9/23/2025

Announcements

Problem Set 2 due Friday at midnight.
First exam:
* Tuesday, Sept 30, 7:30pm —9:30pm
* WH 5403

* This exam is closed book. You may bring two pages (or one page, front and
back) of your own notes.

* The exam covers material covered in Lectures 1 through 9.

* You will not need a calculator

Today

* Markov chains
* Review
* Stationary distributions
* Models of sequence evolution

* Nucleotide substitution models
* (Amino acids in about 2 weeks)
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Markov chain properties

In this course, we consider finite, discrete, time-
homogeneous Markov chains:

* Number of states finite
* Independent variable is discrete

* Time homogeneous: The transmission matrix
does not change over time.

that are

* irreducible: every state may be reached from
every other state
* aperiodic:

There is no state that can only be visited multiples
of m time steps, where m > 1

Steady state behavior:

A finite, irreducible, aperiodic Markov chain has a
unique stationary distribution, ¢*, such that

@*=@*P

Further,
Q = lim P"
n—-oo

has a solution:

®1 ®s

Q=|:
®1 @s

where @7 ... @5 is the limiting and stationary
disribution.

Random walk with absorbing boundaries

Every time the clock ticks,
the drunk takes one step
* to the left with prob 0.5
* to the right with prob 0.5

If the drunk reaches State E, or E, the
drunk enters the bar and stays there

Ey 1 0 0

1

— 3
= E2b 0 + 0 4 o0
E; 0 0 1 o 4
E, 0 0 0 0 1
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Random walk with absorbing boundaries

Eb, 1 0 0 0 0

Every time the clock ticks,
the drunk takes one step
* to the left with prob O

This Markov chain is not
irreducible because it has
absorbing boundaries

|Er 2 0 1 0 o
P=1g o 1 0 4 o
E3 0 0 % 0 %
oo 0 0 1

* to the right with prob 0.5

If the drunk reaches State E, or E, the
drunk enters the bar and stays there

® OO 0O O

Random walk with reflecting boundaries

Every time the clock ticks,
the drunk takes one step Ey, E) Ey
* to the left with prob 0.5
* to the right with prob 0.5

If the drunk enters State E; (E,) the drunk reverses
direction and enters E, (E;) at the next tick

Ey, 0 1 0 0
1 1
p— E, 3 ? 5 (1) 0
B 0 1 0 1 o0
1 1
Es 0 0 3 0 3
Fy, 0 0 0 1 O
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Random walk with reflecting boundaries ¢(0) I
1 2 3 4 5
o(1) | |
0 1 2 3 4
©(2)
[ l [
tis odd | |
0 1 2 3 4
0.5 0.5 0.5 1
N TS s T tis even I
ONONONONO. . ’
S—r S—r S—r S—r
1 0.5 0.5 0.5 tis odd I I
0 1 2 3 4
tis even 2 I 1

Random walk with reflecting boundaries

E 0 1 0 0
_|Et 5 0o 1 o0 o0
B E, 0 1 0 1 o0
= 0o § o |
0o 0 1 0
This Markov chain is periodic
Every time the clock ticks,
the drunk takes one ste
* to the left with prob 0.5
* to the right with prob 0.5 0.5 0.5 0.5 1
If the drunk enters State E; (E,) the drunk reverses @ @ @ @ @
1 0.5 05 0.5

direction and enters E, (E;) at the next tick
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A third random walk

Ey Ey Ex E3 Ej
Ey % 1 0 0 0
p_|Bt 3 0 § 0 0
B, 0 3 0 5 0
E; 0 0 3 0 32
By o o o 4 1
Every time the clock ticks, the drunk takes one step
* to the left with prob 0.5
* to the right with prob 0.5
0.5 0.5 0.5 0.5
—_—— e e
0.5 0.5
If the drunk enters State E, (E,) the drunk C@\_..-..__. ~.._.-®~..__.®>
* rests with prob 0.5 0.5 0.5 0.5 0.5
* reverses direction and enters E, (E;) with prob 0.5
A third random walk
Ey Ey Ey E3; Ej
Ey % 1 0 o0 o
p_|Bt 3 0 % 0 0
Es 0 5 0 3 0
=0 0 § 0 3
o o o & 1

This Markov chain is irreducible
and aperiodic. It has a unique

Every time the clock ticks, stationary distribution.
* to the left with prob

* to the right with prob 0.5

NN R
If the drunk enters State E, (E,) the drunk OSC@VV®V®V@> o
0.5 05 05 0.5

* rests with prob 0.5
* reverses direction and enters E; (E;) with prob 0.5




Random walk with absorbing boundaries

0.5
—
* Not irreducible because it has absorbing 1C,® @

boundaries

* Does not have a unique stationary distribution.

Random walk with reflecting boundaries

* It has a unique stationary distribution.

0.5 0.
—

~—  ~—~
0

0.5

0.5 0.5
——

) O O

05 : !
* This Markov chain is periodic ®:® @ ®:®
1 5 5 0.5

* It does not have a limiting distribution

Random walk with neither absorbing nor reflecting boundaries

* This Markov chain has a unique stationary

distributi C@ro—i.
istribution. 0.5 @
o5

* It has a limiting distribution which is the same
as the stationary distribution.

—— ~—
0. 0
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Today

* Announcements

* Markov chains
* Review
* Stationary distributions
* Models of sequence evolution
* Nucleotide substitution models
* (Amino acids in about 2 weeks)
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Properties of DNA substitution models

1-(a+b+c) 1-(a+c+e) * Statespace: {E;=A,E,=G,E;=C E, =T}

A a G * States are fully connected

* Transition probabilities:
bI >< I e substitution frequencies (a, b, ¢, d ...)

C T * Implicitly also specifies stationary base
- } frequencies: @ = (pa, Pes Per Pr )

1-(b+c +f) f 1-(d+e+f)

GACTAGCTAGACATAGCTAGACAGATACGAAGATACGAACTAGCTAGACATATTACATATAC

18

Jukes-Cantor model (1969)

1-3a -3a
o D
p(A)=0.25

GI N Ia p(G)=0.25
p(C)=0.25
(Ac — E.) p(T)=0.25

1-3a 1-3a

Assumptions:
» All substitutions have equal probability
* Base frequencies are equal

19
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Two Jukes Cantor models with different rates

All Jukes Cantor models have a single rate parameter, g, 0 <a<1/3
Different instances of the JC model can have different rates. Rates are typically
learned from data

0.7 0.7 0.4 0.4

01I Mllm o.zI 0><2 0.2
CE ) SRR

0.7 0.7 0.4 0.4

The model on the right changes twice as fast as the model on the left.
In both models, all substitutions are equally probable

20

Three representations of the Jukes Cantor model

1 1

-3a -3a C G
Ch oS » @ @

c O
=D G

1-3a 1-3a
A o G T
A |1-3a |a a a
C |a 1-3a |a a
G |a a 1-3a |a
T Ja a a 1-3a

21




More nucleotide substitution models

Jukes Cantor
* Uniform substitution probabilities
* Uniform base frequencies
Substitution models can be extended by allowing

* different substitution probabilities for different base
pairs

* non-uniform base frequencies
or both

22

A more complex model
different probabilities for transitions and transversions

 1ab 1-a-2b

W c/ \\N A > G A { \N H

a” 4 / N F \ /
N ==(C

b b b b

4 y
e A f) I B /H
< (/\ " 0 [
C C a
H

\ / SH
N// P 5 C\ Thymin:
\C : Nl/ Cytosine 1 2 b a4 N\ /C H
o// \c,-, 1_a_2b -a_ /C m\\
- Kimura 2 2 @

parameter

23
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Kimura 2 parameter model (K2P) (1980)

1-a-2b<‘1{\ , al—a—Zb
p(A)=0.25

bI b><° Ib p(G)=0.25
c p(€)=0.25
o G 5D 1ew p(T)=0.25

* Transitions and transversions have different probabilities

* Base frequencies are equal

24

Three representations of the Kimura 2-parameter model

1-a-2b 1-a-2

& re O

Ib

(on

(S T
1-a-2b 1-a-2b A|lc |G |T
A 1-a-2b b a b
C b |1-a2b| b a
G a b |1-a-2b| b
T b a b 1-a-2b
25

10
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Felsenstein (1981)

Pad be p(A)=@,
® PN . p(G)=pg
SRS IR P(C)=,

% e |2 p(T)=¢;

)

C— 9

* All substitutions have the same base rate

* Unequal base frequencies p(A)zp(G) # p(C) = p(T)

26

Hasegawa, Kishino & Yano (HKY) (1985)

p(A)=¢,
p(G)=p;
p(C)=p.
p(T)=¢;

* Transitions and transversions have different probabilities

* Unequal base frequencies p(A)2p(G) # p(C) # p(T)

27

11
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General Time Reversible model

1-(a+b+c) 1-(a+c+e)

| >
C —T
1-(b+c+f) f 1-(d+e+f)

* All six pairs have different substitution frequencies

* Unequal base frequencies | p(a)zp(G) = p(C) # p(T)

28

12



