees

24

Baboon

Human
Chimp

Marmoset

Lemur

Tamarin A different hypothesis

• k leaves
• k-1 edges
• k-1 rooted trees

• There are as many possible roots as there are edges in the tree.

• Each of these is a different hypothesis about the order of events.
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The  position of the root of the tree can influence 
the interpretation dramatically

bacteria archaebacteria

oak

fruit fly

chicken
human

bacteria
archaea

oak
fruit fly

chicken
human

bacteria

archaebacteria
oak

fruit fly

chicken
human

– bones

– cell nuclei

+ cell nuclei

+ bones 25

PHYLOGENY RECONSTRUCTION

26

…atgccaggactcccagtga…
Ancestral sequence

…atgcaaggagtcccagagc… …atgcgaggtctcccagtgt…

…atgggaggtctcccagtgt……atgcaaggagtcgcagagc… …atgcgaggtctcgtagtgt…

Gene family evolution

27

…atgccaggactcccagtga…

…atgcaaggagtcccagagc… …atgcgaggtctcccagtgt…

…atgggaggtctcccagtgt……atgcaaggagtcgcagagc… …atgcgaggtctcgtagtgt…

Reconstructing Evolutionary History 

…atgcaaggagtcgcagagc…
…atgcgaggtctcgtagtgt…
…atgggaggtctcccagtgt… 28



10/2/2025

8

…atgccaggactcccagtga…

…atgcaaggagtcccagagc… …atgcgaggtctcccagtgt…

…atgggaggtctcccagtgt……atgcaaggagtcgcagagc… …atgcgaggtctcgtagtgt…

Reconstructing Evolutionary History 

…atgcaaggagtcgcagagc…
…atgcgaggtctcgtagtgt…
…atgggaggtctcccagtgt… 29

Space of all possible trees for a given set of taxa

We can seek to maximize a 
measure of how good our 

solution is…

Optimality criteria

30

Space of all possible trees for a given set of taxa

… or minimize a cost.

Optimality criteria

31

TREE SPACE

32
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Space of all possible trees for a given set of taxa

Goal: Find the most 
parsimonious tree33

Tree reconstruction

1. Construct a tree that fits the data

This is only possible when the data satisfies some 
very restrictive conditions.

2.   Score each possible tree with k leaves and select 
the best one

34

Tree reconstruction

1. Construct a tree that fits the data

This is only possible when the data satisfies some 
very restrictive conditions

2.  Score each possible tree with k leaves and select 
the best one

35

Phylogeny reconstruction

* Parsimony, Distance, or MLE

Evaluate tree*

Get next tree

Ti+1

Best-tree

Ready to 
quit?

Better than 
best so far?

Best-Tree = Ti

Ti= Initial tree

Ti

36
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Space of all possible trees for a given set of taxa

Goal: Find the most 
parsimonious tree

How many trees are there?

37

Given 4 taxa, there are three possible unrooted trees 
(hypotheses).

Given 5 taxa, how many unrooted 
trees (hypotheses) are there?

Dog

Wolf Mouse

Rat
Dog

WolfMouse

Rat

Dog Wolf

MouseRat

Tree 1 Tree 3

Tree 2 38

Dog

Wolf Mouse

RatFrog Dog

Wolf Mouse

RatFrog

Dog

Wolf Mouse

RatFrog

Dog

Wolf Mouse

Rat

Frog

Dog

Wolf Mouse

Rat

Frog

Dog

Wolf Mouse

Rat

Tree 1

39

Dog Wolf

MouseRat

Frog Dog Wolf

MouseRat

Frog

Dog Wolf

MouseRat

Frog

Dog Wolf

MouseRat

Frog

Dog Wolf

MouseRat

Frog

Dog Wolf

MouseRat

Tree 2

40
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Dog Wolf

Mouse Rat

Frog Dog Wolf

Mouse Rat

Frog

Dog Wolf

Mouse Rat

Frog

Dog Wolf

Mouse Rat

Frog

Dog Wolf

Mouse Rat

Frog

Dog

WolfMouse

Rat

Tree 3

41

Given 5 taxa, how many unrooted 
trees (hypotheses) are there?

There are 3 unrooted trees with 4 leaves

Each tree has 5 edges; i.e., 5 places where 
a new taxon can be attached. 

3 trees x 5 edges  15 trees with 5 leaves

Dog

Wolf Mouse

Rat

Dog Wolf

MouseRat

Dog

WolfMouse

Rat

42

Given 5 taxa, how many unrooted 
trees (hypotheses) are there?

There are 3 unrooted trees with 4 leaves

Each tree has 5 edges; i.e., 5 places where 
a new taxon can be attached. 

3 trees x 5 edges  15 trees with 5 leaves
Dog Wolf

MouseRat

43

In general, how many hypotheses must we consider 
for k leaf taxa?

• A tree with k leaves, has 2k - 3 edges

• For a given tree with k leaves, we can add a new taxon 
to any edge to get a different tree with k + 1 leaves.

• That gives us 2k - 3 new trees for each tree with k leaves

Ergo, the number of hypotheses we need to consider gets 
big very, very quickly, as the number of taxa increases

44
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Number of  unrooted binary trees

1
3

15
105

2,027,025
2.2 x 1020

2.8 x 1074

1 x 101074

The number of trees gets big fast

Number of taxa

3
4
5
6

10
20
50

500

45

Number of unrooted binary trees

...
2.2 x 1020

2.8 x 1074

1 x 101074

How big is that?

Number of taxa
...
20
50

500

Age of the universe (seconds): 4.42 x 1017

Diameter of the universe (cm): 2.6  x 1028 

Number of stars in the universe: 1  x 1022

46

In general, how many hypotheses must we consider 
for k leaf taxa?

The number of hypotheses we need to consider gets big very, 
very quickly, as the number of taxa increases.

• If k is small (e.g., k ≤ 10), we can consider all hypotheses.

 Otherwise (k > 10), sample a subset of all possible 
hypotheses.

“Heuristic search”

47

SEARCHING TREE SPACE

48
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Phylogeny reconstruction
Heuristic search

* Parsimony, Distance, or MLE

Evaluate tree*

Get next tree

Ti+1

Best-tree

Ready to 
quit?

Better than 
best so far?

Best-Tree = Ti

Ti= Initial tree

Ti

49

Exploitation

s0

si

s*

Space of all possible trees for a given set of taxa

Goal: Find the most 
parsimonious tree

How do we sample the space of 
trees?

50

Branch swapping

Nearest-neighbor interchange (NNI)

51

Branch swapping

Nearest-neighbor interchange (NNI)

52
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Branch swapping

Nearest-neighbor interchange (NNI)

53

Branch swapping

Subtree prune and regraft (SPR)

54

A C

B

D E

G

F

Branch swapping

Subtree prune and regraft (SPR)

55

A C

B

D

E

G

F

A
C

B

D
A C

B

D

A C

B

D

A

C

B
D+

Phylogeny reconstruction

• Design a mathematical function for scoring evolutionary trees 
such that
– Good trees get good scores
– Bad trees get bad scores

• Find the optimal tree; the tree with the best score
• Potential problems:

– The optimal tree can be hard to find – NP Hard
– A good numerical score does not always translate to a 

good evolutionary hypothesis.

Optimality 
criterion

56
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Optimality criteria

Maximum parsimony
Tree that requires the fewest changes to 
explain the data is the best tree.  

Maximum likelihood estimation
Tree that maximizes the likelihood of the data  

Distance-based evaluation
Tree that best fits observed distances 
between taxa

Character 
data

Distance  
data

57

…atgcaaggagtcgcagagc…
…atgcgaggtctcgtagtgt…
…atgggaggtctcccagtgt… 
…atgcgacgtcacgtattgg…
…atgtgtggtctggcagtga…
…atgcgacctctcggagaat…

Parsimony

Select model 
of sequence 

evolution

Distance 
methods

Maximum likelihood 
estimation

…atgcaaggagtcgcagagc…
…atgcgaggtctcgtagtgt…
…atgggaggtctcccagtgt… 
…atgcgacgtcacgtattgg…
…atgtgtggtctggcagtga…
…atgcgacctctcggagaat…

Model (e.g., K2P)

Distance 
conversion

…atgcaaggagtcgcagagc…
…atgcgaggtctcgtagtgt…
…atgggaggtctcccagtgt… 
…atgcgacgtcacgtattgg…
…atgtgtggtctggcagtga…
…atgcgacctctcggagaat…

…atgcaaggagtcgcagagc…
…atgcgaggtctcgtagtgt…
…atgggaggtctcccagtgt… 
…atgcgacgtcacgtattgg…
…atgtgtggtctggcagtga…
…atgcgacctctcggagaat…

MLE tree

Tree that best fits 
distances

Pairwise 
distances

Tree with fewest 
mutations 58

PARSIMONY

59

The parsimony criterion

• In regular speech, “parsimonious” means 
excessively thrifty or sparing, stingy, or frugal

• Phylogenetics:  the most parsimonious tree is the 
tree that requires the fewest substitutions to 
explain the data.
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Evolutionary change on a tree

• Given
– a tree
– a set of characters that are variable for these taxa,
– a character state matrix for the leaf taxa

• infer     
– the character states of each ancestral node and
– the state changes along each branch    

• such the number of changes required is minimal

Parsimony

61

Given
– 4 taxa
– data describing each taxon

find
the most parsimonious tree with 4 leaves.

Dog: ACC

Wolf: ATC

Rat: CCC

Mouse: CTG

An example:

62

Dog

Wolf Mouse

Rat

Tree 1

Dog

WolfMouse

Rat

Tree 3

Dog Wolf

MouseRat
Tree 2

Dog: ACC

Wolf: ATC

Rat: CCC

Mouse: CTG

Which tree is most parsimonious?

63

Evaluation using the parsimony criterion

Given a leaf labeled tree

infer the internal states (ancestral sequences) that                   
minimize the number of changes along the branches

ACC

ATC

CCC

CTG

? ?

64

Parsimony score of this tree: 
Sum of changes on each branch
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65

Dog: ACC

Wolf: ATC

Rat: CCC

Mouse: CTG

ACC

ATC

CCC

CTG

Dog

Wolf Mouse

Rat
Tree 1

66

Dog: ACC

Wolf: ATC

Rat: CCC

Mouse: CTG

ACC

ATC

CCC

CTG

Dog

Wolf Mouse

Rat
Tree 1

ACC

ATC

CCC

CTG

A
C

Dog: ACC

Wolf: ATC

Rat: CCC

Mouse: CTG

Dog

Wolf Mouse

Rat

67

Inferring ancestral sequences 
and computing the parsimony score

ACC

ATC

CCC

CTG

AT
CT

Dog: ACC

Wolf: ATC

Rat: CCC

Mouse: CTG

Dog

Wolf Mouse

Rat

68
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Inferring ancestral sequences 
and computing the parsimony score

ACC

ATC

CCC

CTG

ATC
CTC

Dog: ACC

Wolf: ATC

Rat: CCC

Mouse: CTG

Dog

Wolf Mouse

Rat

69

Inferring ancestral sequences 
and computing the parsimony score

ACC

ATC

CCC

CTG

ATC
CTC

100

010

001

010

000

Parsimony score: 4

Dog: ACC

Wolf: ATC

Rat: CCC

Mouse: CTG

Dog

Wolf Mouse

Rat

70

Dog

Wolf Mouse

Rat
ACC

ATC

CCC

CTG

ATC CTC

1
1

1

1

Dog

Rat Mouse

Wolf
ACC

CCC

ATC

CTG

ACC ATC1

21

Dog

Mouse Rat

Wolf
ACC

CTG

ATC

CCC

ATC ATC

1

22

4

4

5

Parsimony scores of all trees with four leaves
Dog: ACC

Wolf: ATC

Rat: CCC

Mouse: CTG

71

Note:

Dog

Wolf Mouse

Rat
ACC

ATC

CCC

CTG

ATC CTC

1
1

1

1

Dog

Rat Mouse

Wolf
ACC

CCC

ATC

CTG

ACC ATC1

21

Dog

Mouse Rat

Wolf
ACC

CTG

ATC

CCC

ATC ATC

1

22

4

4

5

There can be more than           
one  most parsimonious tree 

72
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Phylogeny reconstruction

Potential problems with Maximum Parsimony:
• There can be more than one most parsimonious tree.

• Not all sites are informative

• The assumption that mutations are rare may be wrong.

73

Tree reconstruction with parsimony

74

…atgcaaggagtcgcagagc…

…atgcgaggtctcgtagtgt…

…atgggaggtctcccagtgt… 

…atgcgacgtcacgtattgg…

…atgtgtggtctggcagtga…

Measure of tree quality: The 
minimum number of substitutions 
required to explain the MSA with 
tree Ti

Tree Ti

MAXIMUM LIKELIHOOD

75

Tree reconstruction with likelihood maximization

76

…atgcaaggagtcgcagagc…

…atgcgaggtctcgtagtgt…

…atgggaggtctcccagtgt… 

…atgcgacgtcacgtattgg…

…atgtgtggtctggcagtga…

Measure of tree quality: The 
probability of observing the MSA 
if Ti is the true tree

Tree Ti
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Tree reconstruction

Given
– contemporary taxa: k genes, strains, species…
– data describing each taxon

find
the tree with k leaves that explains the data.

 Find the best tree with respect                                                               
to an optimality criterion

77…atgggaggtctcccagtgt……atgcaaggagtcgcagagc
… …atgcgaggtctcgtagtgt…

…atgcaaggagtcgcagagc…
…atgcgaggtctcgtagtgt…
…atgggaggtctcccagtgt…

Estimating the probability of an MSA for a given tree, Ti

How to calculate the probability of the MSA 
given Ti: 

– Calculate the probability of each column 
given Ti

– Multiply the probabilities over all columns.

Sequence W: A C G C A T T G G G
Sequence X: A C G C T T T G G G
Sequence Y: A C G C A A T G A A
Sequence Z: A C A C C G G G A A

78

Tree Ti : Topology and branch lengths

A A CT

t1

t2

t1
t3 t3

t4

W X Y Z

Estimating the probability of one column for a given tree, Ti

Working up from the leaves

– Estimate contribution of each branch to 
the probability of the column, given the 
tree. 

– Multiply the probabilities over all 
branches.

80

Tree Ti : Topology and branch lengths

Sequence W: A C G C A T T G G G 
Sequence X: A C G C T T T G G G 
Sequence Y: A C G C A A T G A A 
Sequence Z: A C A C C G G G A A

...A...

...T...

...A...

...C...

A A CT

t1

t2

t1
t3 t3

t4

W X Y Z

T

?

t

Estimate contribution of one branch to 
the probability of the column

P(ancestral T) * P(T after time t has elapsed) +

P(ancestral A) * P(changed from A→T in time t) +

P(ancestral C) * P(changed from C→T in time t) +

P(ancestral G) * P(changed from G→T in time t)

81

Sequence W: A C G C A T T G G G 
Sequence X: A C G C T T T G G G 
Sequence Y: A C G C A A T G A A 
Sequence Z: A C A C C G G G A A

...A...

...T...

...A...

...C...

The ancestral base is 
unknown -> average 
over all possibilities.
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T

?

t

Estimate contribution of one branch to 
the probability of the column

P(ancestral A) * P(changed from A→T in time t) 

82

Sequence W: A C G C A T T G G G 
Sequence X: A C G C T T T G G G 
Sequence Y: A C G C A A T G A A 
Sequence Z: A C A C C G G G A A

...A...

...T...

...A...

...C...

The ancestral base is 
unknown -> average 
over all possibilities.

P(A)P(t) AT + P(T)P (t)TT + P(C)P(t)CT+ P(G)P(t)GT

Stated formally

A T

i= {A,T,C,G}

t1
t2

P(i=A)P(t1)AAP(t2)AT + P(i=T)P(t1)TAP(t2)TT 

+ P(i=C)P(t1)CAP(t2)CT+ P(i=G)P(t1)GAP(t2)GT

This calculation accounts for the fact that the two branches are 
not independent:  They share an ancestral nucleotide

Extending the likelihood calculation from 
one branch to two branches

83

C

z

A
A

T

i j
t1 t2 t3

t4

t5 t6

Ti

Extending the calculation obtain the probability 
of the column given the entire tree

84

෍ ෍ ෍ 𝑝(𝑧)𝑝௭௜ 𝑡ହ 𝑝௭௝(𝑡଺)௭∈{஺஼ீ்} · 𝑝 𝑖 𝑝௜A 𝑡ଵ 𝑝௜T 𝑡ଶ · 𝑝 𝑗 𝑝jA 𝑡ଷ 𝑝௝C 𝑡ସ௝∈{஺஼ீ்}௜∈{஺஼ீ்}

...A...

...T...

...A...

...C...

root left subtree right subtree

The probability of             
this column given Ti is

C

z

A
A

T

i j
t1 t2 t3

t4

t5 t6

Ti

Extending the calculation obtain the probability 
of the column given the entire tree

85

෍ ෍ ෍ 𝑝(𝑧)𝑝௭௜ 𝑡ହ 𝑝௭௝(𝑡଺)௭∈{஺஼ீ்} · 𝑝 𝑖 𝑝௜A 𝑡ଵ 𝑝௜T 𝑡ଶ · 𝑝 𝑗 𝑝jA 𝑡ଷ 𝑝௝C 𝑡ସ௝∈{஺஼ீ்}௜∈{஺஼ீ்}

...A...

...T...

...A...

...C...

root left subtree right subtree

The probability of             
this column given Ti is
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C

z

A
A

T

i j
t1 t2 t3

t4

t5 t6

Ti

Extending the calculation obtain the probability 
of the column given the entire tree

86

෍ ෍ ෍ 𝑝(𝑧)𝑝௭௜ 𝑡ହ 𝑝௭௝(𝑡଺)௭∈{஺஼ீ்} · 𝑝 𝑖 𝑝௜A 𝑡ଵ 𝑝௜T 𝑡ଶ · 𝑝 𝑗 𝑝jA 𝑡ଷ 𝑝௝C 𝑡ସ௝∈{஺஼ீ்}௜∈{஺஼ீ்}

...A...

...T...

...A...

...C...

root left subtree right subtree

The probability of             
this column given Ti is

Same j

C

z

A
A

T

i j
t1 t2 t3

t4

t5 t6

Ti

Extending the calculation obtain the probability 
of the column given the entire tree

87

෍ ෍ ෍ 𝑝(𝑧)𝑝௭௜ 𝑡ହ 𝑝௭௝(𝑡଺)௭∈{஺஼ீ்} · 𝑝 𝑖 𝑝௜A 𝑡ଵ 𝑝௜T 𝑡ଶ · 𝑝 𝑗 𝑝jA 𝑡ଷ 𝑝௝C 𝑡ସ௝∈{஺஼ீ்}௜∈{஺஼ீ்}

...A...

...T...

...A...

...C...

root left subtree right subtree

The probability of             
this column given Ti is

C

k

A
A

T

i
j

t1 t2 t3 t4

t5 t6

Ti

Extending the calculation obtain the 
probability of the column given the entire tree
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...A...

...T...

...A...

...C...

The entire calculation 
depends on terms like this

where  𝑝௭௫(𝑡) is the probability of starting     
with base k and observing base i after time t.

If we know how to calculate  𝑝௭௫(𝑡), then we have everything 
needed to determine the probability of the MSA given Ti

x

z

t

෍ ෍ ෍ 𝑝(𝑧)𝑝௭௫ 𝑡ହ 𝑝௭௬(𝑡଺)௭∈{஺஼ீ்} · 𝑝 𝑥 𝑝௫A 𝑡ଵ 𝑝௫T 𝑡ଶ · 𝑝 𝑦 𝑝yA 𝑡ଷ 𝑝௬C 𝑡ସ௝∈{஺஼ீ்}௜∈{஺஼ீ்}
The probability of             

this column given Ti is

If we know how to calculate  𝑝௞௝(𝑡), then                            
we can calculate  the probability of the MSA given Ti

89

...A...

...T...

...A...

...C...

In order to calculate 𝑝௭௫(𝑡) we need a                             
model of substitutions during sequence evolution

 𝑝௞௜(𝑡) = the probability of starting with base z
and observing base x after time t.

C

k

A
A

T

i
j

t1 t2 t3 t4

t5 t6

Ti

x

z

t
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90

𝑝௫௫ α, 𝑡 = 14 + 34 𝑒ିସ஑௧ 𝑝௫௬ α, 𝑡 = 14 − 14 𝑒ିସ஑௧

We discussed how to solve this problem with the Jukes Cantor 
model:

Given a site evolving according to Jukes Cantor with parameter a, 
what is the probability of observing z at time 0 and x at time t?

T

T

t z=x

T

t

A

z≠x

From last class

p(A)=0.25
p(G)=0.25
p(C)=0.25
p(T)=0.25TC

A Ga

a

aa a a

1-3a 1-3a

1-3a 1-3a

Jukes-Cantor

... but there are other models

To estimate the probability of an MSA given a tree requires    
a model of substitutions during sequence evolution

• Which evolutionary model?

– Do all substitutions have the same rate?

• What rates?

• Do all sites have the same rate?

• Are there invariant sites that never change?

92

To estimate the probability of an MSA given a tree requires    
a model of substitutions during sequence evolution

• Which evolutionary model?

– Do all substitutions have the same rate?

• What rates?

 Do all sites have the same rate?

• Are there invariant sites that never change?

93
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Site heterogeneity:
Different sites may be changing at different rates

18S or 16S rRNA

Rates may be site specific, depending on 
functional and structural constraints           
(e.g., codon position, or alpha helix 
etc.)

94

In this example, white sites are changing 
faster than red sites and more slowly than 
blue sites.

Modeling rate variation

Use one model for the entire alignment, 
but different rates at different sites.

1-3α 1-3α

1-3α1-3α
TC

A Gα

α

αα α α

It is not possible to assign a different rate to each position.   
Instead, partition sites into a small number of rate categories, 
e.g., “slow, medium, fast, supersonic”

For example, all sites might be modeled with the Jukes Cantor model, 
but with different parameters: α1 > α2 > α3 > α4.

95

In addition, some sites may not be 
changing at all.

Invariant sites: Sites that do not change…

• Examples: very recent divergence, purifying selection, parallel 
substitutions

• Incorporate invariable sites in model as an extra category.  For 
every site, calculate  the likelihood that it is an invariable site.

Modeling rate variation

1-3α 1-3α

1-3α1-3α
TC

A Gα

α

αα α α
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Discrete rates model  

Site class 1 2 3 … K

Probability p1 … pK

Rate r1 … rk

r?    r? …                r?
... A G G G A T T C A ...

... A C G G T T T - A ...

... A C G G A T T - A ...

Problem:  Too many parameters

Given k rate classes, 
• Determine the rate, rk, for each class
• Determine the probability that site i is in class k.

97
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Solution:  Use a Gamma distribution

... A G G G A T T C A ...

... A C G G T T T - A ...

... A C G G A T T - A ...

Shape parameter: a

With a continuous Gamma 
distribution, each site has rate r
with probability,  Gamma(r,a)

98

Continuous Gamma distribution:  A single parameter 
(α) captures a broad range of distributions with different shapes.

Each site has rate r with 
probability, Gamma(r,a)

Shape parameter: a

0 1 2 3 4 5 6 7
0

0.5

1

1.5

α=1, β=1

α=0.6, 
β=1

α=2, β=1
α=5, β=1

... A G G G A T T C A ...

... A C G G T T T - A ...

... A C G G A T T - A ...
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Continuous Gamma distribution:  A single parameter 
(α) captures a broad range of distributions with different shapes.

Each site has rate r with 
probability, Gamma(r,a)

Shape parameter: a

0 1 2 3 4 5 6 7
0

0.5

1

1.5

α=1, β=1

α=0.6, 
β=1

α=2, β=1
α=5, β=1

... A G G G A T T C A ...

... A C G G T T T - A ...

... A C G G A T T - A ...
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Continuous Gamma distribution:  A single parameter 
(α) captures a broad range of distributions with different shapes.

Each site has rate r with 
probability, Gamma(r,a)

Shape parameter: a

0 1 2 3 4 5 6 7
0

0.5

1

1.5

α=1, β=1

α=0.6, 
β=1

α=2, β=1
α=5, β=1

... A G G G A T T C A ...

... A C G G T T T - A ...

... A C G G A T T - A ...

101
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Continuous Gamma distribution:  A single parameter 
(α) captures a broad range of distributions with different shapes.

Each site has rate r with 
probability, Gamma(r,a)

Shape parameter: a

0 1 2 3 4 5 6 7
0

0.5

1

1.5

α=1, β=1

α=0.6, 
β=1

α=2, β=1
α=5, β=1

... A G G G A T T C A ...

... A C G G T T T - A ...

... A C G G A T T - A ...
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Continuous Gamma distribution:  A single parameter 
(α) captures a broad range of distributions with different shapes.

Each site has rate r with 
probability, Gamma(r,a)

Shape parameter: a

0 1 2 3 4 5 6 7
0

0.5

1

1.5

α=1, β=1

α=0.6, 
β=1

α=2, β=1
α=5, β=1

... A G G G A T T C A ...

... A C G G T T T - A ...

... A C G G A T T - A ...
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Continuous Gamma distribution

... A G G G A T T C A ...

... A C G G T T T - A ...

... A C G G A T T - A ...

Each site has rate r with 
probability, Gamma(r,a)

Shape parameter: a
Shape parameter: a

Problem: 
Estimating the likelihood with a 
continuous function is too slow

104 r1 r2 r3 r4

Discrete Gamma distribution with k rate catories

... A G G G A T T C A

... A C G G T T T - A

... A C G G A T T - A

• Divide area under the curve into k equal size regions
• Rates:  midpoints of each region
• Only one parameter needed to describe all rate categories

Shape parameter: a

105

In most software,
the default is k = 4
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In summary, use models of sequence evolution to 
capture the following features:

Frequency of substitutions between 
bases/residues:

Base/residue frequencies:  
p(A),p(C),p(G),p(T)

Multiple rate categories:
– Same model, but with different values of the parameter(s)

Invariant sites:  sites that do not change

1-3a 1-3a

1-3a1-3a
TC

A Ga

a

aa a a
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• Four states (A, C, G, T)
• Model specifies the relative 

rates of substitution for all 
possible pairs of nucleotides

• Twenty states (A, C, …  Y)
• Model specifies the relative 

rates of substitution for all 
possible pairs of amino acids

Amino acid substitution matrix  
(e.g., PAM, WAG, JTT, MtREV etc)

C G T

A

C

G
DNA substitution model                    

(e.g., JC, K2P, GTr)

DNA substitution 
models

Amino acid 
substitution models

107

Examples

WAG  amino acid substitution model 
with a gamma model of rate 

heterogeneity and invariant sites 

WAG substitution model with a gamma 
model of rate heterogeneity only

Note that the shape parameter selected gives an increased peak at zero for the 
model without invariant sites (right).  In this case, the lowest rate class is slower to 

compensate because the model does not account for invariant sites.

Discrete gamma distribution 
models four rate classes

Fraction of 
invariant sites

108

DISTANCE-BASED TREE 
RECONSTRUCTION

109
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Phylogeny reconstruction
outline

 Optimality criteria  for scoring evolutionary trees  

Maximum parsimony
Maximum likelihood estimation
Distance-based evaluation

• Find the optimal tree; the tree with the best score
• How many hypotheses (trees with k leaves) are there? 
• Sampling hypotheses:  how to search through the space of 

trees with k leaves?

110

…atgccaggactcccagtga…

If we could observe evolution in progress
…we would know the number of changes on each branch…

…atgcgaggtctcccagtga…

…atgcgaggactcacagtga…

Cow Sheep Okapi Giraffe

…atgccaggtctcccagtga…

…atgccaggactcccaatga…

…atgcccggactcccaatga…

…atgcaaggactcccaatga…

…atgcgaggtctcccaatga…

…atgtgaggtctcccaatga…
1

1
21

2
1

.. and the distance between each pair of taxa

 Sheep Okapi Giraffe 
Cow 2 5 6 
Sheep  5 6 
Okapi   3 

 

Cow Sheep

Okapi

Giraffe

1

1
2

1
2

1
Change along tree branches can 

be expressed as pairwise 
distances.

Tree distances

.. and the distance between each pair of taxa

 Sheep Okapi Giraffe 
Cow 2 5 6 
Sheep  5 6 
Okapi   3 

 

Cow Sheep

Okapi

Giraffe

1

1
2

1
2

1
Change along tree branches can 

be expressed as pairwise 
distances.

Tree distances
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.. and the distance between each pair of taxa

 Sheep Okapi Giraffe 
Cow 2 5 6 
Sheep  5 6 
Okapi   3 

 

Cow Sheep

Okapi

Giraffe

1

1
2

1
2

1
Change along tree branches can 

be expressed as pairwise 
distances.

Tree distances

Can we reverse this process?

 Sheep Okapi Giraffe 
Cow 2 5 6 
Sheep  5 6 
Okapi   3 

 

Given observed distances 
between taxa…

Observed distances

…is there a tree with 
branch lengths that fit 

the observed 
distances?

Is it unique?

giraffe

sheep

okapi

cow

u
x

v
w

y

Outline

Distance-based phylogeny reconstruction
Convert multiple alignments into distances

Properties of pairwise distances between taxa
– Additive distances
– Ultrametric distances

Using pairwise distances to infer a tree: constructive 
methods

– UPGMA
– Neighbor Joining

116

If you’ve seen hierarchical clustering, 
this may seem similar

Calculating distances from MSAs

For each pair of taxa

• Use the pairwise alignment induced by the MSA.

• Count substitutions to obtain pairwise distances

• Correct for multiple substitutions

C - GCTTGTCCGTTACGAT
S – ACTTGACCGTTTCCTT
O – ACTTGTCCGAAACGAT
G - ACTTGTCTGTTACGAT

 Sheep Okapi Giraffe 
Cow 2 5 6 
Sheep  5 6 
Okapi   3 
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Given an alignment of n nucleotides that differs at m
positions, the expected number of substitutions since the 
divergence of the two sequences is given by

D = ିଷ ସ ln 1 − ସଷ ఓ௡ 𝑛

118

n nucleotides with μ mismatches
…CAGATAGGAAGAGACGATCTAGC…
…CACATACGAAGATACGAACGAGC…

For example, if we observe 200 mismatches in an alignment of 1000 
nucleotides, then the number of actual substitutions is   

Correcting for multiple substitutions with Jukes-Cantor

−3 4 ln 1 − 8003000 𝜇𝑛 3000 = 233

From last lecture

Outline

Distance-based phylogeny reconstruction
Convert multiple alignments into distances

Properties of pairwise distances between taxa
– Additive distances
– Ultrametric distances

Using pairwise distances to infer a tree: constructive 
methods

– Neighbor Joining
– UPGMA
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Distance Takeaways

• Several algorithms based on various assumptions 
about the data.

• If the data satisfy the assumptions, then distance-
based algorithms will return the correct tree.

• If the data do not deviate too far from the 
assumptions, these methods give reasonable 
approximations

• They run in polynomial time.


