

How HMMs solve the problems with PSSMs

- Do not capture positional dependencies
- Hard to recognize pattern instances that contain indels
- ➤ Variable length motifs
- Do not handle boundary detection problems well

How HMMs solve the problems with PSSMs

- Do not capture positional dependencies
- Hard to recognize pattern instances that contain indels
- Variable length motifs
- > Do not handle boundary detection problems well

Boundary detection:

- Label sequences using Viterbi or posterior decoding
- State path gives pattern boundaries

How HMMs solve the problems with PSSMs

- > Do not capture positional dependencies
- Hard to recognize pattern instances that contain indels
- Variable length motifs
- Do not handle boundary detection problems well

Multiple sequence alignments and Profile HMMs

- 1. Instantiating Profile HMM parameters with a multiple alignment
 - Aligned sequences are labeled data
 - columns in the alignment correspond to positions in the model
 - Use counts to calculate emission and transmission probabilities (MLE)
- 2. Using a Profile HMM to align sequences
 - Unaligned sequences are unlabeled data
 - Use Baum Welch to discover the motif (i.e., to learn model parameters)
 - Use Viterbi or Posterior decoding to align the sequences

RLSKIISMFQAHIRGYLIRKAYKRGYQARCLLK				
RNKHATAVTWAFWLVOSSFRGYOAGSKARRELK				
MKRSQVVKQEKAARKVQKFWRGHRVQHNQR				
QEEVSAIIIQRAYRRYLLKQKVKILRVQSS				
Discovery RLSKIISMIQAHIRGYLIRKAYKRGYQARCLLK RNKHAIAVIWAFWLVQSSFRGYQAGSKARRELK GWIQKRVRGWIVIRRNFKKKRNEKLSATAZZZZZYQ MKRSQVVKQEKAARKIQKFWRGHRVQHNQR QEEVSAIIIQRAYRRYLLKQKVKILRVQSS				
Modeling				
Recognition				
GWQKRVRGWIVIVRRNQVNQAAVTIQRWYRCQVQRRRAGFKKKRNEKLSATAZZZZZ				

	Recognition	Discovery & parameter inference	Parameter instantiation (MLE)
Data	Unlabeled	Unlabeled training data	Labeled training data
PSSMs (no gaps)	$\mathcal{S}(t,o) = \sum_{i=1}^{w} S[t[o+i],i],$	Gibbs sampler	$\begin{split} P[x,i] &= \frac{q[x,i]}{p_x} \\ q[x,j] &= \frac{c[x,i] + b}{k + b \cdot \Sigma }, \end{split}$
HMMs (gaps)	 P(O λ) Forward or Backward 	Baum Welch • Forward • Backward	$\frac{\left(\sum_{d=1}^k A_{ij}^d\right) + b}{\sum_{j' \in \mathcal{N}(i)} \left((\sum_{d=1}^k A_{ij'}^d) + b \right)}$
	 Viterbi decoding Most likely path, Q[*] Viterbi 		$\frac{\sum_{d=1}^{k}\mathcal{E}_{d}^{i}(\sigma)+b}{\sum_{\alpha\in\Sigma}\left(\sum_{d=1}^{k}e_{i}^{d}(\alpha)+b\right)}$
	 Posterior decoding Most likely states, \$\hat{q}_1\$\hat{q}_T\$ Forward, Backward 		