
Computational Molecular Biology

D. Durand

October 24, 2022

Copyright c©2022 D. Durand. All rights reserved.

i

Contents

1 Sequence Alignment 1

1.1 Global pairwise alignment . 2

1.1.1 Scoring an alignment . 4

1.1.2 A dynamic programming algorithm to align a pair of sequences . . . 6

1.2 Local pairwise alignment . 10

1.3 Semi-global alignment . 13

2 Sequence Evolution Models 17

2.1 Finite discrete Markov chains . 17

2.1.1 Higher Order Markov Chains . 20

2.2 Random walks . 20

2.2.1 Calculating “n-step” Transition Probabilities 23

2.2.2 Periodic Markov chains . 25

2.2.3 Stationary distributions . 27

2.2.4 Time reversibility . 30

2.3 Markov models of sequence evolution . 31

2.3.1 The Jukes-Cantor model . 32

2.3.2 Non-uniform transition probabilities 33

2.3.3 Non-uniform stationary distributions 33

2.3.4 More general models . 34

2.3.5 Model Selection . 34

2.4 Applications of DNA substitution models 35

2.4.1 The likelihood of a pair of aligned nucleotides 35

2.4.2 Correcting for multiple substitutions. 41

2.4.3 Applications with the K2P model . 44

ii Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

Contents

3 Amino Acid Substitution Matrices 51

3.1 A log likelihood ratio framework for scoring alignments 52

3.2 PAM matrices . 54

3.3 BLOSUM Matrices . 62

3.4 Comparing PAM and BLOSUM Matrices 67

4 Modeling motifs: Position Specific Scoring Matrices 71

4.1 Position Specific Scoring Matrices . 72

4.2 Gibbs Sampler for motif discovery . 74

5 Hidden Markov Models 81

5.1 Introduction . 81

5.2 Modeling variable length patterns with Markov chains 84

5.3 Hidden Markov Models . 86

5.4 Using HMMs for recognition . 90

5.4.1 Calculating the total probability of sequence O 92

5.4.2 Viterbi decoding . 93

5.4.3 The probability that state Ei emitted O. 95

5.4.4 Posterior decoding . 96

5.5 Summary . 97

5.5.1 Summary of recognition algorithms 100

5.6 Designing HMMs: Motif discovery and modeling 102

5.6.1 HMM topology . 102

5.6.2 Parameter estimation . 104

5.7 Profile HMMs . 110

6 Searching Sequence Databases 119

6.1 The Blast Heuristic . 119

6.1.1 Blast-90 . 120

6.1.2 Gapped and Two-Hit Blast . 123

6.1.3 PSI-Blast . 124

6.2 Blast Statistics . 125

6.3 Limitations on retrieval accuracy . 130

6.3.1 Target frequencies . 130

6.3.2 Information content of substitution matrices 133

6.3.3 Information content of alignments 135

7 Multiple Sequence Alignment 137

7.0.1 Scoring a multiple alignment . 137

7.0.2 A dynamic programming algorithm for multiple alignment 140

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. iii

Contents

7.0.3 Heuristics for global multiple alignment 142

Bibliography 147

iv Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

Chapter 1

Sequence Alignment

The goal of pairwise sequence alignment is to establish a correspondence between the elements
in a pair of sequences that share a common property, such as common ancestry or a common
structural or functional role. In computational biology, the sequences under consideration
are typically nucleic acid or amino acid polymers. We will consider three variants of the
pairwise sequence alignment problem: global alignment, semi-global alignment, and local
alignment.

Global alignment is used in cases where we have reason to believe that the sequences are
related along their entire length. If, for example, sequences s1 and s2 are two independent
sequencing runs of the same PCR product, then they should differ only at those positions
where there are sequencing errors. In order to find those sequencing errors, we align all of
sequence s1 with all of sequence s2. Other applications of global alignment include finding
mutations in closely related gene or protein sequences and identification of single nucleotide
polymorphisms (SNPs).

Semi-global alignment is a variant of global alignment that allows for gaps at the
beginning and/or the end of one of the sequences. Semi-global alignment is used in
situations where we believe that s1 and s2 are related along the entire length of the
region where they overlap. For example, if s1 is a segment of genomic DNA containing a
prokaryotic gene and s2 is the mRNA transcript produced when s1 is expressed, every base
in s2 corresponds to a base in s1, but not the reverse is not true. The bases immediately
up- and downstream of the gene appear in the genomic DNA, but not in the transcript.
Semi-global alignment “jumps” over those flanking regions without exacting a penalty, but
forces an alignment along the entire length of s2.

In contrast, local alignment addresses cases where we only expect to find isolated regions
of similarity. One example is alignment of genomic DNA upstream from two co-expressed
genes to find conserved regions that may correspond to transcription factor binding sites.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 1

Chapter 1 Sequence Alignment

Another application is identification of conserved domains1 in two amino acid sequences
that encode proteins that share one or more domains, but are otherwise unrelated.

Prior to introducing algorithms for these pairwise alignment problems, we introduce
some notation in Box 1.

1.1 Global pairwise alignment

Now that we have some notation to work with, we will introduce a formal definition of a
global alignment. Next we will consider how to assign a numerical score to an alignment.
The score represents an assessment of the quality of the alignment. Finally, we will introduce
an efficient algorithm to find the alignment that is optimal with respect to a scoring function.

Let Σ′ = Σ ∪ { } be the alphabet expanded to include a character to represent gaps.
Given sequence s1 ∈ Σ∗ of length n1 and sequence s2 ∈ Σ∗ of length n2, ακ(s1, s2) = {sκ1 , sκ2}
is a global alignment of s1 and s2 if and only if

• sκ1 , sκ2 ∈ (Σ′)∗,

• |sκ1 | = |sκ2 | = lκ, where max(n1, n2) ≤ lκ ≤ n1 + n2,

• s1 is the subsequence obtained by removing ‘ ’ from sκ1 and s2 is the subsequence
obtained by removing ‘ ’ from sκ2 ,

• there is no value of i for which sκ1 [i] = sκ2 [i] = ‘ ’.

There are many alignments of s1 and s2. The superscript κ is an index to designate a
specific alignment. In situations where only one alignment is under consideration or there is
no ambiguity, we use the simpler notation α(s1, s2) = {s′1, s′2}, where the length of α(s1, s2)
is simply denoted l.

Although s1 and s2 may be of different lengths, the aligned sequences sκ1 and sκ2 are
the same length lκ because they have been aligned. The global alignment contains the full
sequences of both s1 and s2, so the length of the alignment cannot be shorter than the
longest sequence (lκ ≥ max(n1, n2)). At worst, all the positions in s1 are aligned with a
gap and all positions in s2 are aligned with a gap; in this case the length of the alignment
is lκ = n1 + n2. The position in the alignment is indexed by columns; column i is often
called site i. When considering site i, sκ1 [i] and sκ2 [i] are the symbols in s1 and s2 that are
aligned. If sκ2 [i] = ‘ ′, then we say there is a gap in s2 (at site i).

Our goal is to find the global alignment that best captures the relationship between s1

and s2. Which alignment best reflects the relationship between s1 and s2 is fundamentally
a biological question. From a practical perspective, we use a mathematical approach: We

1A domain is a peptide sequence that encodes a protein module that will fold into its characteristic
shape independent of the surrounding amino acid context and that is found in many different proteins.

2 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

1.1 Global pairwise alignment

Box 1: Notation for pairwise alignment

Alphabet:

An alphabet, denoted by Σ, is a finite, unordered set of symbols; e.g.,

DNA: ΣD = {A,C,G, T}
RNA: ΣR = {A,C,G,U}
Amino acids: ΣAA = {A,C,D,E, F,G,H, I,K,L,M,N, P,Q,R,
S, T, V,W, Y }

Sequences or Strings:

A sequence or string, s, is a finite succession of the symbols in Σ.

Σ∗ denotes the set of all sequences over alphabet Σ, in-
cluding the empty sequence, ∅. For example, Σ∗R =
{∅, A,C,G,U,AA,AC,AG,AU,CA,CC,CG,CU, . . .}.
Given a sequence s of length n, we use s[1]s[2] · · · s[n] to denote the symbols
in s.

Subsequences:

A subsequence of s is any sequence obtained by removing zero or more symbols
from s. The sequences CATA and CTG are subsequences of CATTAG. AATTCG is
not.

A proper subsequence is a subsequence obtained by removing one or more
symbols from s.

Substrings:

A substring of s is a subsequence of s consisting of consecutive symbols in s.
Given a sequence, s, of length n, the substring that begins with s[i] and ends
with s[j] is denoted s[i..j], 1 ≤ i ≤ j ≤ n. The sequence CAT is a substring of
CATTAG. CATA is not.

A prefix of s is denoted s[1..j], j ≤ n.

A suffix of s is denoted s[i..n], 1 ≤ i.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 3

Chapter 1 Sequence Alignment

introduce an objective criterion that provides a measure of the quality of an alignment and
then seek the alignment, α∗(s1, s2), that optimizes that criterion. There may be more than
one.

1.1.1 Scoring an alignment

Given sequences s1 and s2 and an alignment ακ(s1, s2) = {sκ1 , sκ2}, it is convenient to assign
a score to alignment ακ that quantifies how well ακ captures the relationship between s1

and s2. This score may be a minimization or a maximization criterion.

Distance scoring: An alignment can be scored using a distance-based metric. This is
a minimization criterion: a lower distance indicates a better alignment. We define the
distance score of an alignment ακ(s1, s2) = {sκ1 , sκ2} to be

D
(
ακ(s1, s2)

)
= D(sκ1 , s

κ
2)

=
lκ∑
i=1

d(sκ1 [i], sκ2 [i]),
(1.1)

where d(x, y) is the distance between a pair of symbols x and y in Σ′ and lκ is the length of
the alignment. The optimal alignment, denoted α∗, is the alignment that minimizes the
distance between s1 and s2:

α∗(s1, s2) = argmin
κ

D
(
ακ(s1, s2)

)
.

The function specifying the distance between pairs of symbols must satisfy the following
constraints, for all x, y, and z in Σ′:

1. d(x, x) = 0
2. d(x, y) > 0
3. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)
4. d(x, y) = d(y, x)

The first three constraints guarantee that D(sκ1 , s
κ
2) is a metric. In particular, D satisfies

the triangle inequality. This means that the penalty for replacing x with y is never greater
than the penalty for first replacing x with z and then replacing z with y. When z = ‘ ’, this
says that deleting x and then inserting y is never an improvement on a direct substitution
of x with y. One consequence of the triangle inequality is that the cost of a substitution can
never be greater than twice the cost of an indel. Intuitively, this makes sense: Alignments
obtained by minimizing a function where one substitution costs more than two indels would
contain no substitutions. With such a function, an alignment in which x is aligned with y

4 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

1.1 Global pairwise alignment

could always be replaced by a lower cost alignment in which x and y are both aligned with
gaps.

The symmetric property, d(x, y) = d(y, x), implies that there is no directionality in
the scoring system. This is because, given a column with symbols x and y in a pairwise
alignment, we have no way of knowing whether the ancestral symbol was an x that was
later replaced by a y, or vice versa. (It is also possible that the ancestor was neither x nor
y and some combination of substitutions gave rise to x in one sequence and to y in the
other.) Similarly, when a symbol, x, in sequence s1 is aligned with a gap in sequence s2 (or
vice versa), there is no way to know whether x was inserted in s1 or deleted from s2. For
this reason, gaps are also called “indels.”

If d(x, y) = 1 and d(x,) = 1, ∀x, y, then D
(
α∗(s1, s2)

)
corresponds to the minimum

number of operations required to transform s1 into s2, where the operations are substitution,
insertion, and deletion. This is called the edit distance. If d(x, y) 6= 1 or d(x,) 6= 1 or both,
then D(α∗(s1, s2)) is called the weighted edit distance.

Similarity scoring: Alignments can also be scored with similarity measures. These are
maximization criteria: a higher score indicates a better alignment. The similarity score of
ακ(s1, s2) = {sκ1 , sκ2} is

S(ακ(s1, s2)) =

lκ∑
i=1

p(sκ1 [i], sκ2 [i]), (1.2)

where p(x, y) is a score that reflects the similarity of x and y and p(x,) is the gap score.
The optimal alignment is the alignment that maximizes the similarity between s1 and s2:

α∗(s1, s2) = argmax
κ

S
(
ακ(s1, s2)

)
.

In general, amino acid alignments are scored with substitution matrices that assign a
different similarity score to each pair of amino acid residues. Typically, pairs of amino acids
with similar properties have higher scores than pairs with divergent properties. Examples
of substitution matrices used to score alignments include the PAM and BLOSUM matrices.
We will discuss how such substitution matrices are derived later in the semester. For now,
we consider a simple similarity scoring function that treats all symbols in Σ equally. This
simple scoring function has just three values; a score for matching symbols (M), a score for
a mismatch (m), and a gap score (g):

p(x, x) = M,

p(x, y) = m,

p(x,) = g.

(1.3)

In order to obtain alignments that make sense with similarity scoring, several constraints
are imposed on the values of M , m, and g. First, we require that M > m, because matches

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 5

Chapter 1 Sequence Alignment

are preferred over mismatches. We further require that a substitution be preferred over two
gaps (i.e., m > 2g). A scoring function with m < 2g would exclude the possibility of an
alignment with substitutions, because the score of any substitution could be improved by
replacing it with two gaps.

Note that for both distance and similarity scoring, the score of an alignment is defined to
be the sum of the scores for the individual positions in the alignment (Equations 1.1 and 1.2),
which implies that each position in the alignment is independent of neighboring positions.
This assumption is unrealistic: In real biomolecular sequences, there can be interactions
between neighboring, or even distant, residues in the sequence. However, scoring functions
that assume positional independence are widely used because they greatly simplify the
calculation of alignment scores and other mathematical analyses.

1.1.2 A dynamic programming algorithm to align a pair of sequences

We now have a formal definition of an alignment and a way of assigning a numerical score
to any given alignment. How do we find the alignment with the optimal score? We could
generate all possible alignments, score each one, and choose the alignment with the best
score. However, the computational cost would be prohibitive, since the size of the space of
all possible alignments of s1 and s2 is O(2n1+n2). (Convince yourself this is the case.)

Dynamic programming can be used to find the optimal alignment efficiently. This
strategy takes advantage of the fact that every prefix of an optimal pairwise alignment is
the optimal alignment of a prefix of s1 and a prefix of s2. This means that the optimal
alignment of pairs of progressively longer prefixes of s1 and s2 can be obtained by extending
the optimal alignment of shorter prefixes of s1 and s2. It is not necessary to examine a
suboptimal alignment of prefixes in order to find the optimal alignment of the full length
strings.

The dynamic programs for all three sequence alignment problems compute an n1 x n2

alignment matrix A, where A[i, j] is the score of the optimal alignment of the prefixes s1[1..i]
and s2[1..j], that is, the prefixes of s1 and s2 that end at positions i and j, respectively.

Dynamic programming algorithms for sequence alignment have four components:

• Initialization of the first row and column of A.

• A recurrence relation that specifies how to calculate the value of A[i, j], i > 0, j > 0,
from the values of neighboring cells.

• Determination of the score of the optimal alignment from the entries in matrix A.

• A procedure to trace back through the matrix to obtain the optimal alignment. This
is achieved by storing the information required to construct the optimal alignment in
an n1 x n2 traceback matrix, T .

6 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

1.1 Global pairwise alignment

The details of each of these steps are what differentiate global, semi-global, and local
alignment.

The calculation of the optimal global alignment of s1 and s2 requires two passes through
the A and T matrices. In the first pass, the dynamic program proceeds from the upper left
to the lower right corner of A, populating the cells in A with the scores of progressively
longer optimal alignments of prefixes. Whenever a value is assigned to a cell in A, the
associated pointer is entered into the corresponding cell in T . The first pass ends when the
optimal global alignment score is stored in A[n1, n2]. In the second pass, the alignment,
itself, is constructed from the pointers in T , proceeding from the lower right to the upper
left of the matrix.

Global alignment with distance scoring:

Input:

Sequences s1 and s2 of lengths n1 and n2, respectively.

Initialization:

A[0, j] = A[0, j−1] + d(, s2[j]) (top row)

A[i, 0] = A[i−1, 0] + d(s1[i],) (left column)

Recurrence relation:

A[i, j] = min

A[i, j−1] + d(, s2[j])

A[i−1, j−1] + d(s1[i], s2[j])

A[i−1, j] + d(s1[i],)

(1.4)

T [i, j] = argmin
i,j

A[i, j−1] + d(, s2[j]) ←
A[i−1, j−1] + d(s1[i], s2[j]) ↖
A[i−1, j] + d(s1[i],) ↑

(1.5)

Optimal alignment score:

The score of the optimal alignment is A[n1, n2].

Trace back:

The optimal alignment(s) is obtained by following the pointers from T [n1, n2] to
T [0, 0] to obtain the optimal alignment.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 7

Chapter 1 Sequence Alignment

Global alignment with similarity scoring :

Input:

Sequences s1 and s2 of lengths n1 and n2, respectively.

Initialization:

A[0, j] = A[0, j−1] + g (top row)

A[i, 0] = A[i−1, 0] + g (left column)

Recurrence relation:

A[i, j] = max

A[i, j−1] + g

A[i−1, j−1] + p(s1[i], s2[j])

A[i−1, j] + g

(1.6)

T [i, j] = argmax
i,j

A[i, j−1] + g ←
A[i−1, j−1] + p(s1[i], s2[j]) ↖
A[i−1, j] + g ↑

(1.7)

Optimal alignment score:

The score of the optimal alignment is A[n1, n2].

Trace back:

Follow the pointers from T [n1, n2] to T [0, 0] to obtain the optimal alignment.

In the first pass, the dynamic program progresses from A[0, 0] to A[n1, n2], calculating
the value of A[i, j] from the values of A[i−1, j], A[i−1, j−1], and A[i, j−1] at each iteration.
The initialization step calculates the values in the first row and column of A. The score in
A[0, j] reflects the alignment obtained by inserting gaps at the beginning of s1 and aligning
them to the first j symbols in s2 . Similarly A[i, 0] is the score of the alignment of i gaps
inserted prior to the first symbol in s2 with the first i symbols in s1.

The internal entries in A are calculated by the recurrence relations. The value in A[i, j]
is the score of the optimal alignment of the first i symbols in s1 (i.e., s1[1..i]) with the first
j symbols in s2 (i.e., s2[1..j]). The optimal alignment of s1[1..i] and s2[1..j] is obtained by
inserting one additional column at the end of a shorter optimal alignment. There are three
optimal alignments of prefixes of s1 and s2 that, when extended in this way, will yield a

8 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

1.1 Global pairwise alignment

candidate optimal alignment of s1[1..i] and s2[1..j]. In the recurrence, the score of each of
these candidates is calculated and the best score is selected. First, the column −

s2[j] can be

added to the end of the optimal alignment of s1[1..i] and s2[1..j−1]. The alignment score
of this prefix is stored in A[i, j−1], the cell to the immediate left of A[i, j−1]. Second, the

column s1[i]
s2[j]

can be added to the end of the optimal alignment of s1[1..i−1] and s2[1..j−1],

which corresponds to A[i−1, j−1], the cell diagonally up and to the left of A[i, j]. Finally,
the column s1[i]

− can be added to the end of the optimal alignment of s1[1..i−1] and s[1..j],
which corresponds to the cell immediately above A[i, j].

Of these candidates, the alignment that optimizes the scoring function is the optimal
alignment of s1[1..i] and s2[1..j]. The score of this alignment is entered in A[i, j]. The
indices of the entry (or entries) in A that optimize the right hand side of the recurrence
relation (Equation 1.4 or 1.6) are stored in the traceback matrix, T . T [i, j] contains the
index of an adjacent cell to the left (i, j−1), upper left (i−1, j−1), and/or above (i−1, j)
the current cell. In class, we use arrows (←,↖, and ↑) to designate these indices. Note that
more than one of the recurrence cases may optimize the value of A[i, j]. In this case, more
than one pointer will be added to T [i, j].

The first pass completes when all entries in the matrix A have been assigned values. At
this point, A[n1, n2] contains the score of the full length optimal alignment, but the actual
alignment has not been explicitly determined. In the second pass, the alignment, α, is
constructed in reverse order by following the pointers through T from the lower right corner
to the upper left corner. This traceback procedure begins with an alignment consisting of
only the last column of the alignment, which is determined from the indices in T [n1, n2],
like this:

if T [n1, n2] =←
α = −

s2[n2]

i = n1, j = n2−1

if T [i, j] =↖
α = s1[n1]

s2[n2]

i = n1−1, , j = n2−1

if T [n1, n2] = ↑
α = s1[n1]

−

i = n1−1, j = n2

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 9

Chapter 1 Sequence Alignment

The trace back then proceeds by following pointers through T until the upper left corner is
reached (i = 0, j = 0). At each iteration, α is extended by inserting an additional column
at the beginning of α, according to the following rules:

if T [i, j] =←
insert −

s2[j] at the beginning of α

j = j−1

if T [i, j] =↖
insert s1[i]

s2[j]
at the beginning of α

i = i−1; j = j−1

if T [i, j] = ↑
insert s1[i]

− at the beginning of α

i = i−1

If an entry in T with more than one pointer is encountered during the traceback, then there
is more than one optimal alignment of s1 and s2. Multiple passes through T are required to
generate all optimal alignments, with additional bookkeeping to ensure that each optimal
alignment is constructed once and only once.

The two pass procedure described above is used with both similarity and distance
scoring. For both scoring schemes, the algorithm outputs an optimal alignment score,
A[n1, n2], and one or more optimal global alignments. With distance scoring, all entries in
A are non-negative, since d(x, y) ≥ 0,∀ x, y. With a similarity scoring function, the entries
in A may be positive or negative. The optimal alignment score may also be positive or
negative. In the first pass, the dynamic program computes the scores of all pairs of prefixes
in O(n1 · n2) time. The trace back through the alignment matrix to obtain the optimal
alignment requires O(n1 + n2) time for each optimal alignment.

1.2 Local pairwise alignment

Global alignment is used in cases where we expect that s1 and s2 are related from end to
end. Semi-global allows for some gaps at the beginning and/or end of one sequence, but
the underlying assumption is the same: s1 and s2 share a relationship within the entire
aligned region. In contrast, local alignment is used in cases where s1 and s2 share one or
more local regions that are related, but are not related from end to end.

The alignment of any substring s1[h..i] of s1 and any substring s2[j..k] of s2 is a local
alignment of s1 and s2. The optimal alignment of s1[h..i] and s2[j..k] is the highest scoring

10 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

1.2 Local pairwise alignment

global alignment of those substrings, where 1 ≤ h ≤ i ≤ n1, and 1 ≤ j ≤ k ≤ n2 and S is
the similarity scoring function defined in Equation 1.2. Note that there may be more than
one. The optimal local alignment of s1 and s2 is the highest scoring optimal alignment of
all possible substrings of s1 and s2, that is,

α∗(s1, s2) = argmax
h,i,j,k

S(α∗(s1[h..i], s2[j..k])).

Note that there may be more than one optimal local alignment. High scoring sub-optimal
alignments may also be of interest.

For local alignment, the pairwise alignment dynamic programming algorithm must
be modified to allow the alignment to start and stop anywhere in s1 and s2. Unlike the
dynamic program for global alignment, the local alignment recurrence (Equation 1.8) has a
fourth term that sets the score A[i, j] to zero whenever adding a substitution or a gap to
the alignment results in a negative score. This is what allows the local alignment algorithm
to consider all possible starting positions in s1 and in s2.

Local alignment with similarity scoring:

Input:

Sequences s1 and s2 of lengths n1 and n2, respectively.

Initialization:

A[0, j] = 0, ∀j
A[i, 0] = 0, ∀i

Recurrence relation:

A[i, j] = max

A[i, j−1] + g

A[i−1, j−1] + p(s1[i], s2[j])

A[i−1, j] + g

0

(1.8)

T [i, j] = argmax
i,j

A[i, j−1] + g ←
A[i−1, j−1] + p(s1[i], s2[j]) ↖
A[i−1, j] + g ↑
0 ♦

(1.9)

Optimal alignment score:

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 11

Chapter 1 Sequence Alignment

The score of the optimal alignment is

max
i,j
A[i, j].

Trace back:

Follow the pointers from T [i∗, j∗], where (i∗, j∗) = argmaxi,j A[i, j], and end the
trace back at the first cell with value zero encountered.

The value in A[i, j] is the score of the optimal local alignment of a substring in s1[1..i]
and a substring in s2[1..j]. The score of the best local alignment is the maximum value in
A, taken over all i and all j. Trace back starts at the cell corresponding to the maximum
score. This is what allows the local alignment algorithm to consider all possible ending
positions in s1 and in s2. In contrast, the score of the global alignment is the value in the
last row and column.

Trace back continues to reconstruct the optimal local alignment by following the pointers
in T . It completes when the end symbol “♦” is encountered; this corresponds to reaching
the first cell in A with value zero. At each step,

If T [i, j] =←
align s2[j] with a gap ‘ ’
j = j−1

If T [i, j] =↖
align s1[i] with s2[j]
i = i−1; j = j−1

If T [i, j] = ↑
align s1[i] with a gap ‘ ’
i = i−1

If T [i, j] = ♦
align s1[i] with s2[j] and end
i = 0; j = 0

The point at which A[i, j] drops below zero and restarts depends on the scoring function
and critically determines what the resulting alignment will look like. For this reason, scoring
functions for local alignment are subject to more stringent constraints than scoring functions
for global and semi-global alignment.

In order to find biologically meaningful conserved regions, a scoring function for local
pairwise alignment must satisfy the following requirements:

• The scoring function must be a similarity function. The local alignment that minimizes
the edit distance (weighted or unweighted) is the empty alignment, which tells us
nothing.

12 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

1.3 Semi-global alignment

• There must be at least one pair of residues, x and y, for which the similarity score
p(x, y) is positive. Otherwise, the optimal alignment is always the empty alignment.

• The expected alignment score of a pair of randomly generated sequences (i.e., sequences
sampled from a background distribution) must be negative.

• The standard requirements for the similarity function must be upheld (M > m > 2g).

These rules apply to general scoring functions, where the score for each pair of residues
can have a different numerical value. For our simple similarity function, we also require a
positive score for matches (M > 0) and a negative score for mismatches (m < 0) and gaps
(g < 0).

1.3 Semi-global alignment

Global alignment seeks the best, full length alignment of a pair of sequences; that is, the
best way to match up two sequences along their entire length. For some applications, it is
desirable to relax this requirement and not penalize gaps at the beginning and/or end of an
alignment. For example, for sequence assembly, we seek sequence fragments that overlap;
that is, we expect to be able to align the end of one fragment with the beginning of another.
Very occasionally, we may find sequence fragments that start and end at the same position,
but, in general, we expect some gaps at the beginning and at the end of the alignment.
Another example is aligning cDNA’s with genomic DNA to identify gene structure. Because
the cDNA corresponds to a small region in the genome, the cDNA fragment will be flanked
by gaps at both ends when aligned with the genomic DNA.

Semi-global alignment is a modification of global alignment that allows the user to
specify that gaps will be penalty-free at the beginning of one of the sequences and/or at
the end of one of the sequences. Given sequences s1 and s2, there are eight possible cases
to consider:

1. Gaps are penalty-free at the beginning of s1; e.g.,

s_1: _ _ D O

s_2: R E D O

2. Gaps are penalty-free at the beginning of s2; e.g.,

s_1: R E D O

s_2: _ _ D O

3. Gaps are penalty-free at the end of s1; e.g.,

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 13

Chapter 1 Sequence Alignment

s_1: D O _ _

s_2: D O N E

4. Gaps are penalty-free at the end of s2; e.g.,

s_1: D O N E

s_2: D O _ _

5. Gaps are penalty-free at the beginning and end of s1; e.g.,

s_1: _ _ D O _ _

s_2: R E D O N E

6. Gaps are penalty-free at the beginning and end of s2; e.g.,

s_1: R E D O N E

s_2: _ _ D O _ _

7. Gaps are penalty-free at the beginning of s1 and at the end of s2; e.g.,

s_1: _ _ D O N E

s_2: R E D O _ _

8. Gaps are penalty-free at the beginning of s2 and at the end of s1; e.g.,

s_1: R E D O _ _

s_2: _ _ D O N E

In semi-global alignment, we do not allow penalty-free gaps at the beginning of s1 and
the beginning of s2 in the same alignment. Nor do we allow penalty-free gaps at the end of
s1 and the end of s2. Why not?

Like global alignment, the optimal semi-global alignment can be found using dynamic
programming with either distance or similarity scoring. Below, we describe the modifica-
tions that are required to adapt the dynamic program for global pairwise alignment to the
semi-global alignment problem. These modifications are described in terms of alignment
with similarity scoring. Similar modifications can be made to obtain a semi-global alignment
algorithm that uses distances.

Semi-global alignment with similarity scoring:

Input:

Sequences s1 and s2 of lengths n1 and n2, respectively.

Initialization:

14 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

1.3 Semi-global alignment

To allow penalty-free gaps at the beginning of s1 (as in Case 1), set the first row to
zero and initialize the first column as in global alignment.

A[0, j] = 0, ∀j (top row)

A[i, 0] = A[i−1, 0] + g (left column)

To allow penalty-free gaps at the beginning of s2 (as in Case 2), set the first column
to zero and initialize the first row as in global alignment.

A[0, j] = A[0, j−1] + g (top row)

A[i, 0] = 0, ∀i (left column)

Recurrence relation:

Same as global.

Optimal alignment score and trace back:

To avoid trailing gap penalties at the end of s1 (as in Case 3), we define the optimal
score to be the optimal score in the bottom row

max
j
A[n1, j].

Trace back from T [n1, j
∗], where j∗ = argmaxj A[n1, j]. In other words, trace

back from the cell(s) in the last row with optimal score.

To avoid trailing gap penalties at the end of s2 (as in Case 4), we define the optimal
score to be the optimal score in the last column

max
i
A[i, n2].

Trace back from T [i∗, n2], where i∗ = argmaxiA[i, n2]. In other words, trace
back from the cell(s) in the last column with optimal score.

Note that when the first row (or column) of the matrix is initialized to zero, the
traceback will end in the first row (or column), but not necessarily in the cell
A[0, 0].

Like global alignment, either distance or similarity scoring can be used for semiglobal
alignment. There may be more than one optimal semiglobal alignment.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 15

Chapter 2

Sequence Evolution Models

In the previous lectures, we introduced two simple scoring functions for pairwise alignments:

• a similarity function, that assigns a score of M to matches (M > 0), m to mismatches
(m < 0), and g to indels (g < 0) and

• an edit distance, which does not reward matches (M = 0) and assigns a unit cost to
mismatches and gaps (m, g > 0).

These scoring functions allow us to compare two alignments by comparing their scores,
but are less useful for assessing a pairwise alignment in an absolute sense. Given a pair
of aligned sequences with a particular collection of matches, mismatches, and indels, does
the alignment reflect enough similarity to suggest that it is of biological interest? One way
of assessing an alignment in an absolute sense is to determine whether it reflects more
similarity than we would expect by chance. In developing this approach, we must take
into account the divergence of related sequences due to mutation. With that in mind, we
will explore models of sequence evolution and then discuss how they are used to assess
alignments. Sequence evolution models are typically based on Markov chains, so we will
begin with a general introduction to Markov models.

Box 2 includes a summary of some notation that will be used throughout this chapter
to describe Markov chains

2.1 Finite discrete Markov chains

In various computational biology applications, it is useful to track the stochastic variation
of a random variable. Here are some examples:

1. Time-dependent system: For models of sequence evolving by substitution, the
random variable of interest is the nucleotide (or amino acid) observed at a fixed

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 17

Chapter 2 Sequence Evolution Models

position, or site, in the sequence at time t. The goal is to characterize how this
random variable changes over time.

2. Space-dependent system: It is also useful to consider how the residues in a
sequence change as one moves along the sequence from one site to the next. In this
case, the random variable is the amino acid (or nucleotide) at site i. We are interested
in how the probability of observing a given amino acid at site i depends on the amino
acid observed at site i− 1.

For each of these examples, we can model how the value of the random variable (the
nucleotide or amino acid) changes with respect to an independent variable (time or position),
using a Markov chain with a finite number of states, E1, E2, . . . Es. Each state corresponds
to one of the possible values of the random variable:

• In a nucleic acid sequence, there are four states, each corresponding to the event
of observing one of the four nucleotides at the site of interest, e.g., E1 = A, E2 =
G, E3 = C, E4 = T .

• In a protein sequence, there are 20 states, each of which corresponds to the event of
observing a given amino acid; for example E1 = Ala, E2 = Cys, . . . E20 = Tyr.

In our examples above, the states are defined as follows:

1. In a time-dependent system, we say the system is in state Ej at time t.
2. In a spatially varying system, we say the system is in state Ej at site i without

concerning ourselves with time. This is in contrast to the previous example, where
time varies and the position, i, is held fixed.

The probability that a Markov chain is in state Ej at time t is designated1 ϕj(t).
Consider the example of modelling the evolution of a given nucleotide site over time. In
this example, ϕ1(t) is the probability of observing an A at site i at time t. The vector
ϕ(t) = (ϕ1(t), ϕ2(t), . . . ϕs(t)) describes the state probability distribution over all states at
time t. The initial state probability distribution is given by ϕ(0). Note that Ewens and
Grant2 use π to denote the initial state distribution: π = (ϕ1(0), ϕ2(0), . . . ϕs(0)).

In order to capture the stochastic variation of the system, we must also define the
probability of making a transition from one state to another. The transition probability,
Pjk, is Pr(Ek at t+ 1 | Ej at t), the probability that the chain will be in state Ek at time
t + 1, given that it was in state Ej at the previous time step, t. In the time-dependent,
nucleotide sequence example, P12 is the probability of an A-to-G substitution at site i.

1To simplify the exposition, we will focus on models where time is the independent variable. However,
the framework is more general, and can be used to model variation with respect to other independent
variables, such as the position in a sequence.

2Statistical Methods in Bioinformatics: An Introduction. W. Ewens, G. Grant. Springer 2001.

18 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

2.1 Finite discrete Markov chains

P is an s× s matrix specifying the probability of making a transition from any state to
any other state. The rows of this matrix sum to one (

∑
k Pjk = 1) since the chain must be

in some state at every time step. The columns do not have to add up to one, since there is
no guarantee that the system will end up in a particular state, k.

The Markov property states that Markov chains are memoryless. In other words, the
probability that the chain is in state Ej at time t+ 1, depends only on the state at time t
and not on the past history of the states visited at times t− 1, t− 2...

In this course, we will focus on discrete, finite, time-homogeneous Markov chains. These
are models with a finite number of states, in which time (or space) is split into discrete steps.
The assumption of discrete steps is quite natural for a spatially varying system, because
sequences of symbols are inherently discrete, but somewhat artificial for the sequence
evolution over time model, since time is continuous. In Section 2.4, we will derive two
continuous DNA Markov models from their discrete counterparts discussed in Section 2.3.
Our models are time-homogeneous, because the transition matrix does not change over
time.

Box 2: Summary of Markov chain notation

A Markov chain has states E1, E1, . . . , Es corresponding to the range of the
associated random variable.

ϕj(t) is the probability that the chain is in state Ej at time t. The vector ϕ(t) =
(ϕ1(t), . . . ϕs(t)) is the state probability distribution at time t.

π = ϕ(0) is the initial state probability distribution.

P is the transition probability matrix. Pjk gives the probability of making a transition
to state Ek at time t+ 1, given that the chain was in state Ej at time t. The
rows of this matrix sum to one:

∑
k Pjk = 1.

The state probability distribution at time t+ 1 is given by ϕ(t+ 1) = ϕ(t) · P . The
probability of being in state Ek at t+ 1 is

ϕk(t+ 1) =
∑
j

ϕj(t)Pjk

The Markov property states that Markov chains are memoryless. The probability
that the chain is in state Ek at time t + 1, depends only on ϕ(t) and is
independent of ϕ(t− 1), ϕ(t− 2), ϕ(t− 3) . . .

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 19

Chapter 2 Sequence Evolution Models

2.1.1 Higher Order Markov Chains

The memoryless requirement that the probability of occupying state Ek at time t + 1
depends only on ϕ(t) can sometimes be relaxed to allow for a more general Markov process.
Markov chains that uphold the memoryless property are often called first order Markov
chains. Higher-order dependencies can also be modelled. For example, consider the case
where the nucleotide at site i depends not only on the nucleotide observed at site i − 1
but also the nucleotide observed at site i − 2. This case can be modeled with a second
order Markov chain because the nucleotide at site i depends on the previous two sites. The
transition matrix P would be of size 16× 4; columns would represent the nucleotide at the
site under consideration and rows would represent all combinations of the two preceeding
nucleotides. More generally, an n-th order Markov chain is a system where the probability
of a given state at time t depends on the previous n sites. The transition matrix P would
be of size sn × s.

2.2 Random walks

To illustrate the concepts of Markov chains, let us consider a simple example: A drunk is
staggering about on a very short railway track with five ties on top of a mesa (a high hill
with a flat top and steep sides.) Here, state Ej corresponds to the event that the drunk is
standing on the jth tie, where 0 ≤ j ≤ 4. At each time step, the drunk staggers either to
the left or to the right with equal probability. If the drunk reaches either end of the track
(either the 0th or the 4th tie), he falls off the mesa. This model is called a random walk with
absorbing boundaries, because once the drunk falls off the mesa, he can never get back on
the railroad track . States E0 and E4 are absorbing states. Once the system enters one
of these states, it remains in that state forever, since P00 = P44 = 1. This results in the
following transition probability matrix:

P =

E0 E1 E2 E3 E4

E0 1 0 0 0 0
E1

1
2 0 1

2 0 0
E2 0 1

2 0 1
2 0

E3 0 0 1
2 0 1

2
E4 0 0 0 0 1

 (2.1)

Note that each row sums to one, consistent with the definition of a Markov chain.

The transition matrix of a Markov chain can be represented as a graph, where the nodes
represent states and the edges represent transitions with non-zero probability. For example,
the random walk with absorbing boundaries can be modeled like this:

20 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

2.2 Random walks

Note that the sum of the weights on all outgoing edges from any given state sum to 1, just
as row sums are equal to 1 in the transition matrix.

How does the state probability distribution change over time? If we know the state
probability distribution at time t, the distribution at the next time step is given by:

ϕk(t+ 1) =
∑
j

ϕj(t)Pjk (2.2)

or

ϕ(t+ 1) = ϕ(t)× P (2.3)

in matrix notation.

For example, suppose that at time t = 0, the drunk is standing on the middle tie (state
E2); that is, π = ϕ(0) = (0, 0, 1, 0, 0). To obtain the state probability distribution after one
time step, we apply Equation 2.2:

ϕk(1) =

4∑
j=0

ϕj(0)Pjk.

Thus, the probability of being in state E1 when t = 1 is given by

ϕ1(1) =
4∑
j=0

ϕj(0)Pj1.

= 0 · 0 + 0 · 0 + 1 · 1

2
+ 0 · 0 · 0 · 0

=
1

2
.

Note this is equivalent to multiplying the vector (0, 0, 1, 0, 0) by the second column of the
transition matrix in Equation 2.1.

Since the Markov chain is symmetrical, it is easy to show that ϕ3(1) is also equal to
1/2. (Try it.) It is not possible to reach state E0 or state E4 in a single step from state
E2, so ϕ0(1) = ϕ4(1) = 0. Nor is it possible to remain in state E2 for two consecutive time

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 21

Chapter 2 Sequence Evolution Models

steps since P22 = 0, so ϕ2(1) = 0. Since state E2 is the only state with non-zero probability
at time t = 0, we obtain,

ϕ(1) = (0,
1

2
, 0,

1

2
, 0).

Now that we have the probability distribution at time t = 1, we can calculate the
probability distribution at time t = 2 using the same procedure

ϕk(2) =

4∑
j=0

ϕj(1)Pjk.

The probability of being in state E0 at t = 2 is given by

ϕ0(2) =
4∑
j=0

ϕj(1)Pj0

= 0 · 1 +
1

2
· 1

2
+ 0 · 0 +

1

2
· 0 + 0 · 0

=
1

4
.

Again, because the matrix is symmetrical, ϕ4(2) = ϕ0(2). The probability of being in state
E2 is

ϕ2(2) =
4∑
j=0

ϕj(1)Pj2

= 0 · 0 +
1

2
· 1

2
+ 0 · 0 +

1

2
· 1

2
+ 0 · 0

=
1

2
.

The probabilities of being in state E1 or E3 at time t = 2 are zero, because P11 = 0 and
P33 = 0. The probability distribution vector at time t = 1 is, therefore,

ϕ(2) = (
1

4
, 0,

1

2
, 0,

1

4
). (2.4)

22 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

2.2 Random walks

2.2.1 Calculating “n-step” Transition Probabilities

Suppose that we wish to know the state of the system after two time steps. In the previous
section, we used Equation 2.2 to calculate ϕ(1), given π = ϕ(0), and then we applied
Equation 2.2 again to calculate ϕ(2), from ϕ(1). We can approach this from another linear
algebra perspective by constructing a two-step transition probability matrix in which each
time step corresponds to two time steps in the original Markov chain.

Here, we derive a general expression for ϕ(t + 2) in terms of ϕ(t) and P 2. From
Equation 2.2, we obtain

ϕl(t+ 1) =
s∑
j=0

ϕj(t)Pjl (2.5)

and

ϕk(t+ 2) =
s∑
l=0

ϕl(t+ 1)Plk. (2.6)

Substituting the right hand side of Equation 2.5 for ϕl(t+ 1) in Equation 2.6 yields

ϕk(t+ 2) =
s∑
l=0

 s∑
j=0

ϕj(t)Pjl

Plk.

We can reverse the order of the summations since the terms may be added in any order:

ϕk(t+ 2) =

s∑
j=0

(
s∑
l=0

ϕj(t)Pjl

)
Plk.

Since ϕj(t) does not depend on l, it can be moved out of the summation over l, yielding:

ϕk(t+ 2) =
s∑
j=0

ϕj(t)

(
s∑
l=0

PjlPlk

)
. (2.7)

The term in the inner summation is simply the element in row j and column k of the matrix
obtained by multiplying matrix P by itself. In other words,

s∑
l=0

PjlPlk = P
(2)
jk ,

where P (2) = P × P , so that Equation 2.7 may be rewritten as

ϕk(t+ 2) =
s∑
j=0

ϕj(t)P
(2)
jk .

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 23

Chapter 2 Sequence Evolution Models

Matrix P (2) is the transition matrix for moving two time steps over the Markov chain
described by P . In other words, a single time step in P (2) is equivalent to two time steps in
P . Similarly, the n-step transition probability matrix, P (n), models change after n time
steps such that:

P (n) = P × P..× P︸ ︷︷ ︸ = Pn.

n times

The n-step equivalent of Equation 2.3 is

ϕ(t+ n) = ϕ(t) · P (n).

As an example, let’s apply this approach to our 5-state random walk with absorbing
boundaries. Recall that the transition matrix for the random walk, given in Equation 2.1, is

P =

E0 E1 E2 E3 E4

E0 1 0 0 0 0
E1

1
2 0 1

2 0 0
E2 0 1

2 0 1
2 0

E3 0 0 1
2 0 1

2
E4 0 0 0 0 1

Multiplying P times itself yields the two-step transition matrix, P (2):

P (2) =

E0 E1 E2 E3 E4

E0 1 0 0 0 0
E1

1
2

1
4 0 1

4 0
E2

1
4 0 1

2 0 1
4

E3 0 1
4 0 1

4
1
2

E4 0 0 0 0 1

 (2.8)

Try this matrix multiplication to convince yourself that this is correct. The state
probability distribution at t = 2 can be calculated by applying P (2) to π:

ϕ(2) = π · P (2)

= (0, 0, 1, 0, 0) · P (2)

= (
1

4
, 0,

1

2
, 0,

1

4
).

Note that this gives the same result as Equation 2.4, which we got by applying the original
Markov chain twice.

24 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

2.2 Random walks

2.2.2 Periodic Markov chains

In our random walk with absorbing states, we will not eventually reach every state from
every other state — we cannot travel from state E0 to any other state, no matter how much
time has passed. Markov chains where every state is connected to every other state via a
series of zero or more states are called irreducible. Markov chains with absorbing states
are never irreducible. Two other examples of random walk Markov chains that are not
irreducible are:

Let us consider a second example, that is irreducible. In order to save the drunk from
an early death, we introduce a random walk with reflecting boundaries. At each step, the
drunk moves to the left or to the right with equal probability. When the drunk reaches one
of the boundary states (E0 or E4), he returns to the adjacent state (E1 or E3) at the next
step, with probability one — hence, E0 and E4 are reflecting boundaries. This yields the
following transition probability matrix:

P =

E0 E1 E2 E3 E4

E0 0 1 0 0 0
E1

1
2 0 1

2 0 0
E2 0 1

2 0 1
2 0

E3 0 0 1
2 0 1

2
E4 0 0 0 1 0

 (2.9)

The random walk with reflecting boundaries can be represented graphically like this:

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 25

Chapter 2 Sequence Evolution Models

Again, for any given state, the outgoing edges sum to 1.

Suppose that the drunk starts out on the middle tie at t = 0, as before. That is, the
initial state probability distribution is π = ϕ(0) = (0, 0, 1, 0, 0). The state distributions for
the first two time steps are the same in this random walk and in the random walk with
absorbing boundaries specified by Equation 2.1. These are

ϕ(1) = (0,
1

2
, 0,

1

2
, 0) (2.10)

ϕ(2) = (
1

4
, 0,

1

2
, 0,

1

4
). (2.11)

This makes sense because the two random walk models differ only in the boundary states,
E0 and E4, and ϕ0(t) = ϕ4(t) = 0 when t = 0 or t = 1. We calculate the state probability
distribution at t = 3 by multiplying the vector ϕ(2) with the matrix P :

ϕ(3) = ϕ(2) · P

=

(
1

4
, 0,

1

2
, 0,

1

4

)
· P

=

(
0,

1

2
, 0,

1

2
, 0

)
. (2.12)

Comparing Equations 2.10 and 2.12 demonstrates that the state probability distribution
at time t = 3 is the same as the distribution at time t = 1. In other words, ϕ(3) = ϕ(1).
Similarly, ϕ(4) = ϕ(2), as can be seen from the following calculation:

ϕ(4) = ϕ(3) · P

= (0,
1

2
, 0,

1

2
, 0) · P

= (
1

4
, 0,

1

2
, 0,

1

4
). (2.13)

From this we can see that the probability state distribution will be (0, 1
2 , 0,

1
2 , 0) at

all odd time steps and (1
4 , 0,

1
2 , 0,

1
4) at all even time steps. Thus, the random walk with

reflecting boundaries is a periodic Markov chain.

A Markov chain is periodic if there is some state that can only be visited, with any
probability greater than 0, in multiples of m time steps, where m > 1. Formally, state j
has period

m = gcd{n > 0 : P
(n)
jj > 0},

where “gcd” is the greatest common divisor. In our example, P
(n)
jj > 0 for n = 2, 4, 6, 8, ...

for all j; therefore, each state has a period of 2, which is the gcd of {2, 4, 6, 8, ...}. If m = 1,

26 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

2.2 Random walks

the state is aperiodic. Note that the definition of periodicity does not depend on the initial
state distribution π.

To show that an irreducible Markov chain is aperiodic, it is sufficient to show one of the
following:

1. Any state has a self-loop in P , the original (1-step) transition matrix; i.e., Pjj > 0 for
some state j.

2. All elements of the n-step transition matrix P (n) are greater than 0 for some positive
integer n.

3. If P
(k)
jj > 0 and P

(l)
jj > 0, and the gcd(k, l) = 1.

4. Any state in the Markov chain is aperiodic.

We do not require periodic Markov chains for modeling sequence evolution and will only
consider aperiodic Markov chains going forward.

2.2.3 Stationary distributions

A state probability distribution, ϕ∗, that satisfies the equation

ϕ∗ = ϕ∗P (2.14)

is called a stationary distribution. A key question for a given Markov chain is whether such
a stationary distribution exists. Equation 2.14 is equivalent to a system of s equations with
s unknowns. One way to determine the steady state distribution is to solve that system of
equations. The stationary distribution can also be obtained using matrix algebra, but that
approach is beyond the scope of this course.

The random walk with absorbing boundaries does not have a unique stationary distri-
bution; both (1, 0, 0, 0, 0) and (0, 0, 0, 0, 1) are stationary distributions of the random walk
with absorbing boundaries.

For the rest of this course, we will concern ourselves only with aperiodic Markov chains
that do not have absorbing states. In fact, we will make an even stronger assumption and
restrict our consideration to irreducible Markov chains — Markov chains in which every
state is connected to every other state via a series of zero or more states. If a finite Markov
chain is aperiodic and irreducible, it has a unique stationary distribution. We will not
attempt to prove this or even to state the theorem in a rigorous way. For those who are
interested, a very nice treatment can be found in Chapter 15 of Probability Theory and its
Applications (Volume I) by William Feller (John Wiley & Sons).

As an example of a Markov chain with a unique stationary distribution, we introduce
a third random walk model that has neither absorbing, nor reflecting boundaries. In this
model, if the drunk is in one of the boundary states (E0 or E4) at time t, then at time t+ 1
he remains in the boundary state with a probability of 0.5 or returns to the adjacent state
(E1 or E3) with a probability of 0.5. This results in the following state transition matrix:

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 27

Chapter 2 Sequence Evolution Models

P =

E0 E1 E2 E3 E4

E0
1
2

1
2 0 0 0

E1
1
2 0 1

2 0 0
E2 0 1

2 0 1
2 0

E3 0 0 1
2 0 1

2
E4 0 0 0 1

2
1
2

 (2.15)

which can be represented graphically like this:

Yet again, the weights on outgoing edges sum to 1 for every state.

We can determine the stationary state distribution for this random walk model by
substituting this transition matrix into Equation 2.14. The probability of being in state E0

is

ϕ∗0 =
4∑
j=0

ϕ∗jPj0

= ϕ∗0P00 + ϕ∗1P10 + ϕ∗2P20 + ϕ∗3P30 + ϕ∗4P40.

This reduces to

ϕ∗0 =
1

2
ϕ∗0 +

1

2
ϕ∗1, (2.16)

since P20, P30 and P40 are all equal to zero. The other steady state probabilities are derived
similarly, yielding

ϕ∗1 =
1

2
ϕ∗0 +

1

2
ϕ∗2 (2.17)

ϕ∗2 =
1

2
ϕ∗1 +

1

2
ϕ∗3 (2.18)

ϕ∗3 =
1

2
ϕ∗2 +

1

2
ϕ∗4 (2.19)

ϕ∗4 =
1

2
ϕ∗3 +

1

2
ϕ∗4. (2.20)

28 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

2.2 Random walks

In addition, the steady state probabilities must sum to 1, since at any point in time, the
drunk must be somewhere. This imposes an additional constraint:

ϕ∗0 + ϕ∗1 + ϕ∗2 + ϕ∗3 + ϕ∗4 = 1. (2.21)

The Markov model specified by Equation 2.15 has a stationary distribution if the above
equations have a solution. By repeated substitution, it is possible to show that Equations
2.16 - 2.20 reduce to ϕ∗0 = ϕ∗1 = ϕ∗2 = ϕ∗3 = ϕ∗4. (Do the algebra to convince yourself that this
is true.) Applying the constraint in Equation 2.21, we see that ϕ∗ = (0.2, 0.2, 0.2, 0.2, 0.2)
is a unique solution to the above equations.

In this example, we found a unique solution to Equation 2.21, demonstrating that
our third random walk has a unique stationary state. Solving Equation 2.14 is a general
approach to finding the stationary distribution. Alternatively, if we know the stationary
state distribution, or have an educated guess, it is sufficient to verify that it indeed
satisfies Equation 2.14. For example, it is easy to verify that (0.2, 0.2, 0.2, 0.2, 0.2) · P =
(0.2, 0.2, 0.2, 0.2, 0.2).

A stationary distribution of ϕ∗ = (0.2, 0.2, 0.2, 0.2, 0.2) does not mean that we expect to
find 20% of a drunk standing on each railroad tie. Imagine instead that there are an infinite
number of co-existing universes and that in each universe, we have a mesa with a railroad
track with five ties and a drunk. These drunks are lurching back and forth according to the
same Markov model, but they are not synchronized; at any given time point, some of the
drunks will be on the 2nd tie, other drunks will be on the 4th tie, and so on. At steady
state, for every j, 0 ≤ j ≤ 4, 20% of the parallel universes will have a drunk on the jth

railroad tie.

Limiting distributions and stationary distributions

If a Markov chain is finite, irreducible, and aperiodic, then it has a limiting distribution
and the chain will converge to the stationary distribution ϕ∗, independent of the starting
distribution π. Formally

lim
n→∞

P
(n)
jk = ϕ∗k.

In other words, as n→∞ the n-step transition matrix will be

P (n) =

E1 · · · Ej · · · Es
E1 ϕ∗1 · · · ϕ∗j · · · ϕ∗s
...

...
. . .

...
. . .

...
Ei ϕ∗1 · · · ϕ∗j · · · ϕ∗s
...

...
. . .

...
. . .

...
Es ϕ∗1 · · · ϕ∗j · · · ϕ∗s

. (2.22)

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 29

Chapter 2 Sequence Evolution Models

2.2.4 Time reversibility

Most sequence substitution models are time reversible. A time reversible model exhibits the
same steady state behavior if we run it backward, instead of forward. This is a convenient
property that makes many calculations simpler. Most, if not all, of the Markov models we
encounter in this course are time reversible. However, when analyzing a data set involving
genomes with very different G+C content, a time reversible model of sequence evolution
may not provide accurate results. It is therefore helpful to understand the concept of time
reversibility and be aware of whether or not the models you are using have this property.

Formally, a Markov chain is time reversible if

ϕ∗jPjk = ϕ∗kPkj

for all states j and k. This criterion is called the detailed balance equation. Earlier, we
introduced parallel universes as a metaphor for the stationary state probability distribution,
ϕ∗. This metaphor is also helpful in understanding time reversibility: If a Markov chain
satisfies the detailed balance equation, then the number of universes that are moving from
Ej to Ek is equivalent to the number of universes that are moving from Ek to Ej .

Kolmogorov proposed an alternate criterion for time reversibility that depends only
on the transition probability matrix. Let M be a Markov chain with a unique stationary
distribution and let j1, . . . , jn be a sequence of states (a path of length n) through M.
Then, M is time reversible if and only if

Pj1,j2 Pj2,j3 . . . Pj(n−1),jn Pjn,j1 = Pj1,jn Pjn,j(n−1)
. . . Pj3,j2 Pj2,j1 . (2.23)

Time reversibility and the use of Kolmogorov’s criteria are illustrated by the Markov
model in the figure below. The four transitions associated with a clockwise circuit have

probability p4, while the probability of a counterclockwise circuit is q4. When p = q,
the transition probabilities satisfy Kolmogorov’s criterion; the model is time reversible.
When p 6= q, the probabilities of the clockwise and counterclockwise circuits are not the

30 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

2.3 Markov models of sequence evolution

same (p4 6= q4). Kolmogorov’s criterion is violated, indicating that the model is not time
reversible.

What is the best way to test time reversibility in practise? Kolmogorov’s criterion
is useful if you have a sequence of states that violates Equation 2.23, providing a direct
demonstration that the model at hand is not time reversible. However, it is less useful
as a general, systematic test of time reversibility. Given a Markov model with an s × s
transition probability matrix, P , you could use the detailed balance equations to test
for time reversibility by checking that ϕ∗jPjk = ϕ∗jPkj for all combinations of j and k.
However, it is more efficient to do all of these tests using a single matrix product. First,
determine the stationary distribution ϕ∗ by solving the system of equations in Equation
2.14. Then, construct an s× s diagonal matrix, D, where the entries on the main diagonal
are ϕ∗1, ϕ

∗
2, . . . , ϕ

∗
s and the off-diagonal elements are zero. The detailed balance equations

hold if and only if D × P is a symmetric matrix. Convince yourself that this is the case.

2.3 Markov models of sequence evolution

Now that we have the Markov chain machinery under our belts, let’s return to the question
of modeling sequence evolution. The process of substitution at a single site in a nucleotide
sequence can be modeled as a Markov chain, where each state represents a single nucleotide.
The transition probability, Pjk, is the probability that nucleotide j will be replaced by
nucleotide k in one time step. Similarly, Markov chains can be constructed to model
the evolution of amino acid sequences. Although in principle Markov models of sequence
evolution are general and can be applied to nucleotide sequences and to amino acid sequences
in exactly the same way, in practice working with a twenty-letter alphabet poses challenges
that do not arise with a four-letter alphabet. In addition, the biophysical properties of the
amino acids are more varied than those of the nucleotides. For these reasons, the Markov
chain framework is applied somewhat differently in amino acid sequence models. For the
moment, we will focus on nucleotide models and postpone amino acid models until later in
the course.

Markov models of sequence substitution are used to answer a wide range of questions
that arise in molecular evolution, including correcting for multiple substitutions at the same
site, simulating sequence evolution, estimating rates of evolution, deriving substitution
scoring matrices, estimating the likelihood of observing a pair of aligned nucleotides, and
maximum likelihood estimation methods for reconstructing evolutionary trees.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 31

Chapter 2 Sequence Evolution Models

2.3.1 The Jukes-Cantor model

The simplest Markov model of sequence evolution for DNA is the Jukes-Cantor model3,
which assumes that all substitutions (A → C, A → G, A → T, C → A...) are equally
probable and occur at a rate, α. Since DNA sequences are made up of four nucleotides, there
are three possible substitutions for any given base. Thus, the overall rate of substitution
is λ = 3α. That is, λ is the probability that a given nucleotide will be replaced by some
other nucleotide in one time step. The probability that the nucleotide remains unchanged
is 1 − 3α. A graphical representation of this model is shown in Fig. 2.1. The transition
probability matrix for this Markov model is:

A G C T
A 1−3α α α α
G α 1−3α α α
C α α 1−3α α
T α α α 1−3α

Figure 2.1: Jukes Cantor substitution model

The rate, α, of each possible substitution is an explicit parameter of the Jukes-Cantor
model. In addition, the frequencies of A’s, G’s, C’s and T’s are implicitly specified by the
model, since this is determined by the stationary distribution. The stationary distribution
of this Markov chain is ϕ∗ = (0.25, 0.25, 0.25, 0.25). (Verify that this is so by checking that
ϕ∗ = ϕ∗P).

Nucleotide substitution models can be made more realistic in two directions. First,
the assumption that all substitutions occur at the same rate can be relaxed. Second, the

3Jukes and Cantor, Evolution of protein molecules. In H. N. Munro, (ed.) Mammalian Protein
Metabolism, 21-123, Academic Press, NY, 1969.

32 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

2.3 Markov models of sequence evolution

specification of the rates can be adjusted to yield a non-uniform stationary distribution,
since the assumption that all four bases have the same frequency (ϕA = ϕC = ϕG = ϕT) is
unlikely to hold in most data sets.

2.3.2 Non-uniform transition probabilities

The Kimura 2 Parameter (K2P) model assumes that transitions and transversions occur
at different rates. A transition is the substitution of a purine for another purine or a
pyrimidine for another pyrimidine. A transversion is the substitution of a purine for a
pyrimidine or a pyrimidine for a purine. Recall that the pyrimidines, including cytosine
and thymine, are nucleotides with a ring with six elements. The purines, including adenine
and guanine, have a pyrimidine ring fused to a five-sided imidazole ring.

It make sense that transversions would proceed at a different rate than transitions, since
substituting a purine with a pyrimidine, or vice versa, involves a greater change in size and
shape than a substitution of two nucleotides from the same class.

The transition matrix for the K2P model is
A G C T

A 1−α−2β α β β
G α 1−α−2β β β
C β β 1−α−2β α
T β β α 1−α−2β

 ,
where α is the rate of transitions and β is the rate of transversions. In this model, the

overall substitution rate is λ = α + 2β, since of the three possible substitutions for any
given base, one is a transition and two are transversions. Like the Juke Cantor model,
the K2P model has a uniform stationary distribution, ϕ∗ = (0.25, 0.25, 0.25, 0.25). (Work
through the algebra to convince yourself that this is true.)

2.3.3 Non-uniform stationary distributions

A stationary distribution with uniform base frequencies is not a realistic model for the
many genomes in which the G+C content deviates from 50%. The 1981 Felsenstein (F81)

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 33

Chapter 2 Sequence Evolution Models

model allows for an arbitrary stationary distribution, ϕ∗ = (ϕ∗A, ϕ
∗
C , ϕ

∗
G, ϕ

∗
T), where the

frequencies of the four bases are allowed to deviate from the uniform distribution. Like the
Jukes-Cantor model, the F81 model has a single scaling parameter, α, and does not make a
distinction between transitions and transversions. The F81 transition matrix is

A G C T
A 1−α (ϕ∗C+ϕ∗G+ϕ∗T) α ϕ∗G α ϕ∗C α ϕ∗T
G α ϕ∗A 1−α (ϕ∗A+ϕ∗C+ϕ∗T) α ϕ∗C α ϕ∗T
C α ϕ∗A α ϕ∗G 1−α (ϕ∗A+ϕ∗G+ϕ∗T) α ϕ∗T
T α ϕ∗A α ϕ∗G α ϕ∗C 1−α (ϕ∗A+ϕ∗C+ϕ∗G)

2.3.4 More general models

The Hasegawa, Kishino, Yano (HKY) model combines both innovations. It allows for
different rates for transitions and transversions and an arbitrary stationary distribution,
ϕ∗ = (ϕ∗A, ϕ

∗
C , ϕ

∗
G, ϕ

∗
T), where the individual base frequencies may deviate from a uniform

distribution. The HKY transition matrix is:
A G C T

A 1−α ϕ∗G−β (ϕ∗C+ϕ∗T) α ϕ∗G β ϕ∗C β ϕ∗T
G α ϕ∗A 1−α ϕ∗A−β (ϕ∗C+ϕ∗T) β ϕ∗C β ϕ∗T
C β ϕ∗A β ϕ∗G 1−α ϕ∗T−β (ϕ∗A+ϕ∗G) α ϕ∗T
T β ϕ∗A β ϕ∗G α ϕ∗C 1−α ϕ∗C−β (ϕ∗A+ϕ∗G)

The General Time Reversible (GTR) model is an even more general model that allows
a different rate for each of the six possible substitutions and an arbitrary stationary
distribution, ϕ∗ = (ϕ∗A, ϕ

∗
C , ϕ

∗
G, ϕ

∗
T) The GTR transition matrix is:

A G C T
A 1−α ϕ∗G−β ϕ∗C−γ ϕ∗T α ϕ∗G β ϕ∗C γ ϕ∗T
G α ϕ∗A 1−α ϕ∗A−δ ϕ∗C−ε ϕ∗T δ ϕ∗C ε ϕ∗T
C β ϕ∗A δ ϕ∗G 1−β ϕ∗A−δ ϕ∗G−η ϕ∗T η ϕ∗T
T γ ϕ∗A ε ϕ∗G η ϕ∗C 1−γ ϕ∗A−ε ϕ∗G−η ϕ∗C

All of these models are discussed in greater detail in various molecular evolution
textbooks; see, for example, Li’s Molecular Evolution, (Sinauer Associates, 1997).

2.3.5 Model Selection

In deciding which model to use for a particular data set, we face a trade-off that arises
with many statistical models. More general models with more parameters provide a more
accurate representation of the underlying evolutionary process. However, with more complex

34 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

2.4 Applications of DNA substitution models

models, more data is required to estimate the parameter values and the danger of overfitting
the parameters is greater.

Analyses of alignments of present-day sequences suggest that, in many sequence families,
the rate of change varies from site to site. This is typically addressed by assuming that
sequence substitution in a given family can be captured by a single model with a small
number of rate categories. For example, one might model substitution in a given family
using the Jukes Cantor model with four rates, (α1, α2, α3, α4). For each site, i, maximum
likelihood estimation is used to estimate probabilities (p1(i), p2(i), p3(i), p4(i)), where pr(i)
is the probability that site i is evolving at rate αr. Ziheng Yang discusses this approach in
his textbook Computational Molecular Evolution (Oxford University Press, 2006).

These models do not allow for changes in rate or in GC-content over time. Developing
models to account for temporal changes in rate or nucleotide composition is currently an
active area of research.

2.4 Applications of DNA substitution models

There are many applications of Markov models of sequence substitution. Here, we demon-
strate how DNA substitution models can be used to estimate the likelihood of observing
a pair of aligned nucleotides, given a phylogenetic model, and to correct for multiple
substitutions. In the next chapter, we will use an amino acid substitution model to derive a
scoring matrix.

2.4.1 The likelihood of a pair of aligned nucleotides

First, let’s consider the problem of estimating the likelihood of a pair of aligned sequences.
This problem arises in maximum likelihood approaches to estimating a phylogenetic tree.
Maximum likelihood estimation (MLE) is a general method for estimating parameters of a
model. It is based on the assumption that the observed data is best explained by the model
that maximizes its likelihood; that is, the model for which the probability of the data is
greatest. Given a parameterized model, the parameter values are estimated by determining
the values that maximize the probability of the data.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 35

Chapter 2 Sequence Evolution Models

(a) (b) (c)

Figure 2.2: A hypothetical evolutionary scenario: (a) A pairwise alignment of two sequences
with residues x = G and y = C at site i. (b) These residues in present-day nucleotide
sequences have been diverging from a common, unknown ancestral nucleotide, z, for a
period of time, t. (c) In the Jukes Cantor model, the calculation of the probability of seeing
a given nucleotide at site i after elapsed time, t, can be reduced to two cases: either the
nucleotides in the ancestral and present-day sequences are the same (left, Equation 2.27) or
they are not (right, Equation 2.28).

In the context of phylogeny estimation, the observed data is a set of k aligned sequences.
The model has two components: a Markov model of sequence substitution and a rooted,
binary tree with k leaves. The likelihood is the probability of observing the multiple
alignment, under the assumption that the sequences evolved along the branches of the tree,
sustaining mutations according to the rates specified by the substitution model. For a fixed
tree topology, the branch lengths and the substitution rates are estimated by maximizing
the probability of the multiple sequence alignment.

We demonstrate this calculation for the case where k = 2. Suppose we have two residues,
x and y, that are the descendants of an ancestral nucleotide, z, and that time t has elapsed
since their divergence. Fig. 2.2 illustrates this situation for the case where x is a guanine
and y is a cytosine. The probability of observing x aligned with y is

Pr

(
x

y
| t
)

=
∑

z∈{A,C,G,T}

pz pzx(t) pzy(t), (2.24)

where pz is an estimation of the frequency of z in the ancestral sequence and pzx(t) and
pzy(t) are the respective probabilities of observing an x after time t, and a y at time t, given
that the ancestral residue was z. Since the base in the ancestral sequence is unknown, we
estimate the probability by summing over all possible values of z.

To evaluate the right hand side of Equation 2.24, requres expressions for pzx(t) and
pzy(t). Here, we derive expressions for the probability pzx(t) under the assumption that
the sequence is evolving according to the Jukes Cantor model. Analogous expressions are
derived from the Kimura 2 parameter model in Section2.4.3.

36 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

2.4 Applications of DNA substitution models

The Jukes Cantor transition probability matrix,
1−3 α α α α
α 1−3 α α α
α α 1−3 α α
α α α 1−3 α

is defined in terms of an instantaneous substitution rate, α. If the duration of a single time
step in this Markov chain is δt , δt � 1

α , then the probability of a substitution between a
given pair of nucleic acids in a single time step is αδt . We can define a transition probability
matrix for the Jukes Cantor Markov model with this time interval as follows:

1−3 α δt α δt α δt α δt
α δt 1−3 α δt α δt α δt
α δt α δt 1−3 α δt α δt
α δt α δt α δt 1−3 α δt

 .
We use this transition matrix to derive an expression describing how changes accumulate

at site i over a period of time t. First, we consider the event of observing, for example, an
A at site i after a single time step; i.e., at time t+ δt . This event can occur in two ways:
either site i contained an A at time t and no substitution occurred during the most recent
time step or site i contained some other nucleotide at time t and a substitution resulted
in an A one time step later. Accounting for both of these scenarios, the probability of
observing A at time t+ δt is

ϕA(t+ δt) = (1−3 α δt)ϕA(t) + α δt ϕC(t) + α δt ϕG(t) + α δt ϕT (t)

where ϕx(t) is the probability of observing nucleotide x (i.e. of being in state Ex) at time
t. Since in the stationary distribution of the Jukes Cantor model, all nucleotides have the
same frequency, we can combine the 2nd, 3rd and 4th terms, yielding

ϕA(t+ δt) = (1−3 α δt) ϕA(t) + α δt [1−ϕA(t)] .

Here, the first term gives the probability that the residue at site i at time t was an A and
no substitution occurred. The second term is the probability that the residue at time t was
not an A and a substitution did occur, replacing that residue with A. Since the model is
symmetric, this equation applies equally well to C,G or T . We can therefore rewrite the
equation using the parameter x, where x ∈ {A,C,G, T}, and combine terms to obtain

ϕx(t+ δt) = ϕx(t) + (1−4 ϕx(t))α δt . (2.25)

Having obtained an expression for the probability of observing a given nucleotide (x)
after one time step, we next need to derive an expression for the probability of observing x

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 37

Chapter 2 Sequence Evolution Models

after a longer time interval. Subtracting ϕx(t) from both sides of Equation 2.25 and some
algebraic manipulation yields

ϕx(t+ δt)− ϕx(t)

δt
= (1−4 ϕx(t))α.

Taking the limit as δt → 0, we obtain a differential equation

dϕx(t)

dt
= (1−4 ϕx(t))α (2.26)

that we can use to obtain an expression for the probability of observing nucleotide x at
site i after an arbitrary time interval t. This differential equation has a standard form
(f ′(t) = a− bf(t)) with a known solution, from which we obtain

ϕx(t) =
1

4
+

(
ϕx(0)− 1

4

)
e−4αt.

See Box 3 for a more detailed explanation of solving the standard form differential equation.

We now have an expression that gives the probability of observing nucleotide x in terms
of initial state probability, ϕx(0). So how to solve the probability of observing nucleotide x,
given the ancestral nucleotide z? We have two cases. Either the nucleotide at this site in the
ancestral sequence was also x (i.e., ϕx(0) = 1) or the nucleotide at this site in the ancestral
sequence was some residue other than x (i.e., ϕx(0) = 0). Substituting 1 for ϕx(0) in the
expression for ϕx(t), we can derive an expression for the probability that the present-day
residue is the same as the ancestral nucleotide after time t:

pxx(α, t) =
1

4
+

3

4
e −4αt. (2.27)

Similarly, setting ϕx(0) = 0 in the the expression for ϕx(t) gives the probability that
the present-day nucleotide differs from the ancestral residue after time t:

pzx(α, t) =
1

4
− 1

4
e −4αt. (2.28)

In general, the event that z was present in the ancestral sequence t million years ago
and x are is observed at site i today may have a different probability for each of the 16
possible pairs z, x ∈ Σ× Σ, where Σ = {A,G,C, T}. For the Jukes Cantor model, with a
single parameter for all possible nucleotide substitutions, there are only two possibilities:
the value of pzx is the same for all 12 pairs in Σ × Σ such that x 6= z. Similarly, for the
case where x = z, the probability, denoted pxx, is the same for the four cases where the
ancestor and present-day residues are the same.

38 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

2.4 Applications of DNA substitution models

Box 3: Solving the standard form differential equation

The standard form linear differential equation

df(x)

dx
= q(x)− p(x)f(x)

can be solved with the formula

f(x) = g(x)−1

∫
(g(x)q(x)dx) + C · g(x)−1,

where g(x) = e
∫

(p(x)dx).
In our case, the differential equation is

dϕx(t)

δt
= α−4α ϕx(t).

So, when substituting in the standard form, x = t, f(x) = ϕx(t), q(t) = α, and
p(t) = 4α. Solving g(t) = e

∫
p(t)dt yields e

∫
4αdt = e4αt. From the standard form

solution, we get

ϕx(t) = g(t)−1

∫
(g(t)q(t) δt) + C · g(t)−1

= e−4αt

∫
(e4αtα δt) + C · e−4αt

= e−4αt 1

4α
e4αt · α+ C · e−4αt

=
1

4
+ C · e−4αt

Solving for constant C at t = 0 gives

ϕx(0) =
1

4
+ C · e−4α0

=
1

4
+ C

C = ϕx(0)− 1

4
.

Combining these equations, we get

ϕx(t) =
1

4
+

(
ϕx(0)− 1

4

)
e−4αt.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 39

Chapter 2 Sequence Evolution Models

As an example, we use Equations 2.27 and 2.28 to obtain an expression, in terms of
α and t, for the likelihood of observing G aligned with C. The likelihood of observing a
guanine in one sequence and a cytosine in the other is

Pr

(
G

C
| α, t

)
=

∑
z∈{A,C,G,T}

pz pzG(α, t) pzC(α, t), (2.29)

where pz is an estimate of the frequency of z in the ancestral sequence. Expanding the
right hand side of Equation 2.29, we obtain

pA pAG(α, t) pAC(α, t)+pC pCG(α, t) pCC(α, t)+pG pGG(α, t) pGC(α, t)+pT pTG(α, t) pTC(α, t).
(2.30)

Substituting the right hand sides of Equations 2.27 and 2.28 into Equation 2.30, we obtain
the likelihood for observing G aligned with C

Pr

(
G

C
| α, t

)
=

1

2

(
1

4
− 1

4
e −4αt

)2

+
1

2

(
1

4
− 1

4
e −4αt

)
·
(

1

4
+

3

4
e −4αt

)
,

assuming that pz = 1
4 for all z.

Equations 2.27 and 2.28 can be used to derive the probability of observing x aligned
with y in a pair of sequences that have been diverging from a common ancestor for t million
years. There are two cases: the residues at site i in s1 and s2 may differ or the the same
residue may appear at site i in both sequences. We consider each case in turn.

Thus, the probability of aligning two different nucleotides is:

Pr

(
x

y
| α, t

)
=

1

4

(
2pxx(t)pzx(t) + 2pzx(t)2

)
=

1

2
pzx(t) (pxx(t) + pzx(t))

=
1

8

(
1 − e −4αt

) (1

4
(1 + 3e −4αt) +

1

4
(1 − e −4αt)

)
=

1

32

(
1 − e −4αt

) (
2 + 2e −4αt

)
=

1

16

(
1 − e −4αt

) (
1 + e −4αt

)
=

1

16

(
1 − e −8αt

)
. (2.31)

40 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

2.4 Applications of DNA substitution models

The probability that both sequences will have an x at site i is

Pr
(x
x
| α, t

)
=

1

4

(
pxx(t)2 + 3pzx(t)2

)
=

1

4

(
1

16
(1 + 3e −4αt)2 +

3

16
(1 − e −4αt)2

)
=

1

64

(
1 + 6e −4αt + 9e −8αt + 3 − 6e −4αt + 3e −8αt

)
=

1

64

(
4 + 12e −8αt

)
=

1

16

(
1 + 3e −8αt

)
. (2.32)

We now have expressions for the probability of observing nucleotide x aligned with
nucleotide y that depends on two parameters: the branch length, t, and the substitution
rate, α. These parameter values are typically estimated by finding the values of t and α

that maximize Pr
(
x
y | α, t

)
.

This approach can be expanded to alignments of more than two sequences by nesting
multiple expressions with the same form as the right hand side of Equation 2.24. Under
the assumption of positional independence, the likelihood for multiple sites is simply the
product of the likelihoods for each site, individually.

2.4.2 Correcting for multiple substitutions.

Another problem that arises in molecular evolution is estimating the amount of sequence
divergence between a pair of sequences, s1 and s2. A simple approach to estimating sequence
divergence would be to count the number of positions that are not identical in the pairwise
alignment of s1 and s2. If only a few changes have occurred, then the observed number of
mismatches may, in fact, be the actual number of substitutions. However, as the divergence
increases, so does the probability of two or more substitutions at the same site. In this
case, the number of observed changes will underestimate the actual divergence, as shown in
Fig. 2.3.

Suppose that we have an ungapped4 pairwise alignment of length n of two nucleotide
sequences, s1 and s2, that disagree at m positions. We wish to estimate the number of
substitutions that actually occurred over t, the time interval that elapsed since they diverged
from a common ancestor.

Here, we use the Jukes-Cantor model to derive a more accurate estimate of the number
of substitutions. Recall that the Jukes-Cantor model assumes that all substitutions (A→
C, A → G, A → T, C → A...) are equally likely and occur at a rate α, resulting in an

4None of the substitution models we have discussed account for insertions and deletions.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 41

Chapter 2 Sequence Evolution Models

Figure 2.3: The observed number of mismatches versus the actual number of substitutions
in a sequence of 400 nucleotides.

overall rate of substitution λ = 3α. If we assume a constant rate of substitution, λ, in both
lineages then the expected number of substitutions per site is

Ps = 2λt

= 6αt.

However, both α and t are unknown. Given a Markov model of sequence substitution, we
use the observed frequency of mismatches to estimate 2λt using the following strategy:

First, using the expressions for pxx(t) and pzx(t) that we derived in the previous section
(Eqns. 2.27 and 2.28), we estimate the frequency of mismatches as a function of αt,

Pm = f(αt).

We do this by estimating PM , the frequency of matches, and subtracting to obtain Pm =
1− PM . Next, we invert this function to obtain an expression for the expected number of
substitutions per site in terms of the number of mismatches per site:

αt = f−1 (Pm) .

The actual ‘frequency of mismatches can be approximated by the observed frequency of
mismatches, m

n , yielding an equation of the form

αt ≈ f−1
(
m
n

)
.

42 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

2.4 Applications of DNA substitution models

From this, we obtain an approximation for the frequency of substitutions:

Ps = 6αt

≈ 6f−1
(
m
n

)
.

Now we apply this strategy to obtain an estimate of the number of substitutions that
occurred assuming that sequences are evolving according to the Jukes Cantor model. First,
we derive an expression for the probability of observing a match; for example, for observing
two adenines aligned at site i. Given two sequences evolving independently from a common
ancestral sequence, the probability of a match at site i is

PM =
∑

x∈{A,G,C,T}

Pr
(x
x
| α, t

)
The term inside the summation is given by Eqn 2.32. Under the Jukes-Cantor model, this
probability is the same for all residues, and results in a match probability

PM =
1

4

(
1 + 3e−8αt

)
. (2.33)

The probability of observing a mismatch at site i is simply 1−PM or

Pm =
3

4

(
1− e−8αt

)
. (2.34)

We solve the above equation to obtain an expression for αt in terms of Pm:

αt = −1

8
ln

(
1− 4

3
Pm

)
.

Multiplying both sides of the equation by 6 yields 6αt, which is the expected frequency of
substitutions per site in terms of the probability of observing a mismatch:

Ps = −3

4
ln

(
1− 4

3
Pm

)
.

Pm can be estimated by the observed frequency of mismatches, allowing us to obtain an
estimate of the probability of substitution in terms of the fraction of sites with an observable
difference:

Ps ≈ −
3

4
ln

(
1− 4

3

m

n

)
.

Multiplying by n yields an estimate of the expected number of substitutions that actually
occurred in the entire alignment of length n:

−3

4
ln

(
1− 4

3

m

n

)
· n. (2.35)

For example, if we observe mismatches at 100 sites in a pairwise nucleotide sequence
alignment of length 1,000, then the Jukes-Cantor model predicts that the actual number of
substitutions per site is 0.107 or 107 substitutions.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 43

Chapter 2 Sequence Evolution Models

2.4.3 Applications with the K2P model

In previous sections, we used the Jukes Cantor model to derive expressions for the probability
of observing a given nucleotide at site i in a present day sequence (Equations 2.27 and 2.28).
We then used these equations to obtain an estimate for the number of substitutions that
occurred, given the number of mismatches observed in an ungapped alignment (Equation
2.35). Analogous equations can be derived for the K2P model, which assumes that transitions
and transversions occur at different rates.

In this case, we will use the observation for continuous Markov chains that the continuous
rate probabilities can be computed from the derivative transition matrix P ′(t), which can
be calculated from the product of the transition matrix P (t) and the instantaneous rates at
t = 0. Specifically, P ′(t) = P (t)P ′(0)

For the K2P model, the transition matrix P (t) is:
A G C T

A pAA(t) pAG(t) pAC(t) pAT (t)
G pGA(t) pGG(t) pGC(t) pGT (t)
C pCA(t) pCG(t) pCC(t) pCT (t)
T pTA(t) pTG(t) pTC(t) pTT (t).

The probability of observing different nucleotides at site i in the ancestral and present-day

sequences depends on whether the nucleotides belong to the same class or to different
classes. If the ancestral nucleotide z belongs to the same class as the present-day nucleotide
(i.e., there was a transition), I denote the present-day nucleotide as x and the probability of
z → x over time t as pszx(t). If the ancestral nucleotide z belongs to a different class as the
present-day nucleotide (i.e., there was a transversion), I denote the present-day nucleotide as
y and the probability of z → y over time t as pvzy(t). Under the K2P model, the probability
that the ancestral nucleotide z at site i is the same as the present-day nucleotide after time
t is pzz(t) = 1− pszx(t)− 2pvzy(t). The transition matrix P (t) can then be written as:

A G C T
A 1− pszx(t)− 2pvzy(t) pszx(t) pvzy(t) pvzy(t)
G pszx(t) 1− pszx(t)− 2pvzy(t) pvzy(t) pvzy(t)
C pvzy(t) pvzy(t) 1− pszx(t)− 2pvzy(t) pszx(t)
T pvzy(t) pvzy(t) pszx(t) 1− pszx(t)− 2pvzy(t).

(2.36)

The derivative matrix P ′(t) is found by taking the derivative of each entry with respect
to t, yielding:

A G C T
A −pszx′(t)− 2pvzy

′(t) pszx
′(t) pvzy

′(t) pvzy
′(t)

G pszx
′(t) −pszx′(t)− 2pvzy

′(t) pvzy
′(t) pvzy

′(t)
C pvzy

′(t) pvzy
′(t) −pszx′(t)− 2pvzy

′(t) pszx
′(t)

T pvzy
′(t) pvzy

′(t) pszx
′(t) −pszx′(t)− 2pvzy

′(t).

44 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

2.4 Applications of DNA substitution models

Setting pszx
′(0) = α and pvzy

′(0) = β, then the derivative transition matrix at t = 0, P ′(0)
is

A G C T
A −α− 2β α β β
G α −α− 2β β β
C β β −α− 2β α
T β β α −α− 2β.

 (2.37)

Our goal is to solve the derivatives dpszx(t)
dt and

dpvzy(t)

dt . We do this by taking any transition
and transversion entry, respectively, in P ′(t) = P (t)× P ′(0) (i.e., p′AG(t) and p′AC(t)) and
solving using the method for standard form linear differential equations, as we did in the
example with Jukes-Cantor. Looking at matrices 2.36 and 2.37, we see that these derivatives
are

dpszx(t)

dt
= α

(
1− pszx(t)− 2pvzy(t)

)
− (α+ 2β) pszx(t) + βpvzy(t) + βpvzy(t)

= α− αpszx(t)− 2αpvzy(t)− αpszx(t)− 2βpszx(t) + 2βpvzy(t) + βpvzy(t)

= α− 2 (α+ β) pszx(t)− 2 (α− β) pvzy(t)

dpvzy(t)

dt
= β

(
1− pszx(t)− 2pvzy(t)

)
+ βpszx(t)− (α+ 2β) pvzy(t) + αpvzy(t)

= β − βpszx(t)− 2βpvzy(t) + βpszx(t)− αpvzy(t)− 2βpvzy(t) + αpvzy(t)

= β − 4βpvzy(t).

Since
dpvzy(t)

dt only depends on pvzy(t), we will solve the transversion case first. In fact,
this is exactly the same form as differential equation 2.26, which we solved for the JC
model. Thus, pvzy(t) = 1

4 + C · e−4βt and C = −1
4 since pvzy(0) = 0 = 1

4 + C. Therefore, the
probability of observing a transversion substitution at site i in a descendant sequence after
elapsed time t is

pvzy(t) =
1

4
− 1

4
e−4βt. (2.38)

We can then substitute this value in dpvzx(t)
dt to get

dpszx(t)

dt
= α− 2 (α+ β) pszx(t)− 1

2 (α− β)
(

1− e−4βt
)

= α− 2 (α+ β) pszx(t)− 1
2α+ 1

2β + 1
2 (α− β) e−4βt

= 1
2 (α+ β) + 1

2 (α− β) e−4βt − 2 (α+ β) pszx(t)

Solving the standard form differential equation (see Box 4) yields:

pszx(t) =
1

4
+

1

4
e−4βt − 1

2
e−2(α+β)t, (2.39)

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 45

Chapter 2 Sequence Evolution Models

the probability of observing a transition substitution at site i in a descendant sequence
after elapsed time t.

Equations 2.38 and 2.39 can be combined to solve pzz(t) = 1− pszx(t)− 2pvzy(t). The
probability of observing the same nucleotide at site i in an ancestral sequence and in a
descendant sequence after elapsed time t is

pzz(t) =
1

4
+

1

4
e−4βt +

1

2
e−2(α+β)t. (2.40)

This equation is analogous to Equation 2.27.

The likelihood of a pair of aligned nucleotides

When inferring the likelihood of observing a pair of nucleotides aligned at site i, we are
actually considering a tree with two leaves and inferring the probability that some ancestral
nucleotide z at site i evolved independently over time t into the nucleotides observed in the
present-day sequences at site i. Let j and k be the observed, present-day nucleotides.

The probability of observing j in the one present-day sequence is pzj(t) and the proba-
bility of observing k in the other present-day species is pzk(t). The probability of observing
j aligned with k is a product of the probabilities pzj(t) and pzk(t). Since the ancestral
nucleotide z is unknown, we consider all four possibilities, weighted by the probability of
observing z:

Pr

(
j

k

)
=

∑
z∈{A,C,G,T}

pz pzj(t) pzk(t). (2.41)

Under the K2P model, transitions and transversions are weighted differently. So, we’ll
consider three cases for the aligned nucleotides j and k: (1) they are the same, (2) they
are from the same class (i.e., A aligned with G or C aligned with T), or (3) they are from
different classes (i.e., G aligned with C).

The aligned nucleotides are the same.
In this case, we can rewrite Eqn. 2.41 as

Pr

(
j

j

)
=

1

4

∑
z∈{A,C,G,T}

pzj(t)
2.

When considering possible values of z, one will be the same as j, one will be in the same
class as j, and two will be in different classes. Therefore, the probability of aligning j and j
is

1
4

(
pzz(t)

2 + pszx(t)2 + 2pvzy(t)
2
)

46 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

2.4 Applications of DNA substitution models

Box 4: Solving the standard form equation for K2P

Recall that df(t)
dt = q(t) − h(t)f(t) is the standard form linear differential equation,

which can be solved using the formula

f(x) = g(x)−1

∫
(g(x)q(x)dx) + C · g(x)−1,

where g(x) = e
∫

(p(x)dx).
In our case, f(t) = pszx(t), q(t) = 1

2(α + β) + 1
2(α − β)e−4βt, and h(t) = 2(α + β).

Solving g(t) = e
∫
h(t)dt yields

g(t) = e
∫

2(α+β)dt = e2(α+β)t.

We then need to solve
∫
g(t)q(t)dt:∫

g(t)q(t)dt =

∫
e2(α+β)t

(
1
2(α+ β) + 1

2(α− β)e−4βt
)
dt

=

∫
1
2(α+ β)e2(α+β)tdt+

∫
1
2(α− β)e−4βte2(α+β)tdt

=
α+ β

2

∫
e2(α+β)tdt+

α− β
2

∫
e2(α−β)tdt

=
α+ β

4(α+ β)
e2(α+β)t +

α− β
4(α− β)

e2(α−β)t

= 1
4

(
e2(α+β)t + e2(α−β)t

)
.

Plugging these values into the standard form solution yields

f(t) = g(t)−1

∫
g(t)q(t)dt+ C · g(t)−1

pszx(t) = e−2(α+β)t 1
4

(
e2(α+β)t + e2(α−β)t

)
+ C · e−2(α+β)t

= 1
4

(
e−2(α+β)te2(α+β)t + e−2(α+β)te2(α−β)t

)
+ C · e−2(α+β)t

= 1
4

(
1 + e−4(α+β)t

)
+ C · e−2(α+β)t.

Solving for constant C at t = 0, pszx(0) = 0 = 2
4 +C and C = −1

2 . Therefore, pszx(t) is

1

4
+

1

4
e−4βt − 1

2
e−2(α+β)t.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 47

Chapter 2 Sequence Evolution Models

Plugging in Eqn.s 2.38, 2.39 and 2.40, yields

Pr

(
j

j

)
=

1

4

(
1
16(1 + e−4βt + 2e−2(α+β)t)2 + 1

16(1 + e−4βt − 2e−2(α+β)t)2 + 2
16(1− e−4βt)2

)
=

1

4

1

16

(
(1 + e−4βt + 2e−2(α+β)t)2 + (1 + e−4βt − 2e−2(α+β)t)2 + 2(1− e−4βt)2

)
=

1

16

(
1 + e−8βt + 2e−4(α+β)t

)
(2.42)

The aligned nucleotides are in the same class.
Let’s consider aligning A and G, which give us

Pr

(
A

G

)
= 1

4 (pAA(t)pAG(t) + pGA(t)pGG(t) + pCA(t)pCG(t) + pTA(t)pTG(t))

Of the four products, two of them are of the form pzz(t)p
s
zx(t) and two are of the form

pvzy(t)
2. This is because in two cases, the ancestral nucleotide will be the same as one of

the nucleotides in the alignment; since j and k are in the same class, the other present-day
nucleotide will be a transition. In the other two cases, the ancestral nucleotide will be in a
different class from j and k, and thus represent a transversion. Therefore, the probability
of aligning j and k when j and k are in the same class is

Pr

(
j

k

)
= 1

4

(
2pzz(t)p

s
zx(t) + 2pvzy(t)

2
)

Plugging in Eqn.s 2.38, 2.39 and 2.40, yields

Pr

(
j

k

)
= 1

2

(
pzz(t)p

s
zx(t) + pvzy(t)

2
)

= 1
32

(
(1 + e−4βt + 2e−2(α+β)t)(1 + e−4βt − 2e−2(α+β)t) + (1− e−4βt)2

)
= 1

16

(
1 + e−8βt − 2e−4(α+β)t

)
(2.43)

The aligned nucleotides are in different classes.
Let’s consider aligning A and C, which give us

Pr

(
A

C

)
= 1

4 (pAA(t)pAC(t) + pGA(t)pGC(t) + pCA(t)pCC(t) + pTA(t)pTC(t))

Of the four products, two of them are of the form pzz(t)p
v
zy(t) and two are of the form

pszx(t)pvzy(t). This is because in two cases, the ancestral nucleotide will be the same as one of
the nucleotides in the alignment; since j and k are in different classes, the other present-day

48 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

2.4 Applications of DNA substitution models

nucleotide will be a transversion. In the other two cases, the ancestral nucleotide will be
in the same class as one present-day nucleotide (i.e., a transition) but in a different class
from the other present-day nucleotide (i.e., a transversion). Therefore, the probability of
aligning j and k when j and k are in different classes is

Pr

(
j

k

)
= 1

4

(
2pzz(t)p

v
zy(t) + 2pszx(t)pvzy(t)

)
Plugging in Eqn.s 2.38, 2.39 and 2.40, yields

Pr

(
j

k

)
= 1

2p
v
zy(t) (pzz(t) + pszx(t))

= 1
32(1− e−4βt)

(
1 + e−4βt + 2e−2(α+β)t + 1 + e−4βt − 2e−2(α+β)t

)
= 1

16(1− e−4βt)
(

1 + e−4βt
)

= 1
16

(
1− e−8βt

)
(2.44)

Correcting for multiple substitutions.

With the JC model, we calculated the expected number of substitutions per site based on
the probability of a mismatch. In the K2P model, we also have two mismatch probabilities,
one for transitions and one for transversions. Recall that Eqn.s 2.42, 2.43, and 2.44 give
the probabilities of observing a specific alignment of nucleotides, based on whether the
nucleotides aligned at site i are the the same, in the same class, or in different classes,
respectively. We can use these equations to calculate the probabilities of a match and the
two types of mismatches in general. In particular, there are four ways to have a match,
four ways to have a mismatch within the same class, and 8 ways to have a mismatch across
different classes.

Given an alignment of two sequences that have been diverging for time t from a common
ancestor and have since been evolving according to the K2P model, the probability of
observing a match (i.e., AA, GG, CC, TT) at a given site i is

PM =
1

4

(
1 + 2e−4(α+β)t + e−8βt

)
. (2.45)

The probability of observing a transition (i.e., AG, GA, CT, TC) at a given site i is

P sm =
1

4

(
1 − 2e−4(α+β)t + e−8βt

)
. (2.46)

The probability of observing a transversion at site i is given by

P vm =
1

2

(
1 − e−8βt

)
. (2.47)

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 49

Chapter 2 Sequence Evolution Models

The expected number of substitutions is E = 2λt = 2(α + 2β)t, with the expected
number of transitions Es = 2αt and the expected number of transversions Ev = 4βt. We
can solve for βt and αt from Eqn.s 2.46 and 2.47.

2P vm = 1− e−8βt

1− 2P vm = e−8βt

−8βt = ln [1− 2P vm]

βt = −1

8
ln [1− 2P vm]

4P sm = 1− 2e−4(α+β)t + 1− 2P vm

4P sm + 2P vm − 2 = −2e−4(α+β)t

1− 2P sm − P vm = e−4(α+β)t

−4(α+ β)t = ln [1− 2P sm − P vm]

αt+ βt = −1

4
ln [1− 2P sm − P vm]

αt = 1
8 ln [1− 2P vm]− 1

4 ln [1− 2P sm − P vm]

αt =
1

8
(ln [1− 2P vm]− 2 ln [1− 2P sm − P vm]) .

Given an alignment of length n, with ms transitions and mv transversions, the expected
numbers of transitions and transversions that actually occurred is approximately

1

4

[
ln

(
1− 2mv

n

)
− 2 ln

(
1− 2ms

n
− mv

n

)]
· n (2.48)

and

−1

2
ln

(
1− 2mv

n

)
· n, (2.49)

respectively. Summing these two quantities, we obtain the expected number of substitutions
of all types:

−1

4

[
ln

(
1− 2mv

n

)
+ 2 ln

(
1− 2ms

n
− mv

n

)]
· n. (2.50)

50 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

Chapter 3

Amino Acid Substitution Matrices

In prior lectures, we introduced Markov models of nucleotide substitution. We derived
expressions for the probability that nucleotide x will change to nucleotide y after elapsed
time t. Further, we used the model to account for multiple substitutions, by estimating the
number of actual substitutions that occurred, given the number of observed mismatches.

Here, we focus on Markov models of amino acid replacement and their use in deriving
amino acid substitution matrices. An amino acid substitution matrix assigns a score to a
pair of aligned amino acids, x and y. A good substitution matrix should have the following
properties:

• Evolutionary divergence: The substitution matrix should be appropriate for the degree
of evolutionary divergence of the proteins under consideration. The observation of
identical or functionally similar amino acids at the same site is more surprising in
highly diverged protein families than in families characterized by little sequence
divergence. The best results are obtained using a substitution matrix based on amino
acid replacement frequencies that are typical of the protein family. Therefore, a set of
matrices that is parameterized by sequence divergence is desired.

• Multiple substitutions: The score associated with an amino acid pair, x and y, should
reflect the probability of observing x aligned with y, taking into account the possibility
of multiple replacements at the same site.

• Biophysical properties of residues: Amino acids differ in size and charge. Some are
acidic, some are basic, some have aromatic side chains. Generally, replacement of an
amino acid with another amino acid with similar properties is less likely to break the
protein or cause dramatic changes in function than replacement with an amino acid
with different properties. A substitution matrix should reflect this.

There are several families of amino acid substitution matrices that have these properties.
Two that are widely used are the PAM matrices (Dayhoff et al., 1978) and the BLOSUM

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 51

Chapter 3 Amino Acid Substitution Matrices

matrices (Henikoff and Henikoff, 1992.) Both of these families of substitution matrices
are parameterized by sequence divergence. The PAM matrices account for evolutionary
divergence using a formal Markov model of sequence evolution. The BLOSUM matrices
use an ad hoc approach. Although the details differ, both matrix families were derived
according to the following general strategy:

1. Use a “trusted” set of ungapped, multiple sequence alignments to infer model param-
eters.

2. Count observed amino acid pairs in the trusted alignments, correcting for sample bias.
3. Estimate substitution frequencies from amino acid pair counts.
4. Construct a log likelihood scoring matrix from substitution frequencies.

3.1 A log likelihood ratio framework for scoring alignments

Before introducing the PAM and BLOSUM matrices, we briefly introduce the log likelihood
framework in which these matrices were developed. Suppose ακ(s1, s2) is an ungapped
alignment of sequences s1 and s2 of length n. Under the assumption of positional inde-
pendence, we can assign a similarity score to ακ(s1, s2) by adding the similarities of the
symbols in each position in the alignment,

S =

n∑
i=1

p(s1[i], s2[i]), (3.1)

where p(x, y) is a quantitative measure of the similarity of x and y. Recall that earlier
in the semester, we used a simple scoring scheme with a single match score, p(x, x) = M ,
∀x ∈ Σ, and a single mismatch score, p(x, y) = m, ∀x, y ∈ Σ such that x 6= y. Since all
matches (respectively, mismatches) have the same score, with this scoring scheme

S = nm ·m+ (n− nm) ·M,

where nm is the number of mismatches in ακ.
This simple scoring scheme has limitations, especially for amino acids. First, since all

mismatches are assigned the same score, it cannot reflect differences in the biochemical
similarity of various amino acid pairs. Second, if M and m are chosen arbitrarily, then
alignment scores have no intuitive meaning in an absolute sense. For example, if I tell
you that a given alignment has a score of 14, you know that it is better than some other
alignment of the same sequences that has a score of 12, but you have no way of assessing
whether the alignment is inherently good or bad.

Third, this scoring scheme does not take the evolutionary divergence of s1 and s2 into
account. If we are testing the hypothesis that s1 and s2 are related and have changed
very little since they diverged from their common ancestor, then we might interpret any

52 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

3.1 A log likelihood ratio framework for scoring alignments

mismatch as evidence that s1 and s2 are unrelated, even if the mismatch is a conservative
replacement (i.e., involves amino acids with similar biochemical properties). In contrast,
if we are testing the hypothesis that s1 and s2 are related and have changed a great deal
since their divergence, then we might interpret mismatches that represent conservative
replacements as evidence s1 and s2 are indeed related. In order to capture these nuances,
we require a scoring method that is parameterized by evolutionary divergence.

One way of assessing whether an alignment is good in an absolute sense is to ask whether
ακ(s1, s2) reflects more similarity than we expect to see by chance. Let H0 be the null
hypothesis that s1 and s2 are unrelated sequences. The alternate hypothesis, HA, is that
s1 and s2 are related sequences with a given amount of evolutionary divergence. We can
assess whether ακ(s1, s2) reflects more than chance similarity by calculating the ratio of
the probabilities of the alignment under HA and H0:

LR(ακ) =
p(ακ|HA)

p(ακ|H0)
. (3.2)

This likelihood ratio will be less than one, if the alignment of s1 and s2 represents less
similarity than expected by chance, and greater than 1, if the alignment represents is more
similarity than expected by chance. If the ratio is much greater than 1, then we have strong
evidence that the sequences share common ancestry.

Under the assumption of positional independence, the probability of the alignment is
equivalent to the product of probabilities of the individual positions in the alignment

LR(ακ) =

n∏
i=1

p(ακ[i]|HA)

p(ακ[i]|H0)
, (3.3)

where ακ[i] is the alignment of s1[i] and s2[i]. This formulation provides a way to assess
alignments based on the probabilities of individual amino acid pairs in the alignment.
(Recall that ακ is an ungapped alignment.) However, it requires calculating the product of
a sequence of numbers between 0 and 1, with the concomitant challenge of working with
smaller and smaller numbers as the length of the alignment increases.

This problem can be addressed by calculating the log of the likelihood ratio, instead
of the likelihood ratio, itself. Note that since log(x) increases monotonically with x, the
alignment that maximizes LR(ακ), also maximizes logLR(ακ). Thus, logLR(ακ) can also
be used to assess the extent to which ακ(s1, s2) represents more than chance similarity.
Taking the log of both sides of Equation 3.3 yields

logLR(ακ) = log

n∏
i=1

p(ακ[i]|HA)

p(ακ[i]|H0)
(3.4)

=
N∑
i=1

log
p(ακ[i]|HA)

p(ακ[i]|H0)
. (3.5)

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 53

Chapter 3 Amino Acid Substitution Matrices

Since LR(ακ) is non-negative, logLR(ακ) ranges from −∞ to ∞. If logLR(ακ) > 0,
then ακ(s1, s2) reflects more similarity than expected by chance; if logLR(ακ) < 0, then
ακ(s1, s2) reflects less similarity than expected.

The right hand side of this equation looks very similar to the right hand side of
Equation 3.1: in both cases, we have a sum of values, one for each position in the alignment.
In Equation 3.1, the ith entry in the sum is measure of similarity of s1[i] and s2[i]; in
Equation 3.5, the ith entry is the probability, relative to chance, of observing s1[i] aligned
with s2[i]. This suggests that we can use the log likelihood ratios to define a scoring scheme.
By defining the similarity score of x aligned with y to be

p(x, y) = log
p(xy |HA)

p(xy |H0)
,

we obtain an alignment score that is equivalent to the log of the ratio of the probabilities of
that alignment under the alternate and null hypotheses:

S = logLR(ακ).

This yields a scoring scheme that has a natural, biological interpretation, that can be
adjusted to account for evolutionary divergence, and that can be interpreted in an absolute,
as well as a relative, context.

To define similarity scores in this way, requires estimates of p(xy |HA) and p(xy |H0), for
a range of evolutionary distances. For amino acid substitution matrices, these quantities
are estimated from trusted amino acid alignments. In the following sections, we discuss
how amino acid pair probabilities are estimated in derivation of the PAM matrices and the
BLOSUM matrices.

3.2 PAM matrices

In 1978, Margaret Dayhoff and her colleagues developed a family of substitution matrices
that are parameterized by PAM distance, a unit of evolutionary divergence. The term
“PAM” is an abbreviation of “percent accepted mutation.” The divergence between two
sequences is N PAMs, if, on average, N amino acid replacements (possibly at the same site)
per 100 residues occurred since their separation. Note that this is distinct from percent
identity, which reflects the number of matches per 100 residues.

The derivation of these matrices requires estimating amino acid pair frequencies in
sequences that are diverged by N PAMs, for a range of values of N . Given alignments of
sequences that are separated by N PAMs, amino acid pair frequencies can be estimated
simply by tabulating the number of instances of each amino acid pair in those alignments.
However, it is not clear how to obtain such alignments, because determining the PAM
distance associated with a given alignment is not straightforward. The number of mismatches

54 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

3.2 PAM matrices

can easily be determined by inspection, but inferring the number of replacements that
occurred requires a method for estimating multiple replacements at the same site. To
address this problem, Dayhoff first constructed a model of amino acid replacement using
alignments with high levels of sequence similarity, in which multiple substitutions at the
same site are unlikely. She then used higher-order Markov models to obtain models of
amino acid replacements in more diverged sequences.

Dayhoff developed this model using the four step approach described above. Specifically:

Step 1: Training data. As training data, Dayhoff et al used a set of ungapped, global
multiple sequence alignments of 71 groups of closely related sequences. Within each group,
the sequence identity was 85% or greater. The rationale is that sequences with at least 85%
identity will contain no site that has sustained more than one mutation.

Step 2: Count amino acid pairs. Observed amino acid pair frequencies were tabulated
from the 71 multiple alignments. Sample bias was corrected by counting the minimum
number of changes required to fit the data to a tree. This requires inferring the unrooted
tree that describes the evolutionary relationships between the sequences in each aligned
family and then estimating the number of amino acid replacements that occurred on each
branch of that tree.

We will demonstrate how this works in practice using the following alignment of four
amino acid sequences of length four:

1: AEIR

2: DEIR

3: QKLH

4: AHLH

For an alignment with four sequences, there are three unrooted trees with four leaves, shown
in Fig. 3.1. Tree I corresponds to the hypothesis that Sequence (1) is more closely related to
Sequence (2) than to either Sequence (3) or Sequence (4). According to Tree II, Sequence
(1) and Sequence (3) are most closely related, while Tree III says that Sequence (1) and
Sequence (4) are closest. For each tree, the leaves are annotated with the corresponding
present-day sequences. The sequences on internal nodes are unknown, since they correspond
to ancestral sequences.

First, we will illustrate how to estimate the number of substitutions, given the evo-
lutionary tree. Then, we will return to the question of how to infer the tree that best
explains a given alignment. Dayhoff inferred the sequences on the internal nodes according
to the parsimony criterion, which states that the best hypothesis is the one that requires
the fewest amino acid replacements to explain the data. Consistent with this criterion,

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 55

Chapter 3 Amino Acid Substitution Matrices

Figure 3.1: Three unrooted trees representing the three possible hypotheses for evolution
of four sequences. The leaves of each tree is labeled with the corresponding present-day
sequences. The internal nodes are not labeled. The sequences associated with internal
nodes correspond to ancestral sequences and are unknown.

sequences were assigned to the internal nodes of each tree in such a way that the total
number of changes along branches of the tree is minimized.

For example, suppose that we have determined that Tree I is the best hypothesis for
the evolutionary history of the four sequences in the alignment. Ancestral sequences that
satisfy the parsimony criterion for Tree I are shown in Fig. 3.2 (and Fig. 3.4). With these
ancestral sequences, six substitutions (shown on their respective branches) are required to
explain the evolution of the four present day sequences. Convince yourself that there is no
assignment of labels to the internal nodes that allows for fewer than six substitutions.

Once ancestral sequences have been inferred, the counts for each amino acid pair are
tabulated. Axy, the number of x,y pairs observed, is determined by by counting the number
of edges connecting x and y, for x 6= y. Note that Axy = Ayx, since every edge connecting x
with y also connects y with x. Axx is defined to be twice the number of edges connecting x
and x. This is because the edges connecting two dissimilar residues are also counted twice,
once in the xy direction and once in the yx direction. For example, there are 6 EE pairs
in Fig. 3.2: Two counts are contributed by each of the three edges connecting AEIR and
AEIR, AEIR and DEIR, and AEIR and AELH. The tabulated counts for all amino acid pairs
are given in the table in Fig. 3.3.

In general, there can be more than one way to assign sequences to internal nodes such

56 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

3.2 PAM matrices

Figure 3.2: Tree I from Fig. 3.1 with ancestral sequences inferred according to the parsimony
criterion. Six amino acid replacements, shown on the branches of the tree, are required to
explain the present day sequences. This set of most parsimonious ancestral sequences is
not unique. There are two other most parsimonious hypotheses for the ancestral sequences,
shown in Fig. 3.4.

that the total change is minimized. Each most parsimonious set of internal node labels
will result in different amino acid pair counts. In our example, there are two additional
assignments of ancestral sequences for which six substitutions are sufficient to explain the
present-day sequences, shown in Fig. 3.4. The pair counts resulting from these two alternate
sets of labels are given in the tables in Fig. 3.5. Since there is no way of knowing which
set of inferred ancestral sequences is the best estimate, all possibilities must be considered.
Dayhoff does this by averaging the counts over all most parsimonious labelings. For our
example, the matrix in Fig. 3.6 shows the average of the pair counts in Figs. 3.3 and 3.5.

Comparison of the amino acid pairs in each column in the multiple alignment on page 55

Figure 3.3: Amino acid pair counts derived according to Dayhoff’s counting scheme from
the tree in Fig. 3.2. Only amino acids that are present in at least one sequence are shown
in the table.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 57

Chapter 3 Amino Acid Substitution Matrices

Figure 3.4: Two other sets of most parsimonious ancestral sequences for Tree I from Fig. 3.1.
The associated amino acid replacements are shown on the branches of the tree.

with the pair counts derived from the trees in Figs. 3.2 and 3.4 demonstrates how this
approach compensates for sample bias and leads to different amino acid pair statistics. If
we derived amino acid pairs directly from the alignment, each sequence would be compared
to three other sequences, effectively counting the replacement of the same amino acid more
than once. In contrast, when counting amino acid pairs on a tree, each sequence is compared
to one other sequence, i.e., the inferred ancestral sequence. For example, since D and Q

both appear in the first column of the alignment, obtaining amino acid pair counts directly
from the alignment would result in a non-zero value of ADQ. However, no D-Q replacement
appears on the branches of the labeled trees in Figs. 3.2 and 3.4 and ADQ = 0 in the table
in Fig. 3.6.

Having demonstrated how to infer ancestral sequences for a given evolutionary tree, we
return to the question of how to infer the tree that is the best hypothesis for the aligned
sequences. For a given tree, the minimum number of changes required to explain the present

Figure 3.5: Amino acid pair counts derived according to Dayhoff’s counting scheme from
the trees in Fig. 3.4.

58 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

3.2 PAM matrices

Figure 3.6: Average amino acid pair counts over all most parsimonious labelings of Tree
I. Each entry represents the mean of the corresponding entries in the tables in Figs. 3.3
and 3.5.

day sequences, over all possible internal labelings, is called the parsimony score of that tree.
In our example, Tree I has a parsimony score of six. This score can be used as a basis for
recovering the tree that explains the data according to the parsimony criterion. Given an
alignment of a family of k sequences, all unrooted trees with k leaves are considered. The
parsimony score is estimated for each tree and the tree(s) with the lowest parsimony score
are reported.

In general, there can be more than one most parsimonious tree for a given set of
present-day sequences, although for our example there is only one. (Convince yourself that
there is no assignment of sequences to the internal nodes of Tree II that requires fewer than
seven replacements. Check that the same is true of Tree III.) Having found the set of most
parsimonious trees, Dayhoff estimated amino acid pair frequencies by averaging the counts
over all most parsimonious labelings of all most parsimonious trees, yielding

Axy =
1

nT

∑
T

ATxy,

where nT is the number of labeled trees with an optimal parsimony score and T is an
indicator variable that enumerates such trees.

Step 3: Estimate substitution frequencies. To estimate substitution frequencies from
amino acid pair counts, Dayhoff constructed a family of Markov models representing
evolution at a single site, i, in an amino acid sequence (Note that this model assumes site
independence.) All models in the family have twenty states, one for each amino acid. If the
model visits state x at time t, we say that the amino acid at site i was an x at time t. The

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 59

Chapter 3 Amino Acid Substitution Matrices

models differ in their transmission probability matrices, which reflect the propensity for
amino acid replacement at various evolutionary divergences.

Dayhoff derived P
(1)
xy , the transition matrix for the 1 PAM model, from closely related

alignments that may be assumed to contain no multiple substitutions. P
(1)
xy is the probability

that amino acid x will be replaced by amino acid y in sequences separated by 1 PAM

of evolutionary distance. Next, Dayhoff derived the PAM-N transition matrix, P
(N)
xy , by

extrapolating from the PAM-1 transition probability, as described in detail below.

The transition matrix P
(1)
xy is derived from the counts, Axy, obtained in step 2, as follows:

P (1)
xy = mx

Axy∑
h6=xAxh

, x 6= y (3.6)

P (1)
xx = 1−mx (3.7)

Here, mx is the “mutability” of amino acid x and is defined to be

mx =
1

Lpxz

∑
l 6=x

Axl, (3.8)

where px is the background frequency of x, L is the length of the alignment, and z is a
scaling that guarantees that the transition matrix will correspond to exactly 1 PAM. We
select the scaling factor, z, so that

20∑
x=1

(pxmx) =
1

100
. (3.9)

This scaling factor is required because although the training alignments are sufficiently
conserved to contain no multiple substitutions, but the frequency of replacements in each
alignment may not be exactly one in a hundred.

We obtain an expression for the scaling factor, z, by substituting the right hand side of
Equation 3.8 for mx in Equation 3.9 and solving for z. This yields

z =
100

L

20∑
x=1

∑
l 6=x

Axl. (3.10)

We now replace the z in Equation 3.8 with the right hand side of Equation 3.10 to obtain
the mutability of x,

mx =
0.01

px

∑
l 6=xAxl∑

h

∑
l 6=hAhl

.

60 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

3.2 PAM matrices

Substituting the expression for mx into the right hand side of Equation 3.6, we obtain the
PAM1 transition probability

P (1)
xy =

0.01

px

Axy∑
h

∑
l 6=hAhl

.

Note that P
(1)
xy in Equation 3.6 is consistent with the definition of a Markov chain: the

rows of the transition matrix sum to 1 and it is history independent. This Markov chain is
finite, aperiodic and irreducible (“connected”). Therefore, it has a stationary distribution.

We now derive the PAM-2 transition matrix. Note that the residue at site i can change
from x to y in two time steps via several state paths: x→ x→ y, x→ y → y, or x→ l→ y,
where l is a third amino acid, not equal to x or y. Recall that the probability of changing
from x to y in two time steps is

P (2)
xy =

∑
l

P
(1)
xl P

(1)
ly .

P (2) can be derived by squaring the matrix P (1) by matrix multiplication. This is the 2-step
transition probability that models amino acid replacements that occur in two time steps.
Similarly, we can use matrix multiplication to derive the PAM-N , N -step transition matrix
for any N ≥ 2 as follows:

P (N) =
(
P (1)

)N
.

Step 4: Construct a log likelihood scoring matrix. We obtain a log likelihood scoring

matrix from the transition probability matrix as follows. Let q
(N)
xy = pxP

(N)
xy be the

probability that we see amino acid x aligned with amino acid y at a given position in
an alignment of sequences with N PAMs of divergence; i.e., that amino acid x has been
replaced by amino acid y after N PAMs of mutational change. Then, we define the PAM-N
scoring matrix to be

SN [x, y] = λ log
q

(N)
xy

pxpy

= λ log
P

(N)
xy

py
, (3.11)

where λ is a constant chosen to scale the matrix to a convenient range. Typically λ = 10
and the entries of SN are rounded to the nearest integer. Note that Equation 3.11 is

a log likelihood ratio, where q
(N)
xy is the probability of seeing x and y aligned under the

alternate hypothesis that x and y share common ancestry with divergence N and pxpy is
the probability that x and y are aligned by chance.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 61

Chapter 3 Amino Acid Substitution Matrices

It is easy to verify that the PAM-N transition matrix is not symmetric; that is,

P
(N)
xy 6= P

(N)
yx . This makes sense since replacing amino acid x with amino acid y may have

different consequences than replacing y with x. In contrast, the substitution matrix is
symmetric; that is, SN [x, y] = SN [y, x]. This makes sense because in an alignment, we
cannot determine direction of evolution, so we assign the same score when x is aligned with
y, and when y is aligned with x.

3.3 BLOSUM Matrices

The BLOSUM (BLOck SUbstitution Matrices) matrices were derived by Steven and Jorja
Henikoff in 19921. BLOSUM matrix construction follows the general framework used for
constructing the PAM matrices, but differs in the details of the individual steps.

Step 1: Training data. The BLOSUM matrices are based on a much larger data set than
the PAM matrices. They were constructed using conserved local alignments or “blocks,”
rather than global alignments of very closely related sequences. The “trusted” alignments
used to construct the BLOSUM matrices consisted of roughly 2000 blocks of conserved
regions representing 500+ groups of proteins.

Here, we discuss the procedure for constructing a substitution matrix in the BLOSUM
framework from a single aligned block. The full BLOSUM procedure combines information
from many blocks. See Ewens and Grant, Section 6.5.2, for a detailed treatment of the
BLOSUM matrices, including a discussion of how amino acid pair statistics from multiple
blocks are combined. Their treatment includes a worked example with more than one block.
Note that the notation used by Ewens and Grant is somewhat different from the notation
we use in class.

Step 2: Count amino acid pairs. In the BLOSUM framework, the sequences in each
block are grouped into clusters, such that sequences that belong to different clusters are
always less than N% identical. Clustering with different values of N , ranging from 45% to
90%, produces a parameterized set of matrices representing different degrees of sequence
divergence. Next, for every column in every pair of clusters, amino acid pairs consisting
of one amino acid from each cluster are tabulated. Pairs of amino acids within the same
cluster are ignored. The resulting amino acid pair counts are normalized by cluster size so
that all clusters contribute equally to the pair statistics.

The clustering step in BLOSUM matrix construction has two purposes: parameterizing
evolutionary divergence and accounting for sample bias. First, restricting the tabulation
to sequences from different clusters ensures that the matrix is constructed from amino
acid pairs observed in alignments of sequences with a particular divergence (i.e., sequences

1Amino acid substitution matrices from protein blocks, PNAS, 1992 Nov 15;89(22):10915-9

62 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

3.3 BLOSUM Matrices

1: KKRK

2: KKKK

3: KNRN

4: NRNR

5: KNKN

6: KRNR

(a)

2 3 4 5 6
1 75 50 0 25 25
2 25 0 50 25
3 0 75 25
4 0 75
5 25

(b) (c)

Figure 3.7: A BLOSUM example. (a) A block in a hypothetical multiple sequence
alignment. (b) Matrix showing the percent identity of all pairs of sequences in (a). (c)
Graph representation of the percent identity matrix. Nodes correspond to sequences. Each
edge is labeled with the percent identity of the sequences corresponding to the nodes
connected by the edge. Edges with weight zero are not shown.

that are less than N% identical). Second, the contribution of each residue in a cluster
is normalized by the number of sequences in that cluster. This controls for sample bias,
because with normalization each cluster contributes the same amount of information to
the estimation of amino acid pair frequencies, even though clusters may contain different
numbers of sequences. The specific procedure for obtaining amino acid pair counts is as
follows:

Partitioning sequences into clusters with N% identity: The clustering step takes as
input a block of k sequences of length L (no gaps) and generates C non-overlapping clusters.
The ith cluster, Ci, has ki sequences of length L, such that k =

∑
ki. The sequences in the

block are partitioned in such a way that every sequence in a cluster is at least N% identical
to at least one other sequence in the cluster. The sequences in the block are partitioned in
such a way that the percentage of sites with identical residues in an alignment of sequences
from different clusters will always be less than N%.

One way to obtain such a clustering is to represent the block as a weighted graph, where
the nodes correspond to sequences. Each pair of nodes is connected by an edge that is
weighted by the percent identity of the associated sequences. To obtain clusters with an
N% identity threshold, all edges with weights less than N% are removed. Each connected
component in the resulting graph corresponds to a cluster. Note that this approach yields
clusters in which every sequence in a cluster is at least N% identical to at least one other
sequence in the cluster. It does not guarantee that every pair of sequences in the same
cluster will be at least N% identical. The construction of the percent identity graph for a
block of aligned sequences is shown in in Fig. 3.7. Fig. 3.8 illustrates the use of the resulting
percent identity graph for clustering sequences.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 63

Chapter 3 Amino Acid Substitution Matrices

Figure 3.8: Clustering sequences with an N% identity threshold. (Top: N = 45%) All
edges with weight less than 45% are removed from the graph, shown at left, resulting in
two clusters of size k1 = 4 and k2 = 2 respectively. These are depicted as sub-alignments in
the sequence block at right. (Bottom: N = 65%) Removing all edges with weight less than
65% results in three connected components. The corresponding sub-alignments are shown
in the block at right.

If the weight of every edge is less than N , then all edges are removed from the graph
and each sequence constitutes a separate cluster. If the weight of every edge is greater
than N , then no edges are removed, resulting in a single cluster containing all sequences
in the block. Since at least two clusters are needed to obtain amino acid pair counts, it is
not possible to construct a BLOSUM matrix when N is lower than the minimum edge weight.

64 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

3.3 BLOSUM Matrices

Amino acid pair counts: Following the clustering step, the number of instances of amino
acid x aligned with amino acid y is calculated as follows. For each pair of clusters, Ci and
Cj , we determine the number of x, y and y, x pairs, where x and y are in the same column,
but in different clusters. Let Bl(Ci, x) be the number of times that residue x appears in
column l of cluster Ci. Then, the total number of pairs in column l involving an x in one
cluster and a y in the other cluster is

Bl(Ci, x) ·Bl(Cj , y) +Bl(Ci, y) ·Bl(Cj , x).

The above expression gives a raw pair count, which is then adjusted to control for
differences in cluster sizes. Suppose clusters Ci and Cj contain ki and kj sequences,
respectively. Then, the adjusted contribution of column l in clusters Ci and Cj to the pair
count for x and y is

Bl(Ci, x) ·Bl(Cj , y) +Bl(Ci, y) ·Bl(Cj , x)

ki · kj
.

To obtain the total x, y pair count from this block, we sum over all pairs of clusters and
over all columns, yielding

ANxy =

C∑
i=1

C∑
j=i+1

L∑
l=1

Bl(Ci, x) ·Bl(Cj , y) +Bl(Ci, y) ·Bl(Cj , x)

ki · kj
, (3.12)

where x 6= y. The superscript N indicates that these are pair counts for a BLOSUM-N
matrix, where N is the threshold used in the clustering. When x = y, the pairs are only
counted in one direction:

ANxx =

C∑
i=1

C∑
j=i+1

L∑
l=1

Bl(Ci, x) ·Bl(Cj , x)

ki · kj
(3.13)

As an illustration of this calculation, consider the block in Fig. 3.7. Clustering with a
45% threshold results in C = 2 clusters of size k1 = 4 and k2 = 2, respectively (Fig. 3.8, top).
In the first column of the clustered alignment, there are four K’s in cluster C1 and one K in
cluster C2: B1(C1, K) = 4 and B1(C2, K) = 1. Since there are only two clusters when N = 45,
the two outer sums in Equation 3.13 reduce to a single case (i = 1, j = 2). Further, column
1 is the only column in which K appears in both clusters. Since Bl(C2, K) = 0, l ∈ {2, 3, 4},
there is only one non-zero term in the inner sum. This yields

A45
KK =

B1(C1, K) ·B1(C2, K)

k1 · k2

=
4 · 1
4 · 2

= 0.5.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 65

Chapter 3 Amino Acid Substitution Matrices

The calculation for different amino acids is somewhat more complex. As an example,
we calculate A45

KN. In the first column of the clustered alignment in Fig. 3.8 (top),

B1(C1, K) = 4, B1(C2, N) = 1 B1(C1, N) = 0 B1(C2, K) = 1.

In the third column,

B3(C1, K) = 2, B3(C2, N) = 2, B3(C1, N) = 0, B3(C2, K) = 0.

Since neither K nor N appear in Cluster 2 in the 2nd or 4th column (i.e., B2(C2, K) =
B2(C2, N) = B4(C2, N) = B4(C2, K) = 0), these columns do not contribute counts to A45

KN.
The inner sum in Equation 3.13 only contains terms for Column 1 and Column 3:

A45
KN =

(B1(C1, K) ·B1(C2, N) +B1(C1, N) ·B1(C2, K))

k1 · k2
+

(B3(C1, K) ·B3(C2, N) +B3(C1, N) ·B3(C2, K))

k1 · k2

=
((4 · 1) + (0 · 1))

4 · 2
+

((2 · 2) + (0 · 0))

4 · 2
= 1.0.

Step 3: Estimate substitution frequencies. The frequencies of amino acid pairs are
derived from the pair counts by normalizing by the total number of possible pairs; that is,
by the product of the number of sites in the block and the number of pairs of clusters:

qNxy =
ANxy

L ·
(
C
2

) .

Step 4: Construct a log likelihood scoring matrix. The expected frequency of x
aligned with y in unrelated sequences is the product of the background probabilities of
observing x and y independently. In PAM matrix construction, the background frequency
of an amino acid is assumed to be the frequency of that amino acid in typical proteins,
for example, as tabulated by Robinson and Robinson2. In contrast, in BLOSUM matrix
construction, the expected frequencies are estimated from the block data and adjusted for
the current value of N .

2Distribution of glutamine and asparagine residues and their near neighbors in peptides and proteins,
PNAS, 1991 Oct;88:8880-4

66 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

3.4 Comparing PAM and BLOSUM Matrices

In order to get the expected frequency of x aligned with y, we first estimate the frequencies
of the individual residues in the current block, again using the clusters to correct for sample
bias. As above, the counts from each cluster are “discounted” by a factor of 1/ki, and then
normalized by the total number of elements, L · C, to obtain the amino acid background
frequency:

px =
1

L · C

C∑
i=1

L∑
l=1

Bl(Ci, x)

ki
.

The expected pair frequencies are then obtained from the products of the background
frequencies:

Exy = pxpy + pypx

Exx = p2
x.

Finally, the BLOSUM-N log likelihood scoring matrix is calculated from the ratios of
the observed and expected frequencies:

SN [x, y] = 2 log2

qNxy
Exy

.

3.4 Comparing PAM and BLOSUM Matrices

We began this endeavor with the goal of deriving substitution matrices that are parameterized
by evolutionary divergence. In other words, a given alignment should be scored with a matrix
with scores that are appropriate for the evolutionary divergence of the sequences being
compared. In addition, these scores should implicitly account for multiple substitutions per
site, consistent with the typical evolutionary divergence associated with each matrix in the
family. A further goal is that the matrices should reflect the biophysical properties of amino
acids. The scores for amino acid pairs with similar biophysical properties (i.e., conservative
replacements) should be greater than scores for amino acid pairs with divergent biophysical
properties (i.e., non-conservative or radical replacements).

The PAM and BLOSUM matrices were both constructed in an explicit log-likelihood
framework, with entries of the form

SN [x, y] = c log2

qNxy
pxpy

,

where the numerator, qNxy, is the frequency of the amino acid pair (x, y) in alignments of
related sequences with divergence N and the denominator, pxpy, is the frequency with
which the pair (x, y) will occur if amino acids are sampled according to their background

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 67

Chapter 3 Amino Acid Substitution Matrices

PAM BLOSUM
Evolutionary model Explicit evolutionary model None

Data Full length MSAs Conserved blocks

Bias correction Trees Clustering

Multiple substitutions Markov model: PN = (P 1)N Implicitly represented in data

Evolutionary distance Markov model: PN = (P 1)N Clustering

Matrices
Transition & log likelihood scoring matri-
ces

Log likelihood scoring matrix only

Parameter N Distance increases with N Distance decreases with N

Biophysical properties Derived indirectly from data Derived indirectly from data

Table 3.1: Properties of the PAM and BLOSUM matrices.

frequencies. The constant c is a scaling factor chosen for convenience. Multiplying every
entry in the matrix by a constant changes the value of the entries in an absolute sense, but
does not change the ratio between any two entries of the matrix. As a result, the constant
does not change the extent to which one amino acid pair is preferred over another. Scaling a
matrix with a constant, c, can be used to obtain scores in a convenient range, e.g. between
1 and 20.

Although the PAM and BLOSUM matrices have the general log-likelihood framework
in common, they differ in many aspects of their construction, as summarized in Table 3.1.
In both cases, the frequencies of amino acid pairs, qNxy, were estimated from amino acid pair
counts in “trusted” alignments, but these trusted alignments are different in nature. In
contrast to the PAM alignments, the BLOSUM matrices are based on locally conserved
regions (ungapped blocks) in multiple alignments of sequences that were not highly conserved
along their entire length. The PAM matrices were constructed from full length alignments of
closely related sequences with at least 85% identity. These sequences are assumed to contain
no site at which more than one substitution has occurred. The trusted alignments used
to construct the BLOSUM matrices consisted of roughly 2000 blocks of conserved regions
representing 500+ groups of proteins. In other words, some protein families contribute
more than one block.

Both matrix families are parameterized by sequence divergence, but this is achieved
using very different methods. The PAM matrices are based on a Markov chain that
models amino acid replacement explicitly. The use of a Markov model allowed Dayhoff and
her colleagues to address several challenges in matrix construction. A PAM-1 transition
matrix is constructed from amino acid pair counts obtained from the trusted alignments.
The effect of sample bias on these pair frequencies was mitigated by counting changes
on the branches of maximum parsimony trees. Dayhoff accounted for both evolutionary

68 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

3.4 Comparing PAM and BLOSUM Matrices

divergence and multiple substitutions by deriving higher N-step transition matrices from
the PAM-1 transition matrix. With PAM matrices, the divergence parameter increases
with evolutionary divergence. A rough equivalence between PAMs and percent identity can
be determined through simulations, as shown in Table 3.2.

The BLOSUM matrices have no underlying mathematical model. In BLOSUM matrix
construction, clustering is used to address sample bias and to obtain different degrees of
divergence. Sequences with at least N% identity are placed in the same cluster. Amino
acid pairs are only counted across clusters, not within clusters. In contrast to the PAM
matrices, the BLOSUM divergence parameter decreases as evolutionary divergence increases.
BLOSUM matrices can also be roughly calibrated by percent identity using empirical
methods, providing an approximate mapping between the PAM divergence scale and the
BLOSUM divergence scale (Table 3.2).

Sequence identity PAM BLOSUM

83% 20 -
- 30 -

63% 60 -
- 70 -

43% 100 90
38% 120 80
30% 160 60
25% 200 50
20% 250 45

Table 3.2: Correspondence between percent identity and the divergence of PAM and
BLOSUM matrices.

Neither matrix family explicitly considers biophysical properties. The PAM and BLO-
SUM matrices are constructed from aligned sequences that are conserved because the amino
acids in each column are under selective constraints. Nevertheless, the matrices favor amino
acid pairs that share biochemical properties. Inspection of the BLOSUM62 matrix, for
example, shows that alignments of residues in the same biochemical group tend to have
positive log likelihood scores. These residues are more likely to be observed together in
alignments of related sequences than by chance. Residues from different biochemical groups
tend to have negative scores. These residues are less likely to be observed together in related
sequences than in chance alignments. A score of zero means that this pair of residues is
equally likely in related and chance alignments.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 69

Chapter 4

Modeling motifs: Position Specific Scoring

Matrices

Local multiple sequence alignment involves the discovery, modeling, and recognition of
conserved patterns or motifs in multiple (and potentially very many) DNA or protein
sequences.

• In discovery, we are given unlabeled sequences. The task is to identify one or more
shared, conserved motifs in these sequences. In machine learning terms, this is
equivalent to labeling the sequences. For example, each symbol in a sequence might
be labeled “1” if it is in the conserved pattern and “0” if it is not. More complex
labeling schemes representing more than one motif or different substructures within a
motif are also possible.

• In modeling, we are given a local multiple alignment as input. The task is to construct
a probabilistic model that represents the properties of each column in the alignment
(i.e., the symbols we are likely to observe at that position) in an efficient manner and
that can be used for searching for new instances of the motif.

• In recognition, we are given a new unlabeled sequence containing zero, one, or more
than one instance of the motif of interest. A probabilistic model of the motif is used
to search the unlabeled sequence for instances of the motif. The location and extent
of each motif identified are reported.

We will first discuss Position Specific Scoring Matrices (PSSMs), a formalism for
modeling local multiple alignments, and the Gibbs Sampler, a discovery method that uses
the PSSM formalism. PSSMs and the Gibbs Sampler are suitable for ungapped motifs only.
The Hidden Markov Model (HMM) is a formalism that can be used for both modeling and
discovery of patterns that contain gaps. We will discuss HMMs immediately following the
Gibbs Sampler.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 71

Chapter 4 Modeling motifs: Position Specific Scoring Matrices

In these notes, PSSMs and Gibbs Sampler are presented in terms of amino acid motifs.
Both formalisms can be equally well applied to patterns in nucleic acid sequences. In fact,
discovering and modeling transcription factor binding sites in DNA sequences is a common
application of the Gibbs Sampler in bioinformatics.

4.1 Position Specific Scoring Matrices

PSSMs are a formalism for modeling ungapped local alignments. Like scoring matrices
used for pairwise alignments, PSSMs are based on a log-odds formalism. Recall that both
the PAM and BLOSUM matrices are defined in terms of an alternate hypothesis, Ha, that
a pair of sequences are related at a given evolutionary divergence and a null hypothesis,
H0, that the sequences are unrelated and any observed similarity is due to chance. In such
matrices, S[x, y] is the logarithm of the likelihood ratio:

S[x, y] = log2

P[x aligned with y|Ha]

P[x aligned with y|H0]
. (4.1)

A PSSM is similarly defined in a log-likelihood framework. In this case, the scoring
matrix is used to score a candidate instance of a motif in a single sequence. The focus is
on the probability of observing of a particular amino acid at a particular position in the
motif. A PSSM is constructed from training data representing examples of the motif. Given
an ungapped local alignment representing k instances of a motif of width w, we derive a
propensity matrix, P, representing the likelihood ratio

P[x, i] =
q[x, i]

px
, (4.2)

where q[x, i] is the probability of observing amino acid x at position i under the alternate
hypothesis that this is an instance of the motif. The probability of the same event under the
null hypothesis is px, the background distribution of amino acid x. The log odds position
specific scoring matrix is

S[x, i] = log2 P[x, i]. (4.3)

Note that both P and S have |Σ| rows and w columns, where Σ is the alphabet (in this case
the 20 amino acids).

To complete the definition of P[x, i], we need an expression for the numerator, q[x, i].
The frequency of amino acid x ∈ Σ at position i in the alignment is defined to be

q[x, i] =
c[x, i]+b

k+b · |Σ|
, (4.4)

where c[x, i] is the number of x’s at position i and b is a pseudocount.

72 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

4.1 Position Specific Scoring Matrices

Pseudocounts are introduced to account for examples of the motif that are not represented
in the training data. It is possible that a particular amino acid, x, does sometimes occur
at position i in this motif, but that this case does not arise in any of the sequences in the
input alignment. If P[x, i] = 0, then the resulting PSSM will assign a score of zero to any
sequence with an x at position i, preventing the future discovery of this variant of the
motif. To account for this, pseudocounts are used to give every amino acid a small, but
non-zero probability at every position in the motif. The normalization in the denominator
is adjusted accordingly by the term b|Σ|. In this class, we typically use b = 1. There are
more complex approaches to selecting a pseudocount. For those interested in exploring this
further, a more general treatment of pseudocounts is given in Section 5.6 of Durbin’s book.
This is not required for this course.

Given a new, unlabeled sequence, t, of length n, we can search for an instance of the
motif in t by scoring the w residues at each possible startion position in the sequence as
follows:

S(t, o) =

w∑
i=1

S[t[o+i], i]. (4.5)

Here the offset, o, ranges from 0 to n-w and refers to the position before the first symbol
in the motif. For a given value of o, the motif is the subsequence from position o+1 to
o+w. The offset with the highest score is most likely to be an instance of the motif. To be
convincing, the score must also be high in an absolute sense, not just higher that the scores
associated with other offsets. In cases where there may be more than one instance of the
motif in t, offsets with near optimal scores should also be considered.

Note that the score of a window of length w following offset o in t is a log likelihood
ratio

S(t, o) = log2

Pr(t[(o+1) . . . (o+w)]|Ha)

Pr(t[(o+1) . . . (o+w)]|H0)
, (4.6)

where Ha is the alternate hypothesis that t contains the motif at position o+1 and H0 is
the null hypothesis that there is no instance of the pattern at this location and the residues
in the window occur with typical background frequencies. To see this, consider that

S(t, o) =

w∑
i=1

S[t[o+i], i]

=

w∑
i=1

log2

q[t[o+i], i]

pt[o+i]

= log2

w∏
i=1

q[t[o+i], i]

pt[o+i]

= log2

∏w
i=1 q[t[o+i], i]∏w

i=1 pt[o+i]
.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 73

Chapter 4 Modeling motifs: Position Specific Scoring Matrices

The numerator is the probability that the w residues starting at position o+1 in t represent
an instance of the motif. The denominator is the probability of observing those residues
under the null hypothesis.

4.2 Gibbs Sampler for motif discovery

A PSSM provides a compact, probabilistic representation of an ungapped motif, based on
a training data set consisting of k representative sequences of length w. But how do we
discover a motif in unlabeled sequences, when the motif is not known in advance?

The Gibbs Sampler is an algorithm for discovery of ungapped local alignments that
uses the PSSM formalism as its basic data structure. The Gibbs Sampler takes as input
k sequences, t1 . . . tk, of lengths n1 . . . nk, that share an ungapped motif of length w. The
underlying assumption of the Gibbs Sampler is that each sequence contains exactly one
instance of the motif. The length of the motif, w, must be supplied by the user. The output
is a set of k subsequences of length w, one in each input sequence, that are “most similar”
to each other. Here, our measure of “most similar” is a likelihood function derived from the
propensity matrix, P, defined in Equation 4.2.

Sequences t1 . . . tk contain O(nk) candidate motifs, corresponding to all possible sets
of offsets {o1 . . . ok}, where 0 ≤ oz ≤ nz−w is the offset in sequence tz. Since the motif is
ungapped, for a fixed width, w, each candidate is completely defined by a set of offsets
{o1 . . . ok} that specify starting points of the subsequences in the k sequences. Each set of
offsets defines a local alignment consisting of the k subsequences of length w,

A =

t1[(o1+1) . . . (o1+w)]

t2[(o2+1) · · · (o2+w)]

· · ·
tk[(ok+1) · · · (ok+w)],

where the notation t[u · · · v] denotes the substring of t, starting at position u and ending at
and including position v.

A brute force approach to identifying the true motif is exhaustive enumeration of all
candidates. For each candidate ungapped alignment, a score can be assigned that captures
the extent to which columns in the alignment reflect similar sequence features. A PSSM,
S[·, ·], is constructed as specified in Equations 4.2 - 4.4, and used to score each sequence in
the alignment:

S(tz, oz) =
w∑
i=1

S[tz[oz+i], i]. (4.7)

The sum of these scores,
∑k

z=1 S(tz, oz), gives the overall score of the candidate motif.

74 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

4.2 Gibbs Sampler for motif discovery

In most cases, the PSSM will be meaningless in the sense that the individual subsequences
will be unrelated to each other and the residues in each column will not reflect a significant
degree of conservation. In this case, the individual subsequences will not receive scores that
are better than chance. Only a candidate alignment that does, in fact, correspond to a
conserved motif will produce a PSSM that yields good S(tz, oz) scores.

The computational cost of this brute force approach is prohibitive for all, but the
smallest problem instances. The Gibbs Sampler is a more efficient approach to searching
the space of candidate motifs that does not require explicit consideration of all possible
alignments. The Gibbs Sampler uses an iterative approach in which a new estimate of the
motif is generated from the current estimate of the motif at each iteration. The Gibbs
Sampler has a robust theoretical basis and can be proven to converge to the best estimate.
This convergence guarantee results from the specific features of the procedure for generating
a new estimate from the current estimate. First, the new estimate must be different from
the current estimate, but not too different. Second, the new estimate must be chosen in
such a way that the algorithm can find the global optimum (i.e., the best estimate) and not
just a local optimum. (A local optimum is an estimate that is better than all estimates
that could be obtained in one step of the algorithm; that is, an estimate that has a higher
score than all estimates resulting from a single modification of the current estimate.)

We introduce these ideas in two steps. We first consider a Hill Climbing algorithm
(Algorithm 1) for motif discovery that has the same iterative structure as the Gibbs Sampler,
but is not guaranteed to converge to the global optimum. The term “hill-climbing” reflects
the fact that this algorithm finds an estimate with a higher score at each step and stops
when it reaches the top of the hill (i.e., when it has found a local optimum). This Hill
Climbing algorithm has the same data structures as the Gibbs Sampler and exemplifies the
procedure for generating new candidate estimates. We then extend this algorithm to obtain
a full Gibbs Sampler (Algorithm 2) that has a more sophisticated procedure for generating
a new estimate, which allows it to converge to a global optimum.

Both algorithms generate a new estimate from the current estimate by modifying the
contribution of one of the k sequences, called t∗, to A, while holding the subsequences from
the remaining k − 1 sequences fixed. The current estimate is represented by (k−1) × w
matrix, A′ which holds the subsequences of length w that represent the current best estimate
in the k − 1 sequences that will not change in this iteration. A PSSM is then constructed
from A′ and used to score all candidate offsets in t∗. Based on these scores, a new offset o∗

is selected for sequence t∗. A new estimate of the motif is then constructed by removing
one row in A′ and replacing it with the new subsequence of length w with offset o∗ in t∗.
In order to simplify the bookkeeping associated with selecting a sequence at random from
the k − 1 sequences represented in the current iteration of A′, we introduce an array called
index that contains the indices of the sequences currently in A′. The row to be removed is
selected by generating a random number, r, between 1 and k− 1; the index of the sequence
to be removed is stored in index[r].

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 75

Chapter 4 Modeling motifs: Position Specific Scoring Matrices

Algorithm: Hill-Climbing

Input:

Sequences t1, . . . , tk of lengths n1, . . . , nk.

Initialization:

z = 1 # index of special sequence.

t∗ = tz, n
∗ = nz # t1 is the special sequence, initially.

for (j = 2 to k) {
index[j−1] = j # index of non-special sequences

oj = rand(1, nj−w) # Guess starting offsets

A′[j−1, 1 · · ·w] = tj [(oj+1) · · · (oj+w)]
}
Calculate P[x, i], the propensity matrix of A′ with pseudocounts

Search for motif:

Repeat

{
o∗ = argmaxo{S(t∗, o)} # Select starting offset in t∗

r = rand(1, k−1) # Select new special sequence

A′[r, 1 · · ·w] = t∗[(o∗+1) · · · (o∗+w)] # Replace new special with t∗ in A′
y = index[r]; index[r] = z; z = y # store ptr to t∗ in index
t∗ = tz; n∗ = nz # initialize new t∗

Calculate P[x, i], the propensity matrix of A′ with pseudocounts

S[x, i] = log2 P[x, i]
} until(P[·, ·] stops changing)

Obtain A by adding t∗[(o∗+1) · · · (o∗+w)] to A′

Compute the log odds scoring matrix, S, from A.

Output:

Local multiple sequence alignment A with scoring matrix S.

Algorithm 1: Hill Climbing The matrices P and S are the propensity and log odds
matrices defined in Equations 4.2 and 4.3. Note that A′ and P are (k−1) × w matrices,
whereas the output matrices A and S are k × w matrices. The use of pseudocounts when
calculating P and S is recommended to ensure all symbols in the alphabet are represented.

76 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

4.2 Gibbs Sampler for motif discovery

The selection of a new offset, o∗, in t∗ is a crucial aspect of the convergence of this
algorithm. In the Hill-Climbing algorithm (Algorithm 1), the subsequence with the highest
score is selected. Initially, selecting the subsequence with the highest score might seem an
attractive strategy, but this could trap the algorithm in a local optimum. In fact, this is
why the Hill Climbing algorithm is not guaranteed to converge to a global optimum.

The Gibbs Sampler (Algorithm 2), instead, selects a window in t∗ at random from
all windows starting at offsets ranging from 0 to n∗−w. The probability of selecting a
particular offset, o, is biased by the probability of the subsequence at that offset so that
higher scoring windows have a greater chance of being selected. The probability of the
subsequence starting at offset o+1, defined in terms of its propensity with respect to the
current estimate, is

pdf(o) =

∏w
j=1 P[t∗[o+j], j]∑n∗−w

i=0

∏w
j=1 P[t∗[i+j], j]

. (4.8)

The numerator is the propensity of the subsequence starting at o+1. The denominator
is the sum of propensities for all possible offsets from o = 0 to o = n∗−w. This is a
normalization factor that ensures that

∑n∗−w
o=0 pdf(o) = 1. Note that here we score offsets

using the propensity matrix, P, and not the log odds scoring matrix, S. Since pdf(o) is a
probability it must always have a non-negative value; S cannot be used because S can be
negative.

Selecting a value of o with probability pdf(o) requires a method for obtaining a random
number conditioned on an arbitrary probability distribution. This random number can be
obtained by calculating the cumulative distribution function

cdf(o) =
o∑
l=0

pdf(l),

a monotonically increasing function with domain [0, n∗−w] and range [0, 1]. Its inverse,
cdf−1(r), is a function defined on the domain [0, 1] with range [0, n∗−w]. The offset of the
new subsequence is defined to be o∗ = cdf−1(r), where r is a uniformly distributed random
number in the interval [0, 1]. The index o∗ generated by this procedure is a random number
with distribution pdf(o).

Potential pitfalls: There are various potential pitfalls associated with the Gibbs Sampler,
as with any algorithmic attempt to discover biological truth. For one thing, you could
find a statistically significant or biologically meaningful motif that is not the motif you are
looking for. In addition, problems can arise if one or more sequences have no copy of the
motif or have more than one copy.

Using this algorithm to obtain meaningful solutions requires a number of decisions that
are not programmatically determined and require ad hoc solutions, possibly guided by the
user’s biological intuition:

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 77

Chapter 4 Modeling motifs: Position Specific Scoring Matrices

Algorithm: Gibbs Sampler

Input:

Sequences t1, . . . , tk of lengths n1, . . . , nk.

Initialization:

z = 1 # index of special sequence.

t∗ = tz, n
∗ = nz # t1 is the special sequence, initially.

for (j = 2 to k) {
index[j−1] = j # index of non-special sequences

oj = rand(1, nj−w) # Guess starting offsets

A′[j−1, 1 · · ·w] = tj [(oj+1) · · · (oj+w)]
}
Calculate P[x, i], the propensity matrix of A′ with pseudocounts

Search for motif:

Repeat

{
for (o = 0 to (n∗−w))
{

pdf(o) =

∏w
j=1 P[t∗[o+j], j]∑n∗−w

i=0

∏w
j=1 P[t∗[i+j], j]

}
With probability pdf [o], o∗ = o # Select starting offset in t∗

r = rand(1, k−1) # Select new special sequence

A′[r, 1 · · ·w] = t∗[(o∗+1) · · · (o∗+w)] # Replace new special with t∗ in A′
y = index[r]; index[r] = z; z = y # store ptr to t∗ in index
t∗ = tz; n∗ = nz # initialize new t∗

Calculate P[x, i], the propensity matrix of A′ with pseudocounts

} until(P[·, ·] stops changing)

Obtain A by adding t∗[(o∗+1) · · · (o∗+w)] to A′

Compute the log odds scoring matrix, S, from A.

Output:

Local multiple sequence alignment A with scoring matrix S.

Algorithm 2: Gibbs Sampler

78 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

4.2 Gibbs Sampler for motif discovery

• Selecting the window size, w

• Selecting the starting configuration

• Selecting values for pseudocounts

• Termination condition: how should the algorithm decide when to stop?

These issues are discussed in greater detail in Lawrence et al. (1993), which is available via
the “optional readings” column of the syllabus.

Convergence: The Gibbs Sampler models the search for an optimal local alignment as a
Markov Chain, in which each state is a set of k subsequences of length w. It can be shown
that this Markov Chain has a stationary distribution and that the state corresponding
to the most likely motif has high probability in that distribution. In theory, this process
is guaranteed to converge to the optimal solution, given “enough time.” In practice, the
Sampler can get bogged down in local optima for long periods of time. An approach
to avoiding this problem is to run the procedure several times with different starting
configurations. This is discussed in greater detail in the materials listed under “optional
reading.”

Background: The Gibbs Sampler is a general method for estimating a joint probability
distribution by repeated calculations of a conditional distribution using a Markov Chain
Monte Carlo (MCMC) approach. The application of the Gibbs Sampler for motif finding
in biomolecular sequences was proposed first by Chip Lawrence1 and his colleagues in
1993. For those interested in more theoretical aspects, Ewens and Grant discuss the Gibbs
Sampler for biomolecular motif discovery in the MCMC framework (Section 10.5 in the
first edition). A general introduction to the Gibbs Sampler2 in a statistical context can be
found under “optional readings” on the syllabus page. These readings are not required for
the course.

Another probabilistic search procedure called Expectation Maximization (EM) can also
be used to identify conserved, ungapped motifs. We will discuss EM briefly in the context
of HMM’s later in the course. EM is discussed in detail in 03-712.

1Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Lawrence et al.,
Science. 1993 262(5131):208-14.

2Explaining the Gibbs Sampler, G. Casella & E. I. George, The American Statistician, 46:167-174, 1992

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 79

Chapter 5

Hidden Markov Models

5.1 Introduction

We have been discussing conserved motifs or patterns found in multiple sequences, with a
focus on three major tasks:

Discovery: Given a set of unlabeled sequences, identify an unknown pattern that is
common to the input sequences.

Modeling: Given a set of sequences containing instances of a pattern, construct a compact,
probabilistic representation of the pattern.

Recognition: Given a pattern model and a new unlabeled sequence, determine whether
the pattern is present in the sequence and, if so, label the sites that correspond to the
pattern.

In previous lectures, we considered Position Specific Scoring Matrices (PSSMs) for
modeling and recognition of ungapped patterns or motifs and the Gibbs Sampler for
discovering such motifs in unlabeled data. PSSMs work well for fixed length patterns in
which the sites are more or less independent and the length of the motif can be predicted in
advance. For example, the Gibbs sampler is an effective approach to finding transcription
factor binding sites, which conform fairly well to these criteria. However, PSSMs’s have
limitations:

1. PSSMs cannot model positional dependencies: Suppose, for example, that a motif has
a positional dependency like this one,

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 81

Chapter 5 Hidden Markov Models

WEIRD

WEIRD

WEIQH

WEIRD

WEIQH

WEIQH

in which we see either RD or QH in the last two positions, but never QD or RH. A PSSM
for this motif would give a high score to WEIRD, which conforms to the positional
dependency, but also to WEIRH, which does not.

2. PSSMs cannot recognize motif instances containing insertions or deletions: A PSSM
for the WEIRD motif would not assign high scores to pattern instances with insertion
and deletions, such as WECIRD and WERD.

In the following lectures, we discuss Hidden Markov models (HMMs), a more general
and powerful formalism that can model to a wider variety of conserved patterns. HMMs can
capture interactions between sites in conserved motifs and recognize new motif instances
with indels. In addition to conserved motifs, HMMs can model more diffuse, variable length
patterns. These patterns are characterized by an underlying sequence composition that is
representative of their biological role. Membrane-bound regions in a transmembrane protein
(Fig. 5.1) are one example of a variable length pattern of this type. Sequence segments that
are localized to the membrane are enriched for hydrophobic residues, relative to segments in
the cytosol or the extracellular matrix, providing a signal that can be exploited for detecting
transmembrane regions. A PSSM is not suitable for recognizing this type of feature. Similar
recognition problems include identifying sequences that encode specific secondary structures
(e.g., α helices, β sheets), distinguishing between coding and non-coding sequences, and
delimiting genomic regions that exhibit compositional bias. For example, many bacterial

Figure 5.1: Transmembrane proteins

82 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

5.1 Introduction

genomes have regions of GC skew, where one strand is enriched for guanine relative to the
other strand.

Identification of patterns like these can be cast as a classification problem. We consider
two problems:

1. We are given a sequence and we wish to assign it to a class. For example, is the given
sequence a coding sequence?

2. We are given a sequence in which different segments belong to different classes. We
wish to label each symbol in the sequence according to its class. For example, given
a nucleic acid sequence, label each base as a coding nucleotide, if it is in a coding
region, or a non-coding nucleotide, if it is in an intron or intergenic region.

The first problem can be addressed with a Markov chain. The second problem requires
identification of sharp boundaries between classes. Attempting to classify segments with a
Markov chain would require scoring a sliding window, which is not an effective approach
for boundary detection (Fig. 5.2). However, as we shall see, HMM’s are able to predict
boundaries between classes precisely.

(a) Precise boundaries

(b) Fuzzy boundaries

Figure 5.2: Boundary detection. (a) Perfect boundary detection identifies the exact position
of a pattern (e.g., a membrane bound segment) in a sequence. (b) Scoring a sliding window
identifies the general neighborhood of the pattern, but cannot identify its precise position.

The theoretical basis of Hidden Markov models dates to the 1960’s. In the 1970’s,
HMMs were broadly applied to problems in speech recognition. This laid the foundation
for the use of HMMs for statistical inference, generally. Much of the HMM terminology
is informed by early work on the speech recognition problem. This work is described in
Rabiner’s 1989 tutorial article, which is posted in the HMM module on Canvas for those
who would like to probe further or prefer a more statistical treatment of the material. This
article is not required reading.

In the speech recognition context, HMMs are used to infer the meaning of or “decode”
a series of observations, O = O1, O2, . . . , OT . An observation is a sequence of sounds (i.e.,

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 83

Chapter 5 Hidden Markov Models

speech). The goal of decoding is to determine the words that were uttered. An HMM is a
generative model, i.e., a model that emits a sequence of symbols. In this framework, the
decoding problem is akin to asking, what is the probability that a given model emitted the
observed sequence?

Your textbooks adopt this framework and notation and we will do the same. In biological
sequence analysis, an observation, O = O1, O2, . . . , OT , is a sequence of of nucleotides or
amino acids. The goal is to determine the probability that O was emitted by a model that
corresponds to the biological question at hand (e.g., a transmembrane model, a coding
sequence model, etc.)

5.2 Modeling variable length patterns with Markov chains

Hidden Markov models are a type of Markov model. Since we are already familiar with
Markov chains, we will start by demonstrating how a Markov chain can be used to model a
variable length pattern. However, as we will see, while Markov chains can be used to solve
the first problem (classifying an entire sequence), they are not well suited to the second
problem (assigning a class to individual residues). We next introduce Hidden Markov models
(HMMs) and show how the the additional features of HMMs allow for the classification of
individual residues and the inference of precise boundaries. In subsequent lectures, we will
explore how HMMs can be used to model indels and positional dependence in motifs.

Recall that a finite, discrete Markov chain is defined by

• a finite set of states, E0, E1, . . . , EN ;

• a transition probability, Pxy, which is the probability that the chain will be in state
Ey at site t+ 1 given that it was in state Ex at site t; and

• an initial state probability distribution, π = (π1, π2, . . . , πN), where πx gives the
probability of being in state Ex at site t = 1.

In prior chapters, we used Markov chains to model the progression of substitutions at a
single site over time. Here, we model the progression along the sequence. The transition
probability gives the probability of observing a particular residue at the current site, as
a function of the residue observed immediately before it. The independent variable t
designates the position in the sequence, rather than time. We continue to use t to denote
this independent variable to be consistent with the notation in Rabiner.

Let us first consider the problem of classifying an entire sequence, using transmembrane
proteins as an example. To simplify the exposition, we will assume that protein sequences
have been recoded in a two letter alphabet, ΣH,L = {H,L}, in which each amino acid is
replaced with an H if the residue is hydrophobic and an L if it is hydrophilic. We are given
a sequence segment that is either a subsequence of a transmembrane (TM) region or a

84 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

5.2 Modeling variable length patterns with Markov chains

(a) Transmembrane model (πH = 0.7, πL = 0.3) (b) ECM/Cytosol model (πH = πL = 0.5)

Figure 5.3: Markov models of sequence fragments localized to (a) the membrane or (b) the
extracellular matrix (ECM) or cytosol.

subsequence of an extracellular or cytosolic (E/C) region. We wish to determine whether
or not this segment is localized to the membrane.

For this sequence classification problem, we construct a transmembrane Markov model
in which hydrophobic residues are preferred, consistent with frequencies observed in experi-
mentally determined membrane-bound sequences (Fig. 5.3a). Our model has two states, H
and L, corresponding to the symbols in ΣH,L. Thus, a sequence of symbols corresponds to a
sequence of states in the Markov chain. The probability that a given sequence O ∈ (ΣH,L)∗

is localized to the membrane can be estimated by the probability of visiting the states
corresponding to symbols in O:

Pr(O|TM) = πO1

T∏
t=2

PTM
Ot−1Ot ,

where PTM is the transition matrix for the transmembrane Markov model in Fig. 5.3a.
For example, the probability of the sequence HHLHH is

Pr(HHLHH|TM) = πH × PHH × PHL × PLH × PHH
= 0.7× 0.7× 0.3× 0.7× 0.7

≈ 0.072.

This calculation gives us the probability that HHLHH is a membrane-bound sequence according
to the TM model, but how do we interpret that probability? We need a basis for selecting the
minimum likelihood required to assert with confidence that a given sequence is membrane-
bound.

A second difficulty is that the likelihood of a sequence is sensitive to its length; the
longer the sequence, the lower its probability. Intuitively, this makes sense since the number
of sequences of length T grows exponentially with T . Consider, for example, a sequence of
ten consecutive hydrophobic residues. The probability of this sequence according to the
transmembrane model is

Pr(HHHHHHHHHH|TM) = πH × (PHH)9

≈ 0.03.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 85

Chapter 5 Hidden Markov Models

Thus, the likelihood of HHHHHHHHHH according to the TM model is lower than the likelihood
of HHLHH, even though HHHHHHHHHH looks more like a transmembrane segment than HHLHH.

Both of these issues can be addressed be adressed by comparison with the likelihood of
O under a null model to obtain a likelihood ratio. For this purpose, we introduce a model
of extracellular and cytosolic sequences (Fig. 5.3b) in which hydrophobic and hydrophilic
residues occur with equal frequencies. Using these models, we can classify an observed
sequence, O = O1, O2, . . . , OT , by its likelihood ratio

Pr(O|TM)

Pr(O|E/C)
. (5.1)

For example, Pr(HHLHH|E/C) = 0.5× 0.5× 0.5× 0.5× 0.5 ≈ 0.031 under this null model,
yielding a likelihood ratio of

Pr(HHLHH|TM)

Pr(HHLHH|E/C)
=

0.072

0.031

≈ 2.3.

Thus, it is a little more than twice as likely that HHLHH is a transmembrane sequence than
an E/C sequence. In contrast, it can be shown that the likelihood ratio for HHHHHHHHHH

is roughly 29, which is much greater than 2.3. This is consistent with our intuition that
HHHHHHHHHH is a more convincing membrane-bound sequence than HHLHH.

5.3 Hidden Markov Models

Now we turn to the second problem: classifying individual residues in a sequence. We
have demonstrated that the Markov chain models in Fig. 5.3 can be used to classify a
sequence segment where all residues are of the same class (i.e., all TM or all E/C). However,
we cannot apply these models to residue classification. If we knew the boundaries of
transmembrane regions in O, we could switch back and forth between the E/C model
and the TM model, but we do not have a procedure for identifying those boundaries. We
could use a sliding window approach and calculate a likelihood ratio to score successive
overlapping windows along the sequence, but this would result in a fuzzy boundary like
that shown in Fig. 5.2.

In order to determine the location of the transmembrane regions in an unlabeled
sequence, we need a model that explicitly labels each residue with its class (TM or E/C).
For this purpose, we construct a new model that combines the two Markov chains by adding
low probability transitions between E/C and TM states, as shown in Fig. 5.4.

This four-state model differs from the Markov chains in Fig. 5.3 in some fundamental
ways. In the Markov chain models, each state associates a probability with a single
piece of information: the amino acid at the current site. This means that there is a 1-1

86 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

5.3 Hidden Markov Models

Figure 5.4: A four-state transmembrane HMM

correspondence between symbols and states. Every sequence of symbols, O, corresponds
to a unique sequence of states, or state path, through the model. The probability of the
sequence, P (O|model), is specified by product of the transition probabilities along this state
path. Thus, we can use these models to solve Problem 1 by calculating the ratio of the
likelihood under the assumption that the sequence is a transmembrane sequence and the
likelihood that it is localized to the cytosol or the extracellular matrix.

In contrast, in the four-state model in Fig. 5.4, every state associates a probability with
two pieces of information: the residue at the current site and the cellular location of that
residue. This model does not have a one-to-one correspondence between symbols and states.
Rather, there are two states associated with hydrophobic residues and two states associated
with hydrophilic residues. As a result, for any given sequence of H’s and L’s, there are
multiple paths through the states of the model. If we are given a particular state path (i.e.,
a sequence of states), then we can use the model to calculate the probability of observing
this sequence of amino acids in the cellular locations specified by the state path. However,
in general, the cellular localitions of the amino acids, and hence the true state path, are not
known. In order to classify residues, we need a procedure for finding a state path that best
estimates the cellular localization of the residues in O (the “true” state path). This estimate
gives a precise boundary detection method. There are several algorithmic approaches to
estimating the true path. We will discuss these in the next section.

The four-state model extends the Markov chain models in Fig. 5.3 by allowing a many-
to-one correspondence between states and symbols. As a result, this model is no longer

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 87

Chapter 5 Hidden Markov Models

a simple Markov chain. It is a Hidden Markov model. The word “hidden” refers to the
fact that the true sequence of states for a given sequence of symbols is unknown; i.e., it is
hidden from us. We can generalize further by also allowing one state to emit more than
one symbol, resulting in a many-to-many relationship between symbols and states. This
gives us the full definition of a Hidden Markov model, formally defined as follows:

a finite set of N states E1, E2, . . . , EN .

an alphabet, Σ = {σ1, σ2 . . . σM}, of symbols that can be emitted from states.

a transition probability matrix, a, where aij is the probability of making a transition from
state Ei to Ej ; i.e., aij = Pr(Ej at t+ 1|Ei at t). The rows of this matrix sum to
one:

∑
j aij = 1.

the emission probabilities, ei(σk), for all states Ei and all symbols σk ∈ Σ such that ei(σk)
is the probability that state Ei emits σk. The emission probabilities for a single
state sum to one:

∑
k ei(σk) = 1.

the initial state probability distribution, π = (π1 · · ·πN) for all states. The initial probabil-
ities sum to one:

∑N
i πi = 1.

We refer to the transition probabilities, the emission probabilities, and the initial distribution,
collectively, as the parameters of the model, designated λ = (aij , ei, πi). Further, we
use Q = q1, q2, q3, . . . , qT to denote a sequence of states visited when emitting a given
sequence, O = O1, O2, O3, . . . , OT . When considering more than one state path, we will use
superscripts to distinguish between them: Qb = qb1, q

b
2, q

b
3, Similarly, we use superscripts

to distinguish between multiple sequences of symbols: Od = Od1 , O
d
2 , O

d
3 , . . .

An HMM is a generative model. A state in an HMM emits symbols from a fixed alphabet
according to the specified emission probabilities. In the four-state model in Fig. 5.4, we used
two states to encode residues in transmembrane sequences, one for hydrophobic residues and
one for hydrophilic residues. Although not stated explicitly, the emission probabilities in the
transmembrane states are eH TM (H) = 1, eH TM (L) = 0, eL TM (H) = 0 and eL TM (H) = 1.
The emission probabilities in the E/C states are defined similarly. This does not take
full advantage of the descriptive power of the HMM formalism. We can refine this model
by collapsing states EH TM and EL TM into a single transmembrane state and using the
emission probabilities to distinguish between hydrophobic and hydrophilic residues. This
approach is illustrated in the two-state HMM shown in Fig. 5.5.

We can further refine the model by introducing separate E and C states as shown in
Fig. 5.6. Using separate states to represent the cytosol and the extracellular matrix makes
it possible to model differences in amino acid frequencies inside and outside the cell. In
addition, biological intuition can be encoded in the topology. The model does not have a
transition between the C and E states, representing the fact that proteins cannot tunnel from

88 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

5.3 Hidden Markov Models

Figure 5.5: A two state Hidden Markov model of a transmembrane sequence.

the cytosol to the ECM without passing through the membrane. Typically, transmembrane
proteins start in the cytosol and end in the the ECM, or vice versa; transmembrane proteins
do not originate in the membrane. This is reflected in the zero-valued initial probability
for the M state (πM = 0). In this example, we assume that transmembrane sequences are
equally likely to start in the cytosol or in the extracellular matrix (ECM); i.e., πC = 0.5
and πE = 0.5.

In this HMM model, the subcellular location of each residue is represented by the state
that emitted the symbol associated with that residue. There are many state paths that
can generate a given sequence of amino acids. If we are given both the observed sequence
and the state path, then calculating the probability is straight-forward. Given a sequence
O = O1, O2, . . . , OT and a state path Q = q1, q2, . . . , qT , the probability of visiting the

Figure 5.6: A three state Hidden Markov model of a transmembrane sequence.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 89

Chapter 5 Hidden Markov Models

states in Q and emitting O is

Pr(O,Q|λ) = πq1 · eq1(O1) · aq1q2 · eq2(O2) · aq1q2 · eq3(O3) . . . aqT−1 qT · eqT (OT)

= πq1 · eq1(O1)
T∏
t=2

aqt−1qt · eqt(Ot).

For example, suppose O =LHHHL and Q =CMMME, then Pr(LHHHL, CMMME)|λ) =

πC · eC(L) · aCM · eM (H) · aMM · eM (H) · aMM · eM (H) · aME · eE(L).

An HMM defines a probability distribution over all possible combinations of sequences
and state paths for a hypothetical HMM, illustrated as a cartoon in Fig. 5.7a. Every
point on the horizontal plane corresponds to a particular sequence, Od, and a particular
state path, Qb. The value on the vertical axis is the joint probability, Pr(Od, Qb|λ), that
the HMM will visit the states on path Qb and emit sequence Od. In the three-state TM
model example (Fig. 5.6), the set of all possible sequences, O1, O2, O3, . . . corresponds to
H, L, HH, HL, LH, LL, HHH, ... and the set of all possible state paths, Q1, Q2, Q3, . . .
corresponds to C, M, E, CC, CM, CE, MC, Note that Pr(Od, Qb) = 0 for many
(Od, Qb) pairs. For example, in this model, Pr(Od, Qb) = 0 for any state path that contains
C immediately followed by E, because aCE = 0. In any model, Pr(Od, Qb) = 0 when Od

and Qb have different lengths.
An HMM emits each sequence Od ∈ Σ∗ with probability Pr(Od) ≥ 0. Since a sequence

can, potentially, be emitted from more than one state path, in order to obtain the total
probability of a sequence, O, we must sum over the all possible paths:

Pr(O) =
∑
b

Pr(O|Qb, λ) · Pr(Qb) =
∑
b

Pr(O,Qb|λ).

Fig. 5.7b shows a cartoon representation of Pr(O,Q) for a single sequence, say O5, for the
set of all possible state paths, Q. The area under the curve is equal to Pr(O), the total
probability of sequence O.

When all possible sequences and all possible paths are considered, the probability
distribution shown in Fig. 5.7a sums to one:∑

d

∑
b

Pr(Od, Qb|λ) = 1.

5.4 Using HMMs for recognition

In this section, we focus on motif recognition using HMMs. We will discuss parameter
estimation, motif discovery, and modeling using HMMs in future sections. Here, we assume
that we are given an HMM with known parameter values.

Our goal is to use the HMM to answer the various recognition questions, including:

90 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

5.4 Using HMMs for recognition

(a) The joint probability, Pr(Od, Qb).

(b) Pr(O5, Qb)

Figure 5.7: (a) The joint probability Pr(Od, Qb) for every sequence Od and state path Qb. The
volume under this curve is one. (b)The probability of sequence O = O5 for every state path
Q1, Q2, Q3, This curve corresponds to the intersection of the probability distribution in Fig. 5.7a
and the vertical plane at O = O5 (shown as a blue line in Fig. 5.7a). The area under this curve
is Pr(O5|λ), the probability of O5. The maximum point on the curve is the most probable path,
Q∗ = argmaxQ Pr(Q|O, λ).

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 91

Chapter 5 Hidden Markov Models

1. What is the probability that a given sequence, O, was generated by the HMM?
Example: Is sequence O a transmembrane protein?

2. Given a sequence, O, what is the true path? Otherwise stated, we wish to assign
labels to an unlabeled sequence.

Example: Identify the cytosolic, transmembrane, and extracellular regions in
sequence O. In this case, we wish to assign the labels E, M, or C to each amino acid
residue in the sequence.

3. What is the probability of being in state Ei when symbol Ot is emitted?
Example: Is a given residue localized to the membrane?

Although this is not a focus of this class, we should point out that, since HMMs are
generative models, an HMM can also be used for simulation; for example, to generate
sequences with properties similar to real transmembrane sequences.

5.4.1 Calculating the total probability of sequence O

In order to answer the first question,

1. What is the probability that a given sequence, O, was generated by the HMM?

we must calculate Pr(O|λ), the total probability of the sequence given the model. The total
probability is the probability of visiting states in path Q and emitting sequence O, summed
over all possible state paths:

Pr(O|λ) =
∑
b

Pr(O|Qb, λ) · Pr(Qb|λ) =
∑
b

Pr(O,Qb|λ).

We could calculate this quantity by enumerating all paths, Qb, and calculating Pr(O,Qb|λ)
for each one, but this brute force approach becomes intractable as the number of states
gets large, since the number of state paths grows as O(NT). Instead, we use a dynamic
programming algorithm called the Forward algorithm, which recursively calculates the
probability of emitting prefixes of O. At each step, the Forward algorithm calculates the
probability of emitting the first t symbols, O1, O2, . . . , Ot, summing over all possible paths
that end in state Ei. We designate this quantity

α(t, i) = Pr(O1, O2, O3, . . . , Ot, qt = Ei|λ).

The variable α is an T ×N matrix, where the rows correspond to prefixes of O and the
columns correspond to states. At the tth iteration, the algorithm calculates the entries in
row t of the matrix, based on the entries in row t− 1 and the parameters of the model. The
entries in the final row contain the probability of emitting the entire sequence and ending
in state Ei, for i = 1 to N . The probability of emitting the entire sequence, independent of

92 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

5.4 Using HMMs for recognition

the final state, is obtained by the summing the entries in the last row. The algorithm to
calculate α(t, i) for all t ∈ (1, T) proceeds as follows:

Algorithm: Forward
Initialization:

α(1, i) = πiei(O1)

Recursion:

α(t, i) =

N∑
j=1

α(t− 1, j) · aji · ei(Ot)

Final:

Pr(O) =
N∑
i=1

α(T, i)

The computational complexity of the Forward algorithm is O(TN2): There are T ×N
cells in the α matrix and the computational cost of computing each cell is O(N).

In class, we worked an example based on the three-state transmembrane model shown
in Fig. 5.6. A worksheet for this exercise is linked to the class syllabus page. The solution
is also available. I recommend that you try to work through the Forward algorithm before
looking at the solution.

5.4.2 Viterbi decoding

Next, we tackle the second recognition question:

2. Given a sequence O, what is the true path?

Given an unlabeled sequence, our goal is to classify or label each symbol in the sequence by
inferring the state path. This process is called “decoding” because we decode the sequence
of symbols to determine their meaning. HMMs were developed in the field of speech
recognition, where recorded speech is “decoded” into words or phonemes to determine the
meaning of the utterance. In our application, we decode an amino acid sequence to infer
the functional role of each residue. There are two common approaches to decoding: Viterbi
decoding and posterior decoding. We discuss Viterbi decoding here and postpone posterior
decoding until after discussing Question 3.

Viterbi decoding is based on the assumption that the most probable path,

Q∗ = argmax
b

Pr(Qb|O, λ),

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 93

Chapter 5 Hidden Markov Models

is a good estimation of the sequence of states that generated the observed sequence O.1

In practice, we maximize the joint probability Pr(Q,O|λ), rather than the conditional
Pr(Q|O, λ), but this will still give us the most probable path because the path that
maximizes Pr(Q,O|λ) also maximizes Pr(Q|O, λ). To see this, note that

Pr(Q|O, λ) =
Pr(Q,O|λ)

Pr(O|λ)
.

Since Pr(O|λ) is independent of Q,

argmax
b

Pr(Qb|O, λ) = argmax
b

Pr(Qb, O|λ).

As in the case of the Forward algorithm, the brute approach of enumerating all paths
and calculating Pr(Q|O, λ) for each one is intractable, because the number of state paths
grows as O(NT). Instead, we calculate argmaxb Pr(Qb, O|λ) using a dynamic program-
ming algorithm called the Viterbi algorithm. Let δ(t, i) be the probability of emitting
the first t residues via the most probable path that ends in Ei. We calculate δ(t, i) as follows:

Algorithm: Viterbi

Initialization:
δ(1, i) = πi · ei(O1)

Recursion:
δ(t, i) = max

1≤j≤N
δ(t− 1, j) · aji · ei(Ot)

j∗(t, i) = argmax
1≤j≤N

δ(t− 1, j) · aji · ei(Ot)

Final:
Pr(Q∗, O|λ) = max

1≤j≤N
δ(T, j)

q∗T = argmax
1≤j≤N

δ(T, j).

At each step in the recursion, we save j∗(t, i), the value of j that maximizes δ(t− 1) ·
aji · ei(Ot). These values are used to reconstruct the most probable path. The final state on
the most probable path, q∗T , is the state that maximizes δ(T, j). The rest of the state path
is reconstructed by tracing back through the dynamic programming matrix, a procedure
similar to the traceback in pairwise sequence alignment:

q∗t−1 = j∗(t, q∗t), t = T . . . 2.

1Note that the most probable path is not the same as the path that maximizes the likelihood of O!

94 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

5.4 Using HMMs for recognition

The running time of the Viterbi algorithm is O(TN2). There are TN entries in the
dynamic programming matrix. Each entry requires calculating N terms.

In class, we used the three-state HMM shown in Fig. 5.6 as an example. As an exercise,
try applying the Viterbi algorithm to determine the most probable path through this model
for the sequence HHH. A worksheet for this exercise is linked to the class syllabus page. The
solution is also available. I recommend that you try to work through the Viterbi algorithm
before looking at the solution.

5.4.3 The probability that state Ei emitted O.

The third question

3. What is the probability of being in state Ei when Ot is emitted?

is a special case of the decoding problem, where the focus is on classifying one specific
residue. The probability of being in state Ei when Ot is emitted is the product of two
probabilities: (1) the total probability of emitting O1 . . . Ot over all paths that end in Ei
and (2) the total probability emitting Ot+1 . . . OT over all paths, given that the model was
in state Ei at time t:

Pr(qt = Ei, O) = Pr(O1, O2, O3, . . . , Ot, qt = Ei) · Pr(Ot+1, Ot+2, . . . , OT |qt = Ei). (5.2)

Note that the first term is just α(t, i), as defined in the section on the Forward algo-
rithm. To calculate the second term, we introduce β(t+ 1, i), the probability of emitting
Ot+1, Ot+2, . . . , OT given that Ot was emitted from state Ei:

β(t+ 1, i) = Pr(Ot+1, Ot+2, . . . , OT |qt = Ei, λ).

Substituting α and β for the first and second terms in Equation 5.2, we obtain the
following expression for the probability of emitting Ot from state Ei

Pr(qt = Ei, Ot|λ) = α(t, i) · β(t+ 1, i). (5.3)

The first term, α(t, i), is calculated using the Forward algorithm. The second term,
β(t+1, i), is calculated using an algorithm called the Backward algorithm. Like the Forward
and Viterbi algorithms, the Backward algorithm is a dynamic programming algorithm.
However, the Backward algorithm is different in that we start by calculating the probability
of emitting the last symbol, OT , and then work backwards from OT to Ot+1.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 95

Chapter 5 Hidden Markov Models

Algorithm: Backward

Initialization:

β(T, i) =
N∑
j=1

aij · ej(OT)

Recursion:

β(t, i) =

N∑
j=1

aij · ej(Ot) · β(t+ 1, j)

In addition to determining the probability that Ot was emitted from a given state, the
Backward algorithm has several other applications. Although the Forward algorithm is
usually used to calculate the probability of a sequence, O, the Backward algorithm can
also be used for this purpose. To calculate the probability of the entire sequence, we use
the Backward algorithm to calculate β(t, i) recursively, starting with β(T, i). The total
probability of O is given by:

Pr(O) =
N∑
j=1

πjej(O1)β(2, j).

In motif discovery, both the Forward and the Backward algorithm are needed in order to
learn parameters from unlabeled data using the Baum Welch procedure, which is a form of
Expectation Maximization. The Backward algorithm is also used in another approach to
inferring the true state path, called “Posterior decoding”.

5.4.4 Posterior decoding

Let us revisit the question of estimating the path through an HMM that corresponds to the
true labeling of the data. In Viterbi decoding, the most probable path is considered the best
estimate of the true path. An alternative is to use Q̂, the sequence of most probable states,
as an estimate of the true path. This approach is referred to as posterior decoding because it
is based on the posterior probability of emitting Ot from state i, when the emitted sequence
is known. The most probable state at time t is the state that has the highest probability of
emitting Ot when all possible state paths are considered:

q̂t = argmax
i

Pr(qt = Ei, Ot)

= argmax
i

Pr(O1, O2, O3, . . . , Ot, qt = Ei) · Pr(Ot+1, Ot+2, . . . , OT |qt = Ei)

= argmax
i

α(t, i) · β(t+ 1, i).

96 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

5.5 Summary

Note that the most probable state for emitting Ot is independent of the most probable state
for any other symbol in O. In fact, the sequence of most probable states, Q̂ = q̂1, q̂2, . . . q̂T
may not correspond to any legitimate path through the model.

Posterior decoding may give better results than Viterbi decoding in some cases, such as
when suboptimal paths are almost as probable as the most probable path. If there is only
one state path with high probability (e.g., Fig. 5.8a), then it is likely that Q∗ and Q̂ will
represent the same sequence of states. However, when there are two or more state paths
with high probability (e.g., Fig. 5.8b), each of those paths contributes some information
about the classification of each symbol, Ot. Posterior decoding takes advantage of the
information encoded in all state paths, while Viterbi decoding does not.

(a) (b)

Figure 5.8: (a) The probability distribution of paths for a given sequence of symbols, O1, for
a hypothetical hidden Markov model. In this hypothetical case, the probability of the most
probable path is much greater than the probability of all other paths. (b) The probability
distribution of paths for a given sequence of symbols, O2, for a hypothetical hidden Markov
model. In this hypothetical case, there are several paths with relatively high probability.
One of these is almost as probable as the most probable path

5.5 Summary

We started by introducing three recognition questions:

1. What is the probability that a given sequence, O, was generated by the HMM?

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 97

Chapter 5 Hidden Markov Models

Example: Is sequence O a transmembrane protein?
2. Given a sequence O, what is the true path? Otherwise stated, we wish to assign labels

to an unlabeled sequence.
Example: Identify the cytosolic, transmembrane, and extracellular regions in O.

In this case, we wish to assign the labels E, M, or C to each amino acid residue in the
sequence.

3. What is the probability of being in state Ei when Ot is emitted?
Example: Is a given residue localized to the membrane?

We then discussed several approaches to answering these questions:

• Calculating Pr(O|λ) using the Forward or Backward algorithms

• Inferring the state path that emitted O using Viterbi or Posterior decoding

• Inferring the state that emitted Ot using the Forward and Backward algorithms

These tools can be used to answer biological questions in a variety of ways. For example, one
approach to predicting whether O is a transmembrane protein is to calculate Pr(O|λTM),
the probability that O was emitted by the transmembrane model. However, the resulting
probability can be difficult to interpret. How big must the probability be to convince us that
O is in fact a transmembrane sequence? To answer the question, it is useful to construct a
model representing a null hypothesis and to calculate Pr(O|λ0), the probability that O was
emitted by this null model. If the resulting likelihood ratio

Pr(O|λTM)

Pr(O|λ0)

is much greater than one, then we can infer that O is a transmembrane sequence.
An alternate approach would be to infer the state path that emitted O using the Viterbi

or posterior decoding. If the resulting path includes membrane states, then we can conclude
that O is a transmembrane sequence. If the entire sequence is labeled with C states or with
E states, then we conclude that it is not.

98 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

5.5 Summary

Box 5: Summary of Hidden Markov model notation

Hidden Markov models, or HMMs, are defined formally by:

a finite set of N states E1, E2, . . . , EN .

an alphabet, Σ = {σ1, σ2 . . . σM}, that can be emitted from states.

a transition probability matrix, a, where aij is the probability of making a transition-
ing from state Ei to Ej (Pr(Ej at t + 1|Ei at t)). The rows of this matrix
sum to one:

∑
j aij = 1.

the emission probabilities, ei(σk), for all states Ei and all symbols σk ∈ Σ such that
ei(σk) is the probability that state Ei emits σk. The emission probabilities
for a single state sum to one:

∑
k ei(σk) = 1.

the initial state probability distribution, π = (πi · · ·πN) for all states. The initial
probabilities sum to one:

∑
i πi = 1.

Additional terminology:

the parameters of the model : λ = (aij , ei(a), πi).

the sequence of observed symbols: O = O1, O2, O3, . . . , OT . When considering
more than one sequence, superscripts are used to distinguish them: Od =
Od1 , O

d
2 , . . . , O

d
T

the state path or sequence of states visited: Q = q1, q2, q3, . . . , qT . When considering
more than one state path, superscripts are used to distinguish them: Qb =
qb1, q

b
2, . . . , q

b
T

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 99

Chapter 5 Hidden Markov Models

5.5.1 Summary of recognition algorithms

Algorithm: Forward

Initialization:

α(1, i) = πiei(O1)

Recursion:

α(t, i) =
N∑
j=1

α(t− 1, j) · aji · ei(Ot)

Final:

P (O) =

N∑
i=1

α(T, i)

Algorithm: Viterbi

Initialization:

δ(1, i) = πi · ei(O1)

Recursion:

δ(t, i) = max
1≤j≤N

δ(t− 1, j) · aji · ei(Ot)

j∗(t, i) = argmax
1≤j≤N

δ(t− 1, j) · aji · ei(Ot)

Final:

P (Q∗, O|λ) = max
1≤j≤N

δ(T, j)

j∗(T) = argmax
1≤j≤N

δ(T, j).

100 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

5.5 Summary

Algorithm: Backward

Initialization:

β(T, i) =
N∑
j=1

aij · ej(OT)

Recursion:

β(t, i) =

N∑
j=1

aij · ej(Ot) · β(t+ 1, j)

Final:

P (O) =

N∑
i=1

πi · ej(O1) · β(2, i)

Algorithm for calculating P (qt = Ei, Ot)

Initialization: Calculate matrices α and β.

Recursion:
P (qt = Ei, Ot) = α(t, i) · β(t+ 1, i)

Algorithm: Posterior Decoding

Initialization: Calculate matrices α and β.

Recursion:
q̂t = argmax

1≤i≤N
α(t, i) · β(t+ 1, i)

Final:
Q̂ = q̂1, q̂2, . . . q̂T

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 101

Chapter 5 Hidden Markov Models

5.6 Designing HMMs: Motif discovery and modeling

There are three major computational tasks associated with conserved motifs found in multiple
sequences: Discovery, Modeling, and Recognition. In previous sections, we discussed the
recognition problem: Given an HMM, how do we use it to ask questions about patterns in a
new, unlabeled sequence? Here, we consider modeling and discovery. For HMMs, modeling
and discovery are closely coupled. There are two major issues to consider: designing the
HMM topology and estimating the parameters of the model. A fundamental tradeoff drives
HMM design: On the one hand, more complex models, with more parameters, can yield
more accurate and biologically realistic models. On the other hand, as the number of
parameters increases, so does the amount of data needed to estimate parameters without
overfitting.

5.6.1 HMM topology

The topology of an HMM is determined by the set of states, E1, . . . , EN , and how they
are connected; in other words, we must specify which pairs of states will be connected by
edges with non-zero transition probabilities. We could just choose a fully connected graph,
but typically this has too many parameters to estimate. Instead, we can exploit biological
knowledge. The goal is to choose a topology that limits the number of states and edges
required, while still being expressive enough to represent the structure of the biological
pattern of interest.

The choice of model topology can have a strong impact on the properties of the patterns
we will discover. HMMs map symbols to states. Since changes in state define motif
boundaries, how states are defined will influence the results of boundary detection. Inter-
site dependencies and flexibility in pattern length can also be encoded in the topology of
an HMM.

The transmembrane models we have discussed illustrate some of the issues to consider.
For example, the three state model in Fig. 5.6 is not sufficiently restrictive to emit only
transmembrane protein sequences. It can emit sequences that are entirely cytosolic or
sequences that pass from the cytosol into the membrane and back to the cytosol, without
ever passing through the extracellular region.

We can impose additional order dependencies on sequences generated by the model by
modifying the topology. Suppose the goal is to generate sequences that always start and
end in the cytosol, with one or more passes through the cell membrane into the extracellular
matrix, and back through membrane to the cytosol. By adding additional states, we can
obtain a model that only emits sequences that satisfy these conditions (Fig. 5.9). Note that
this model has silent Start and End states, which we have not encountered before. These
states do not emit symbols. They serve to ensure that the entry and exit from the model
occur in specific states.

102 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

5.6 Designing HMMs: Motif discovery and modeling

Figure 5.9: An HMM that emits transmembrane sequences that start and end in the cytosol
and make at least one pass through the membrane to the extracellular matrix and back
through the membrane to the cytosol. Note the use of silent Start and End states ensures
that sequences start and end in the cytosol.

The topology of the model also influences the distribution of the lengths of sequences that
the model can emit. For example, a simple self loop with probability p (Fig. 5.10) results in
sequences with lengths that follow an exponentially decaying (geometric) distribution. The
probability that this model will emit a sequence of length l is (1− p)pl−1. This does not
correspond to the length distribution of real amino acid sequences. More realistic length
distributions can be obtained with more complex topologies. Some of these are described
in Durbin, section 3.4.

In addition to specifying the model topology, we must choose the alphabet and decide
which states will emit which symbols. The larger the alphabet, the greater the number
of emission probabilities that must be estimated from training data. The transmembrane
models we discussed in class used a two letter alphabet of hydrophobic (H) and hydrophilic

Figure 5.10: An HMM with one non-silent state that emits a single symbol, σ, with unit
emission probability (es(σ) = 1). The probability that a sequence is emitted by this HMM
decreases exponentially with the length of the sequence.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 103

Chapter 5 Hidden Markov Models

(L) residues to represent sequences, instead of the full 20 letter alphabet for amino acids.
This not only gives a simpler representation, it also requires fewer training sequences to
learn the parameters since all hydrophobic (resp., hydrophilic) residues contribute to the
estimation of a single parameter.

5.6.2 Parameter estimation

Once the states and connectivity have been chosen, the parameters of an HMM are estimated
from training data. We are given observed sequences, O1, O2, . . . , Ok, and wish to construct
an HMM with parameters, λ, to model these sequences. If the sequences are labeled, the
transition and emission probabilities can be estimated easily from the observed transition
and emission frequencies. If the sequences are unlabeled, we must first discover the conserved
pattern using a machine learning algorithm.

Labeled sequences:

When we are given labeled sequences in which every symbol Odt is associated with a
state, qdt = Ei, the parameters can be estimated by tabulating the emission and transition
frequencies in the data. Note that inferring parameters from counts in labeled data is a
form of maximum likelihood estimation; we are assuming that the emission and transition
probabilities that best model the motif of interest are those that maximize the probability
of the observed symbols and states in the training data.

The transition probabilities are calculated by tabulating the number of observed state
changes in the data:

aij =

∑k
d=1A

d
ij∑k

d=1

∑
j′A

d
ij′
,

where Adij is the number of pairs of adjacent symbols, Odt O
d
t+1, that are labeled EiEj . The

emission probabilities are given by

ei(σ) =

∑k
d=1 Edi (σ)∑k

d=1

∑
α∈Σ Edi (α)

where Edi (σ) is the number of instances in Od where the symbol σ is labeled with state Ei.
Finally, the initial probability πi is given by

πi =
1

k

k∑
d=1

Id(i), (5.4)

where

Id(i) =

{
1, if qd1 = Ei

0, otherwise
(5.5)

104 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

5.6 Designing HMMs: Motif discovery and modeling

is an indicator variable that is equal to one when the first symbol in Od is labeled with
state Ei and zero otherwise.

We may wish to include pseudocounts to account for cases not observed in the training
data. Pseudocounts are incorporated into the emission probabilities in the same way that
we used pseudocounts in the definition of the frequency matrix for PSSMs. The probability
of emitting σ from state Ei is

ei(σ) =

∑k
d=1 Edi (σ) + b∑

α∈Σ

(∑k
d=1 e

d
i (α) + b

)
=

∑k
d=1 Edi (σ) + b(∑

α∈Σ

∑k
d=1 e

d
i (α)

)
+ |
∑
|b

(5.6)

where b is a pseudocount. In class, we have used b = 1 as a pseudocount. There are
more sophisticated approaches to selecting a pseudocount. We will not cover them in this
course; for those interested in learning more about this on their own, Durbin’s discussion of
Dirichlet mixtures in Section 11.5 of his book provides a starting point.

We can also use pseudocounts to account for state transitions that are allowed, but not
observed in the training data. Let N (i), the neighborhood of state Ei, be the set of states
that can be reached from Ei in a single transition. In other words, N (i) is the set of states,
Ej such that aij has not been explicitly defined to be zero in the design of the topology.
Then,

aij =

(∑k
d=1A

d
ij

)
+ b∑

j′∈N (i)

(
(
∑k

d=1A
d
ij′) + b

)

=

(∑k
d=1A

d
ij

)
+ b(∑

j′∈N (i)

∑k
d=1A

d
ij′
)

+ |N (i)|b
(5.7)

As an example, consider the three-state transmembrane model in Fig. 5.6. For this
model, seven transition probabilities must be inferred: aCC , aCM , aMC , aMM , aME , aEM ,
and aEE . To estimate ACC , for example, given the following labeled sequence

H H H L L H L H L L H H H H H

C C C C C C C C C C M M M M M

we count the number of CC pairs and normalize by the number of pairs of the form C*
where * can be any state. Since there are nine pairs of adjacent symbols labeled CC and one
pair labeled CM, for this sequence aCC = 0.9 without pseudocounts. With pseudocounts,

aCC =
ACC + b∑

j′∈N (C)[ACj′ + b]
,

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 105

Chapter 5 Hidden Markov Models

where N (C) = {C,M}. With a pseudocount of b = 1, we obtain

aCC =
9 + 1

(9 + 1) + (1 + 1)
,

=
10

12
.

To obtain the emission probabilities from state C, note that C is associated with five
hydrophobic and five hydrophilic residues. Thus,

eC(H) =
EC(H) + b∑

α∈{H, L} EC(α) + 2b
,

=
5 + 1

10 + 2

or eC(H) = 0.5, again assuming a pseudocount of b = 1.
The other transition and emission probabilities are estimated similarly. We estimate

the initial probability πC by counting the number of sequences that begin in the cytosol,
and normalizing by the total number of sequences.

Unlabeled sequences:

If the sequences are unlabeled, then it is necessary to both discover the motif and learn
the model parameters. The motif is discovered automatically, but implicitly, through the
process of parameter inference. Once the parameters have inferred, the parameters are used
to obtain an explicit model of the motif via Viterbi or posterior decoding.

Parameters are inferred using maximum likelihood estimation. Given sequencesO1, O2, . . . , Ok,
we seek λl = {aij , ei(·), πi} such that the probability of observing the input sequences is
maximized. Stated formally,

λ = argmax
λl

L(λl)

= argmax
λl

∑
d

Pr(Od|λl)

= argmax
λl

∑
d

∑
Q

Pr(Od|λl, Q) .

Except for very small problem instances, finding a global maximum is intractable. We
would have to calculate L(λl) for all possible combinations of parameters, λl, to find the
parameters that maximize Pr(O1 . . . Ok|λl). Instead, heuristics are used. These are typically
guaranteed to find at least a local maximum. Since these are heuristics, evaluation is usually
done empirically by withholding some of the training data for testing, but we will not
discuss this further.

106 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

5.6 Designing HMMs: Motif discovery and modeling

The Baum-Welch algorithm (Algorithm 3) is used to estimate the parameters of a
Hidden Markov model from unlabeled training data. Baum-Welch belongs to a family of
algorithms, called Expectation Maximization (EM) algorithms, that work by alternating
between estimating the likelihood of the data, given the current estimate of the parameters
and re-estimating the parameters from the current likelihoods. Baum-Welch is based on
algorithms that we have already encountered: Given labeled data, we can estimate the
model parameters using Equations 5.4-5.7, as described in the previous section. Given
a model with parameters, we can label unlabeled sequences using Viterbi or posterior
decoding.

Informally, Baum-Welch is an iterative algorithm that alternately applies these two
procedures. First, an initial estimate of the parameter values is required, for example,
based on prior knowledge of the biology underlying the model or on a uniform prior. With
this initial estimate, the model is used to label the training data, typically using posterior
decoding with the Forward and Backward algorithm. Once the sequences have been labeled,
the parameters are re-estimated from the labeled data. The training sequences are then
re-labeled using this new estimate of the parameters. The algorithm iterates, alternately
labeling the data with the current estimate of the parameter values and then re-estimating
the parameters from the labeled data. At each iteration, the likelihood is guaranteed to
remain unchanged or increase. This iterative process terminates when the likelihood ceases
to improve.

It is instructive to note the similarities and differences between the Baum-Welch algo-
rithm and the Gibbs sampler. Like Baum-Welch, the Gibbs sampler alternates between
re-estimating parameters (i.e., a PSSM) from the current estimate of the motif and inferring
a new instance of the motif from the updated parameters. However, unlike Baum-Welch,
where every training sequence is relabeled at each iteration, in the Gibbs sampler, only one
sequence is relabeled at each iteration. A second major difference between the two methods
is that the Gibbs sampler is guaranteed to converge to a global optimum given enough time.
In contrast, the Baum-Welch algorithm is only guaranteed to find a local optimum.

Given the observed, unlabeled sequences, the parameters are re-estimated in the inner
loop of the algorithm. Aij is the expected number of transitions from Ei to Ej . For a given
sequence, Od, probability of transiting from state Ei to Ej at time t is Pr(qdt = i, qdt+1 =
j|Od, λ). The number of total transitions from Ei to Ej can be obtained by summing over
all time steps, t = 1 to T and all input sequences:

Aij =
∑
d

∑
t

Pr(qdt = i, qdt+1 = j|Od, λ) (5.8)

To facilitate the calculation, we again use the trick of converting the conditional probability

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 107

Chapter 5 Hidden Markov Models

Algorithm 1: Baum-Welch

Input:

A set of observed sequences, O1, O2, . . . , Ok

Initialization:

Select arbitrary model parameters, λ = (aij , ei(·), πi).

Iteration:

Repeat

{

For each sequence, Od,

{

Calculate α(t, i), β(t, i) and Pr(Od) using Forward and Backward algorithms.

Adij = 1
Pr(Od)

·
∑

t α(t, i)aijej(O
d
t+1)β(t+ 2, j)

Edi (σ) = 1
Pr(Od)

∑
{t|Odt=σ} α(t, i) β(t+ 1, i).

}

aij =
∑
d A

d
ij∑

d

∑
l A

d
il

ei(σ) =
∑
d Edi (σ)∑

d

∑
α Edi (α)

πi =
∑k

d=1
Id(i)

Pr(Od)

λ = (aij , ei(·), πi).

L(λ) =
∏
d Pr(Od|λ)

}

Until (L(λ) stops changing.)

Algorithm 3: Baum Welch

108 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

5.6 Designing HMMs: Motif discovery and modeling

into a joint probability:

Pr(qdt = i, qdt+1 = j|Od, λ) =
Pr(qdt = i, qdt+1 = j,Od)

Pr(Od)

=
α(t, i)aijej(O

d
t+1)β(t+ 2, j)

Pr(Od)
.

The term α(t, i) is the probability that the model has emitted symbols Od1 . . . O
d
t and is in

state Ei at time t. This probability can be obtained using the Forward algorithm. The term
in the denominator, Pr(Od), is also calculated with the Forward Algorithm. The terms
aij and ej(O

d
t+1) give the probability of making the transition from Ei to Ej and emitting

Ot+1. The Backward algorithm yields βt+2(j), the probability of emitting the rest of the
sequence if the model was in state Ej at time t+ 1. From this we can estimate

Aij =
∑
d

∑
t α(t, i) aij ej(O

d
t+1) β(t+ 2, j)

Pr(Od)
(5.9)

Note that instead of explicitly labeling the data and then counting state transitions as we
do with labeled data, the association of symbols and states is implicit in the re-estimation
process in the inner loop of the algorithm.

Ei(σ) is the expected number of times that σ is emitted from state Ei:

Ei(σ) =
∑
d

Pr(qdt = Ei, O
d
t = σ|Od, λ) (5.10)

=
∑
d

∑
{t|Odt=σ} α(t, i) β(t+ 1, i)

Pr(Od)
. (5.11)

Again, the quantities on the right hand side can be calculated using the Forward and
Backward algorithms. Finally, the initial probability πi is given by

πi =

k∑
d=1

p(qd1 = Si|Od, λ) (5.12)

=
k∑
d=1

Id(i)

Pr(Od)
(5.13)

It can be proven that if current estimate is replaced by these new estimates then
the likelihood of the data will not decrease (i.e. will increase unless already at a local
maximum/critical point). See Durbin, Section 11.6 for discussion of avoiding local maxima
and other typical pitfalls with this algorithm.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 109

Chapter 5 Hidden Markov Models

Figure 5.11: A HMM for modeling fixed length motifs. Note that this HMM is equivalent
to a Position Specific Scoring Matrix.

The Baum-Welch algorithm estimates the values of the parameters from training data
and, thus, implicitly discovers the motif. Baum-Welch does output an explicit description
of the motif. To determine the motif explicitly, the Viterbi or posterior decoding are used
to label each of the input sequences.

5.7 Profile HMMs

In 1994, Krogh, Haussler2 and colleagues introduced a generic HMM topology specifically
designed to model conserved sequence motifs. It captures the propensity to observe specific
amino acids or nucleotides at each position in a pattern and allows for insertions and
deletions. This topology, called a Profile HMM, can be customized for a broad range of
conserved motifs by selecting the appropriate length for a given motif and initializing the
parameters to capture the specific properties of the motif.

Here, we introduce the features of the Profile HMM model by showing how it could be
used to model the WEIRD motif based on the following alignment, which has no gaps and no
positional dependencies:

WEIRD

WEIRD

WEIRE

WEIQH

We can recognize the WEIRD motif using an HMM with the simple topology shown in
Fig. 5.11, where the transitions probabilities are

aMi,Mj

{
1, if j = i+1

0, otherwise
.

2Krogh, A., Brown, M., Mian, I. S., Sjolander, K., and Haussler, D. (1994). Hidden Markov models in
computational biology: Applications to protein modeling. J. Mol. Biol., 235:1501-1531.

110 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

5.7 Profile HMMs

Figure 5.12: An HMM representing the null model. Each symbol, σ, is emitted with
probability p(σ), the background frequency of σ.

The emission probabilities can be estimated from labeled training sequences. Given an
ungapped multiple alignment of k sequences, the emission probabilities are

eMi(σ) =
c[σ, i]+b

k+b|Σ|
, (5.14)

where c[σ, i] is the number of σ’s at position i in the training motif and b is a pseudocount.
The Start and End states (M0 and M6 in Fig. 5.11) are silent. Note that eMi(σ) is equivalent
to q[σ, i], the frequency matrix that we derived for the PSSM example using pseudocounts.
Moreover, when EMi(σ) = c[σ, i], Equation 5.14 is equivalent to the general definition of
emission probabilities for an HMM given in Equation 5.6.

In order to assess whether a new sequence, O, contains an instance of the WEIRD motif,
we calculate a likelihood ratio:

Pr(O|HA)

Pr(O|HO)
.

Our alternate hypothesis, HA, is that O is an instance of the motif represented by the
HMM in Fig. 5.11. In order to obtain a likelihood ratio, we also need a model of the null
hypothesis, H0, that the amino acids in O were sampled from the background distribution.
Fig. 5.12 shows a very simple null model. In this model, all transition probabilities are equal
to one. The emission probability e(σ) is defined to be p(σ), where p(σ) is the background
frequency of residue σ.

Given these two models, we can score O by calculating the probability that O was
emitted by the Profile HMM in Fig. 5.11 and comparing it with the probability that O was
emitted by the background model in Fig. 5.12. For example, if O = O1O2O3O4O5, then
Pr(O|HA) is equal to

πMO
·eM1(O1) ·aMOM1 ·eM2(O2) ·aM2M3 ·eM3(O3) ·aM3M4 ·eM4(O4) ·aM4M5 ·eM5(O5) ·aM5M6 .

Since the initial and transition probabilities are equal to one (πMO
= 1; aMiMi+1 = 1, 0 ≤

i ≤ 5), this reduces to

Pr(O|HA) = eM1(O1) · eM2(O2) · eM3(O3) · eM4(O4) · eM5(O5)

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 111

Chapter 5 Hidden Markov Models

or

Pr(O|HA) =
5∏
t=1

eMt(Ot) .

The probability that O was emitted by the background model is
∏5
t=1 p(Ot). The score of

sequence O is the log likelihood ratio

5∑
t=1

log
eMt(Ot)

p(Ot)
,

which is equivalent to
∑5

t=1 S[Ot, i], the score we would have obtained with the PSSM for
the WEIRD motif.

We now have an HMM that is equivalent to a PSSM for a conserved motif. It can be
used to identify motifs of a fixed size, but not cannot handle variations in length. We next
extend this model to accommodate insertions and deletions. We can modify the basic HMM
to recognize motif instances with insertions, such as O = WECIRD, by adding an insertion
state between any two match states, Mi and Mi+1, as shown in Fig. 5.13a. The emission
probabilities for the insertion state are the background frequencies.

We also wish to recognize motif instances with deletions, e.g., O = WERD. One approach
to capturing such deletions would be to add edges allowing us to jump over any set of
match states. An example of this is shown in Fig. 5.13b. The disadvantage to this approach
is that the number of transitions grows rapidly as the number of match states increases. To
infer the transition probabilities, we would need a very large set of training data, in which
all deletions of all possible sizes were represented. An alternative approach that requires
fewer parameters is to model long deletions as sequences of short ones, as seen in the HMM
in Fig. 5.13c.

The canonical Profile HMM, shown in Fig. 5.14, combines these features. A Profile
HMM has a column containing a Match, an Insertion, and a Deletion state for each position
in the conserved pattern. States Mi, Ii, and Di correspond to the ith position in the pattern.
We refer to the number of Match states, not including the silent Start and End states, as
the length of a Profile HMM. A leading insertion state, I0, allows for patterns that occur in
the middle of a longer sequence. If the pattern ends before the end of the sequence, the
remaining sequence is emitted by the insertion state In, where n is the last position in the
pattern.

Note that in a Profile HMM there is a path from the Start state, M0, to the End state,
Mn+1, that passes only through Insertion and Deletion states. Thus, a Profile HMM can
emit a sequence that does not contain an instance of the pattern. Such a sequence would
have a low probability, compared with a sequence generated by the Match states.

112 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

5.7 Profile HMMs

(a) Insertion model

(b) Deletion model with many transitions

(c) Deletion model with fewer transitions

Figure 5.13: (a) Additional insertion states enable recognition of pattern instances with
insertions. This example allows for the insertion of one or more symbols between positions 2
and 3 in the pattern. (b) Adding an arc between every pair of sequences allows for deletions,
but the number of transitions grows rapidly with the number of Match states. (c) In this
topology, the number of transitions grows linearly with the number of Match states.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 113

Chapter 5 Hidden Markov Models

Figure 5.14: A profile HMM of length 5

114 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

5.7 Profile HMMs

Parameter estimation

The emission and transition probabilities of a Profile HMM must be estimated from data.
If the sequences are aligned and the position of the motif in the alignment is known, then
we have labeled training data. In other words, it is possible determine from the alignment
which state is associated with each symbol in each sequence. In that case, all we need to
do is determine the number of Match states in the Profile HMM, set up the topology, and
calculate the parameter values from the labeled data.

Given unlabeled sequences that are known to have a common pattern, we can use the
Profile HMM to discover the pattern using the Baum-Welch algorithm to infer the values
of the parameters. Once the parameters have been estimated, we use the Profile HMM to
label the data. Finally, we construct a multiple sequence alignment by planning symbols
with the same label in the same column of the alignment. We give an example of each case
below.

Constructing a profile HMM for a variable length motif with labeled data:
Profile HMMs, like the one show in Fig. 5.14, can be used to model variable length motifs.
We illustrate this process with this example:

VG--H

V---N

VE--D

IAADN

The length of the Profile HMM should correspond to the typical length of the motif. A
rule of thumb is to use the average of the length of the training sequences. The lengths of
the above sequences are 3, 2, 3, and 5 (before the gaps were inserted), respectively, yielding
an average length of 3.25. This suggests that a Profile HMM of length 3 is appropriate
for modeling this pattern. Our HMM will have a silent Start state M0, Match states
M1,M2,M3, Insertion states, I0, I1, I2, I3, Deletion states, D1, D2, D3, and a silent End
state, M4.

The Insertion and Match states emit the 20 amino acids (for protein motifs), or the
four nucleotides (for DNA and RNA motifs). Deletion states emit the indel symbol, e.g.
“−”. For our Profile HMM, the emission probabilities of the Insertion and Deletion states
might look like this:

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 115

Chapter 5 Hidden Markov Models

eDj (σ) = 0, eDj (−) = 1

eIj (σ) = p(σ), ∀Ij

where p(σ) is the background probability of residue σ. In order to estimate the parameters
for the Match states, we assign labels to the data using the multiple alignment as a guide.
Columns in the alignment that have gaps in less than half of the rows correspond to Match
states. Those with more gaps in than half of the rows correspond to Insertion states:

V G - - H
V - - - N
V E - - D
I A A D N
M1 M2 I2 I2 M3

This yields the following labeled sequences:
V G H
M1 M2 M3

V H
M1 D2 M3

V E D
M1 M2 M3

I A A D N
M1 M2 I2 I2 M3

Note that when a gap (‘ ’) appears in a Match column (Mi), it is labeled as a deletion (Di).
For example, the first gap in the second sequence is labeled Di.

From these labeled sequences, we can estimate the emission and transition probabilities
from Equations 5.6 and 5.7. For example, using b = 1 as a pseudocount, we obtain

eM1(V) =
3 + 1

4 + 20
.

Similarly, the probability of a transition from M2 to I2 is

116 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

5.7 Profile HMMs

aM2I2 =
1 + 1

(2 + 1) + (1 + 1) + (0 + 1)
.

The three sums in parentheses in the denominator correspond to all possible transitions
out of state M2. The first term in each sum in the number of transitions observed in the
training data; the second term is a pseudocount. In the training sequences in our example,
there are two transitions from M2 to M3, one transition from M2 to I2 and no transitions
from M2 to D3. The other emission and transition probabilities are calculated the same
way. The model always starts in M0, so πMj = 0, when j>0.

Modeling unlabeled data with a Profile HMM: To discover a pattern in unlabeled
data requires the following steps:

1. Estimating the length: Given a set of unaligned sequences, where each sequence
is an instance of the pattern, we set the length of the HMM (i.e., the number of
non-silent Match states) to L, where L is the average sequence length. An example of
this type of input would be sequences approximately 50 residues long, where each
sequence corresponds to an instance of the Ig domain.
Alternatively, we might be given sequences that contain a pattern, but are much
longer than the pattern. In this case, we must rely on biological knowledge to obtain
an initial estimate of the pattern length. The initial estimate of the pattern length
can be adjusted later using model surgery (Step 6).
An example of this type of input would be a set of protein sequences, typically several
hundred residues in length, each of which contains an instance of an unknown domain.
In this case, you might estimate the length of the pattern to be approximately 100,
since that is the length of a typical protein domain.

2. The topology: Construct a Profile HMM with L+ 2 Match states, L+ 1 Insertion
states, and L Deletion states. M0 and ML+1 are silent states corresponding to the
Start state and the End state.

3. Parameter estimation: Guess “good” initial parameters (e.g., aMi Mj � aMi Ij

and aMi Mj � aMiDj) and train the model using the Baum Welch algorithm.

4. Determining the motif: Use the Viterbi algorithm or posterior decoding to infer
the state path that emitted each sequence. The Viterbi recurrence can be greatly
simplified and expressed in terms of log odds for the special case of Profile HMMs
(Durbin, pp 108-110). The log odds formulation avoids underflow and reduces length
effects. This was not covered in class and you will not be tested on it. Note the

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 117

Chapter 5 Hidden Markov Models

similarity to the dynamic programming algorithm for pairwise alignment.

5. Multiple Sequence Alignment: The most likely paths for each sequence obtained
from decoding can be used to obtain a multiple alignment of the input sequences. If
symbols Oct and Odu were emitted by the same Match state, then align position t in
sequence Oc with position u in sequence Od. See Ewens and Grant, p 337 - 339 for a
discussion and example of multiple sequence alignment using Profile HMMs.

6. Model surgery: The topology of the model can be iteratively refined. If more than
half of the sequences enter the Delete state, Dj , then remove Mj , Dj , and Ij from the
topology. If more than half of the sequences enter the Insertion state, Ij , then add
Match, Insertion and Deletion states between positions j and j + 1.

7. Re-estimate the parameters: If the states change due to model surgery, the
parameters must be re-estimated. Label the multiple alignment with the new states
and calculate the transition and emission probabilities as described above for labeled
data. If the number of states that changed is a substantial fraction of the entire HMM,
then you may obtain better results by retraining with the Baum Welch algorithm.

Compared with the exact dynamic programming algorithm for multiple sequence align-
ment, which runs in exponential time, this approach can align many sequences quickly.

Pattern recognition with profile HMMs: Once you have constructed your Profile
HMM, how do you determine whether a new, unlabeled sequence, O, contains the motif?

If you have a model for a suitable null hypothesis, H0, you can obtain a log odds ratio,

log
Pr(O|HA)

Pr(O|H0)
,

using the Forward algorithm to determine the probability of the sequence for each model.
Typically, HA would be represented by a profile HMM and H0 by a background model such
as the one shown in Fig. 5.12. This gives a score, but does not infer the location of the
motif.

Alternatively, you can find the most likely path using the Viterbi algorithm or posterior
decoding. The location of the motif corresponds to the symbols emitted by the Match
states. If no symbols were emitted by Match states, then the motif is not present in O.

118 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

Chapter 6

Searching Sequence Databases

The goal of a database search is to find all “high-scoring” local alignments (i.e., local
alignments with a score above a given threshold) that are significantly more similar than
expected by chance. A database search can be used to find homologous sequences1 for
structural and functional predictions and evolutionary analyses. Another application is to
compare a protein or a cDNA sequence with genomic DNA, e.g. to find gene location or
identify intron/exon boundaries. The Basic Alignment Local Search Tool (Blast) is the
most widely used approach to searching sequence databases. Blast has two components: a
fast heuristic for searching for similar sequences, discussed in Section 6.1, and a statistical
framework for evaluating the results of the search, discussed in Sections 6.2 and 6.3.

6.1 The Blast Heuristic

Database searching is essentially a local alignment problem. In theory, dynamic programming
could be used to search a database for sequences that are similar to a query sequence.
However, the running time for dynamic programing is O(mn), where m is the length of the
query sequence and n is the length of the database.

For large databases, the complexity of this approach is prohibitive. The “typical” amino
acid query sequence is 250 to 300 residues long, although query sequences can be much
longer. For example, the genomic sequence of the BRCA2 gene, including introns and
exons, is 84,193 base pairs long. The length of the transcribed BRCA2 mRNA is 11,386
base pairs, including untranslated regions. The BRCA2 amino acid sequence contains
3418 residues. Currently, the GenBank nr database, which includes non-redundant coding
sequence translations and sequences from PDB, SwissProt, PIR and PRF (excluding
environmental samples from whole genome sequencing projects), contains more than 200
billion base pairs and almost 64 billion amino acids. Thus, in a typical search, the search

1Sequences that share common ancestry.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 119

Chapter 6 Searching Sequence Databases

Non-redundant (nr) sequence database

Nucleic Acid Sequences Amino Acid Sequences

Date: Nov 20, 2021 1:54 PM Nov 20, 2021 2:34 AM

Letters: 590,861,766,819 165,910,077,605

Sequences: 76,377,181 443,397,996

space size mn is 19 trillion for amino acids or 200 trillion for nucleotides. Instead of dynamic
programming, heuristics are used to search databases of this size.

Blast is a heuristic that searches a database for significant local alignments in less than
O(mn) time. Blast takes as input a query sequence, Q, of length m and a database, D,
of length n. The database is a series of concatenated nucleic or amino acid sequences
D1, D2, . . . Dj

The Blast literature uses the following terminology:

• A Segment Pair is an ungapped local alignment.

• A Maximal Segment Pair (MSP) is a segment pair whose score cannot be improved
by extending or shortening the alignment.

• A High scoring Segment Pair (HSP) is a maximal segment pair with score S ≥ ST ,
where ST is a similarity score threshold (typically defined by the user).

The original Blast heuristic, called “Blast-90” here because it was published in 19902,
does not handle alignments with gaps. Gapped Blast, published in 19973, includes a
provision for gapped alignments, as well as several modifications for improved efficiency.

6.1.1 Blast-90

Given a query sequence, Q, of length m and a database, D, of length n, Blast attempts to
find all database sequences that contain a maximal segment pair with a score above the
reporting threshold, ST . Instead of comparing the query to every sequence in the database,
the Blast heuristic restricts the search for high scoring ungapped alignments to regions of
the database that are “promising”; i.e., that are likely to contain an HSP. This strategy
requires a fast method for predicting which regions contain an HSP and which do not. Blast
does this by using a fast scan to find tiny, high-scoring matches, called “hits,” and then
extending the hit to obtain HSPs with scores at least ST . A hit is an ungapped alignment

2Karlin and Altschul, Methods for assessing the statistical significance of molecular sequence features by
using general scoring schemes, 1990. PNAS, 87:2264-2268.

3Altschul, et al. Gapped Blast and PSI-Blast: a new generation of protein database search programs,
1997. Nucleic Acids Res., 25(17): 3389-3402.

120 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

6.1 The Blast Heuristic

of a word in the query sequence and a word in the database that has a score of at least T ,
where T is a Blast performance parameter. A word or w-mer is a string of w consecutive
letters. Typically, w is small (less than 10 residues).

The original Blast-90 heuristic has three main steps:

1. Construct a list, L, containing high scoring words derived from the query sequence.

DNA: L contains the m− w + 1 words of length w that are subsequences of Q.

Proteins: For each w-mer, z, in Q, add to L all w-mers that have a similarity
score ≥ T , when aligned with z using a suitable substitution matrix. The values
of T and w are pre-specified parameters.

The entries in L are stored in a hash table for fast retrieval. Note that some words in
Q will not appear in L. Specifically, any word with a score less than T when aligned
with itself will not appear in L.

2. Find hits by scanning the database for w-mers that correspond to a word in L.

Note that one could also make a list of the high scoring words in the database and
compare each w-mer in the query sequence with all words in that list. Intuitively this
might seem like a better option because the same hash table could be used for every
query and would only have to be rebuilt when the database was updated. However,
this would result in a much bigger hash table. In addition, this approach incurs a
disk access performance penalty because it requires that the database be accessed
randomly rather than scanned sequentially.

3. Extend hits to obtain HSPs with scores at least ST .

The time spent on this step is reduced by using a score cutoff. If the score of the
extended alignment is lower than the best score seen so far by the amount of the
cutoff, then Blast stops extending the alignment in that direction.

The underlying assumption of the Blast heuristic is that most HSPs will contain a hit
and that hits that are not contained in an HSP are rare. If a region contains an ungapped
alignment with score at least ST , but there is no word in that alignment with score at least
T , then Blast will not discover and report this HSP, resulting in a false negative. On the
other hand, if extending a hit does not lead to an ungapped alignment with score at least
ST , then the time spent on this extension is wasted. The trick is to select w and T to
obtain a good balance between false negatives and unnecessary extensions. These scenarios
are shown graphically in Fig. 6.1.

Three parameters influence the precision, recall, and speed of the heuristic. Increasing
the value of ST (i.e., making the threshold more stringent) will result in fewer false positives
and more false negatives. For a given ST , the values of w and T are selected to minimize the
number of false negatives and the search time. Steps 1 and 2 in the heuristic are relatively

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 121

Chapter 6 Searching Sequence Databases

Figure 6.1: An unnecessary extension (left), a successful identification of a matching sequence
(middle), and a false negative (right).

fast. Step 3 is slow. Therefore, the goal is to select values for the parameters w and T
that limit the number of hits that must be extended in Step 3 without incurring too many
false negatives. If the hit threshold, T , is increased, the number of hits - and therefore the
number of extensions - will decrease. However, the number of regions that contain a local,
ungapped alignment with score greater than ST , but do not contain a hit, will also increase,
resulting in more false negatives. Similarly, decreasing w will decrease the running time and
increase the number of false negatives. Note that only ST influences the false positive rate,
but all three parameters contribute to the false negative rate. A false negative can occur
because the heuristic fails to find a related sequence. This is determined by the values of w
and T . A false negative also occurs when the search returns a related sequence, but it is
not reported because it has a score below the reporting threshold, ST .

Altschul and his colleagues used simulation studies to estimate the probability, for a
given set of parameter values, that hits found in the database would in fact be contained in
local, ungapped alignments with score at least ST . This is discussed in detail in Altschul
et al., 1990, which is on electronic reserve. Briefly, they used a statistical approach to
minimize the probability of unnecessarily attempting to extend a hit. They determined
empirically that a choice of w = 4 and T = 17 offered a good compromise between the false
negative rate and the running time. Note that the values of w and T have been changed
since 1990. Different values are used today.

122 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

6.1 The Blast Heuristic

6.1.2 Gapped and Two-Hit Blast

In 1997, three innovations to the Blast algorithm were introduced2 to address issues in
sensitivity and running time:

• Gapped extensions

• Two hit Blast

• Position-Specific Iterative (PSI) Blast

We discuss the first two innovations in detail below.

Despite the early success of the Blast heuristic as a sequence database search tool, the
exponential growth of sequence databases created a need for a faster heuristic. By 1997,
parameters had been reduced to w = 3 and T = 13, resulting in many more attempted
ungapped extensions in Step 3 of the heuristic on page 121. Since ninety percent of the
running time was expended in the third step of the procedure, improving efficiency required
reducing the number of extensions without loss of sensitivity.

A second difficulty with the Blast-90 heuristic is that it only finds ungapped alignments.
A simple solution might be to find two (or more) MSPs and merge them later. For this to
work, however, the heuristic must be able to identify the individual MSPs so that they can
be merged. This, in turn, requires that each MSP contain a hit (a word match with score
at least T). The probability of finding both MSPs can be increased by decreasing the word
score threshold from T = 13 to T = 11, but this will increase the number of hits found in
Step 2, the number of unnecessary extensions in Step 3, and the running time.

Instead, Gapped Blast uses a two phase protocol for selecting candidate regions for
a full, gapped alignment: first, ungapped extensions are attempted in those regions that
contain a word with score at least T = 13. To limit the computational cost, the ungapped
extension is terminated if the alignment score drops below Xu, the ungapped extension
cutoff. If the score of the resulting MSP exceeds a preset minimum score, then a gapped
extension (using dynamic programming) is attempted. Again, to limit the computational
cost of this step, the extension is terminated if the alignment score drops below Xg, the
gapped extension cutoff. If the score of this gapped alignment exceeds ST , the resulting
match is reported.

This innovation delivered both gapped alignments and higher sensitivity, yet still
achieved an improvement in running time. By increasing T from 11 to 13, the number of
ungapped extensions was reduced by two thirds. Using the ungapped extensions as a filter
for identifying candidates for gapped extension resulted in one gapped extension per 4000
ungapped extensions. Although the computational cost of gapped extensions is 500 times
the cost of ungapped extensions, the total running time was reduced by more than a factor
of 2.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 123

Chapter 6 Searching Sequence Databases

Figure 6.2: In Two-Hit Blast, an extension is triggered if a pair of hits is found on the same
diagonal within a distance of A.

The second innovation, Two-Hit Blast, delivered further performance improvement
without unduly compromising sensitivity. The underlying rationale is that an HSP will
typically contain more than one hit. Better specificity, resulting in fewer extensions, can be
obtained by reducing the threshold, T, to obtain more hits, but requiring two hits on the
same diagonal in close proximity in order to trigger an ungapped extension (Fig. 6.2).

In Two-Hit Blast, the hit score threshold was reduced to T = 11. Ungapped alignments
are attempted only when two hits are found on the same diagonal that are separated by a
distance no greater than A = 40. This modification resulted in 3.2 times as many hits, but
decreased the number of extensions by 0.14, yielding an additional two-fold speedup. An
example showing the reduction in the number of extensions with Two-Hit Blast is shown in
Fig. 6.3.

Combining these two innovations results in the following procedure:

1. Find hits of length w with a similarity score of at least T.
2. If database sequence Dj contains two hits on same diagonal separated by a distance

of at most A, perform an ungapped extension to obtain an MSP using cutoff, Xu.
3. If the MSP score in Step 2 exceeds Sg, perform a gapped extension using dynamic

programming with cutoff, Xg.
4. If the gapped local alignment score obtained in Step 3 exceeds ST , report matching

sequence, Dj .

6.1.3 PSI-Blast

PSI-Blast, the third innovation, yields improved sensitivity by constructing a Position
Specific Scoring Matrix (PSSM) of sequences with significant similarity to the query

124 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

6.2 Blast Statistics

Figure 6.3: Hits with T=11 (.) and T=13 (+) in an alignment of Broad bean leghemoglobin and
Horse beta globin, reproduced from Altschul et al. (1997). This alignment contains 37 hits when
T=11, but only two pairs satisfy the requirements for an extension. In contrast, 15 hits are obtained
when T=13, which would result in 15 extensions with the original 1990 Blast algorithm.

sequence. PSI-Blast constructs a PSSM using an iterative process. In the first iteration,
PSI-Blast behaves like regular Blast: the query sequence is compared with sequences
in the database and a set of HSPs is retrieved. A PSSM is constructed from a local
multiple alignment of these matches. The resulting PSSM captures the distribution of
amino acid sequences observed at each conserved position in the local multiple alignment
obtained from the HSPs. In the next iteration, rather than just searching with the query
sequence, candidate matching sequences are scored based on their similarity to the PSSM.
Since the PSSM contains more information than a single sequence, some sequences that
were not significantly similar to the query sequence alone may be significantly similar to
the PSSM. A new PSSM is constructed that incorporates these new matching sequences
obtained in the second iteration and the process is repeated. In each subsequent iteration,
candidate sequences are compared to the PSSM from the previous iteration, until no further
improvement in sensitivity is obtained.

6.2 Blast Statistics

In the previous section, we discussed the Blast search heuristic. Here, Blast statistics,
including (1) the statistical significance of finding a match with score S, and (2) properties
of sequence statistics and substitution matrices that influence the specificity and sensitivity
of database searches.

Given a query sequence, Q, of length m and a database, D, of length n, where D is

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 125

Chapter 6 Searching Sequence Databases

a series of concatenated amino acid sequences D1, D2, D3, . . ., Blast attempts to find all
matching sequences Dj that have an MSP with score S ≥ ST , where ST is a similarity score
threshold (typically user defined). The score of the MSP between Q and Dj is the sum of
the scores of the aligned residues

S =
∑
i

SN [σ(i), τ(i)], (6.1)

where σ and τ are the subsequences of the query and the matching sequence that participate
in the MSP and SN is a suitable scoring matrix with evolutionary divergence, N . Fig. 6.4
shows an MSP of length l between query sequence, Q and matching sequence, Dj .

The challenge we face in searching a sequence database is to distinguish between
sequences that are similar to the query due to shared ancestry and sequences that are
similar by chance. We have already introduced a probabilistic framework with log-odds
scoring matrices in which SN [x, y] reflects the relative probabilities of observing x aligned
with y under the alternate hypothesis that Q and Dj are related with divergence N and the
null hypothesis of chance similarity. However, while the use of a log odds scoring matrix
provides a hypothesis testing framework for scoring, it does not account for chance in the
context of a database search. To consider whether the sequences retrieved in a database
search are significant, we must also consider the length of the query sequence and the size
of the database. This is analogous to searching for four-leaf clover. If you search a square
yard of lawn for four-leaf clover and find five clover sprigs with four leaflets, you may truly
have the luck of the Irish. However, if you search for four-leaf clovers in a square mile,
finding five clover sprigs with four leaflets may be unremarkable.

An approach to assessing the statistical significance of similarity scores in a database
search was derived in a series of papers by Sam Karlin and Stephen Altschul. Here, we give
a sketch of the approach taken to derive these statistics. The details of this derivation are
outside the scope of this course. A good presentation is given in the textbook by Ewens
and Grant4.

4Statistical Methods in Bioinformatics: An Introduction. Ewens, W., Grant, G. Springer; 2nd edition

Figure 6.4: An MSP between query sequence, Q and matching sequence, Dj . The MSP is l residues
long and starts at residue a+1 in Q and at residue b+1 in Dj . We use σ and τ , respectively, to
designate the subsequences of Q and Dj that participate in the alignment.

126 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

6.2 Blast Statistics

To estimate the statistical significance of matching sequences, Karlin and Altschul
defined a null hypothesis for database searches and then estimated the distribution of scores
of MSPs given that null hypothesis. The null hypothesis is that Q is a sequence of m amino
acids that are randomly sampled such that amino acid, x, occurs with the background
probability px. Similarly, the database D is a randomly sampled sequence of length n,
in which x occurs with probability px. The background probabilities are the amino acid
frequencies observed in typical proteins sequences; for example, the amino acid frequencies
in GenBank.

Figure 6.5: A histogram of hypothetical MSP scores under the null hypothesis that the query and
matching sequences are unrelated. The E-value of a match with score S is the number of chance
MSPs with a score at least S, i.e., the number of points to the right of the red bar.

The significance of a matching sequence with score S retrieved in a Blast search is
expressed as an “E value”. E is defined as the expected number of MSPs with score at
least S under the null hypothesis. Informally, we can think of the E value as the number of
chance matches with score at least S that we would expect to see in a search of a database
of size n with a query of length m. In the histogram of hypothetical MSP scores in Fig. 6.5,
E corresponds to the sum of the bars to the right of the red line.

Karlin and Altschul estimate the distribution of MSPs by modeling an alignment under
the null hypothesis as a random walk. A simple example of this is an ungapped alignment
of two nucleic acid sequences, where matches are assigned a score of +1 and mismatches are
assigned a score of −1. In the random walk corresponding to an ungapped alignment under
this simple scoring scheme, our drunk makes a step in the positive direction for every match

(2005)

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 127

Chapter 6 Searching Sequence Databases

Figure 6.6: An alignment of nucleotide sequences and the corresponding random walk. Ladder
points shown in black.

in the alignment and a step in the negative direction for every mismatch. The cumulative
alignment score for the first i positions in the alignment corresponds to the position of the
drunk after i steps in the random walk. Fig. 6.6 shows the trajectory of the drunk for a
pair of aligned nucleotide sequences. An amino acid alignment can also be represented as a
random walk. Unlike the nucleic acid case, the step sizes with amino acids are not uniform.
Rather, the size of the step corresponding to site i is SN [σ[i], τ [i]], the score of the pair of
residues aligned at that site.

We define a ladder point, L, to be a position in the random walk where a new low
occurs. The ladder points in Fig. 6.6 are shown in black. Let Lj and Lj+1 be a pair of
successive ladder points that are not immediately adjacent to each other. We define the
random variable Yj to be the position where the cumulative score achieves the maximum
value between Lj and Lj+1. The segment of the walk from a ladder point Lj to the next
maximum Yj is called an excursion. In the example in Fig. 6.6, there are four excursions of
length greater than zero: from positions 3 to 5, 8 to 9, 11 to 16, and 22 to 23.

Each excursion in the random walk corresponds to a maximal segment pair. For example,
the excursion that starts at position 11 corresponds to the ungapped alignment

TGAGC

TGTGC

which has a score of 3. Note that the ladder point itself is not included in alignment; since
ladder points are new lows by definition, they must correspond to mismatches. The score
of an ungapped local alignment that includes the ladder point can always be improved

128 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

6.2 Blast Statistics

by removing the ladder point. The distribution of excursion lengths in random walks can
therefore be used to model the null distribution of MSP scores. Karlin and Altschul applied
known theory about the distribution of excursions in random walks to derive the statistics
of HSPs of score at least S under the null hypothesis. This theoretical development required
the following assumptions:

1. The scoring system must allow for at least one positive step and one negative step;
i.e., there exists some x and y in Σ, such that SN [x, y] ≥ 0 and there exists some z
and w such that SN [z, w] < 0.

2. The expected step size is negative; i.e.,
∑

x,y pxpy S
N [x, y] < 0.

Note that these requirements are very similar to the requirements for local alignment scoring
that we proposed based on intuitive arguments at the beginning of the semester. The PAM
and BLOSUM matrices both satisfy these conditions. They contain both positive and
negative entries and the expected score is negative.

Under these assumptions, Karlin and Altschul derived an expression for the expected
number of MSPs with score at least S under the null hypothesis:

E = Km′n′e−λS , (6.2)

where K and λ are constants that depend on the scoring matrix, SN , and m′ and n′ are the
effective lengths of Q and D after they have been adjusted for edge effects. The correction
for edge effects reflects the fact that an alignment that starts near the end of the query
sequence will not be long enough to achieve a score of at least S. For example, a segment
pair that starts at the very last position in Q will be one residue long and can have a score
no higher than the largest value in SN . The effective length m′ is the last possible starting
position in Q for an ungapped alignment with an expected score of ST . Similarly, n′ is the
effective length of the database, accounting for the fact that an HSP cannot start at the
end of a database sequence, Dj . If the database is the concatenation of a series of unrelated
protein sequences, then the effective length must also account for the fact that a match
cannot begin at the end of one sequence and continue on into the beginning of the next one.

Equation 6.2 makes intuitive sense. First, the expected number of false positives, E,
is proportional to the size of the search space, m′n′. This is reasonable. If we search a
bigger space, we expect to find more matching sequences by chance. Second, E decreases
exponentially with S. This is also reasonable. The higher the score, S, the lower the
probability of finding a match with a score as least as high as S by chance.

In the Blast web interface, the user specifies an E value threshold, ET , that corresponds
to the expected number of chance matches that the user is willing to tolerate. The current
default is ET = 0.05. The minimum score threshold, ST , corresponding to ET , is calculated
from Equation 6.2 “behind the scenes” and used to limit the scope of the search.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 129

Chapter 6 Searching Sequence Databases

Normalized bit scores: The score, S, in Equation 6.2 is the raw score, obtained by
summing the scores of each pair of amino acids in the alignment (Equation 6.1). The current
implementation of Blast does not report the raw score of an MSP. Instead, it reports the
normalized bit score, which is a linear transformation of the raw score:

Sb =
λS − lnK

ln2
. (6.3)

This gives an expression relating the E value to the bit score that is independent of the
parameters, K and λ:

E = m′n′2−Sb . (6.4)

Bit scores have several advantages. First, Equation 6.4 is simpler than Equation 6.2. Second,
with normalized bit scores, E values from database searches with different scoring matrices
can be compared since all dependence on the scoring matrix (i.e., the parameters K and λ)
is included in the bit score. Finally, bit scores are in units of bits (not surprisingly), which
will be convenient when we discuss the information content of alignments in Section 6.3.2.

6.3 Limitations on retrieval accuracy

Another question of importance is the extent of the statistical power available in a database
search to retrieve related sequences, while excluding unrelated matches. A database search
can be viewed as a classification problem, in which we attempt to assign scores to database
sequences in such a way that related sequences have higher scores than unrelated sequences.
If there is no overlap between the score distributions of related and unrelated sequences,
then it is possible to achieve perfect precision and recall. (In Information Retrieval, precision
is the number of items retrieved that are true positives; in this case, sequences that are
truly related to the query. Recall is the number of true positives in the database that are
retrieved by the search.) Failing that, we would like the overlap in the score distributions to
be as small as possible (see Fig. 6.7). Several factors contribute to the size of this overlap,
including the length of the query sequence, the matrix used to calculate MSP scores, and
the frequency of amino acid pairs found in the alignments of related sequences.

6.3.1 Target frequencies

The similarity between the query sequence and a given database sequence is represented by
the score of the highest scoring maximal segment pair between the two sequences. Therefore,
discrimination between related and chance matches depends on the distribution of related
and chance MSP scores. The greater the overlap between these distributions, the more
difficult it is to distinguish related matches from chance. MSP scores, in turn, depend on
the difference between the amino acid pair frequencies in related and chance MSPs and the
substitution matrix used to score those pairs. For any given query sequence, Q, there exists

130 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

6.3 Limitations on retrieval accuracy

Figure 6.7: The degree of overlap between distributions of the scores for related (red)and chance
(black) MSPs represents a fundamental trade off between false positives and false negatives in a
database search. The best accuracy that can be obtained is highest in the hypothetical scenario on
the right where the overlap is small and lowest in the scenario on the left where overlap is big.

a set of characteristic amino acid pair frequencies, qQxy, corresponding to the frequency of x
aligned with y in alignments of Q with other proteins in the same family. Altschul calls
these “target frequencies.”

Recall that the PAM and BLOSUM matrices were both constructed in an explicit
log-odds framework, with entries of the form

SN [x, y] = c log2

qNxy
pxpy

,

where the denominator, pxpy, is the frequency with which the pair (x, y) will occur if amino
acids are sampled according to their background frequencies and the numerator qNxy is the
frequency of the amino acid pair (x, y) in alignments of related sequences with evolutionary
divergence, N .

In the construction of the PAM and BLOSUM matrices, the values of the qNxy were
estimated from training data. However, any scoring matrix that satisfies the assumptions
for Karlin Altschul statistics stated on page 129 implicitly defines a set of characteristic
target frequencies, regardless of how the matrix was derived. Given a scoring matrix S, the
theoretical target frequencies are specified by the equation

qSxy = pxpye
S[x,y]. (6.5)

The characteristic target frequencies of any arbitrary scoring matrix of, S, can also be
determined empirically using the following simulation strategy:

∀x, ∀y, Axy = 0
repeat {

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 131

Chapter 6 Searching Sequence Databases

Generate two amino acid sequences, s1 and s2, with background frequencies, px
Find the highest scoring MSP between s1 and s2 using matrix, S
For each aligned pair (x, y) in the MSP, increment Axy.

}

This procedure tabulates amino acid pairs that appear in MSPs that receive high scores
when scored with matrix S. In other words, these are the amino acid pairs that S “prefers”
and the relative frequencies of various pairs will correspond to the ratio of their scores in S.
An empirical estimate of the target frequencies can be calculated from the tabulated pair
counts:

qSxy =
Axy∑
h

∑
iAhi

.

For a sufficiently large number of iterations of the simulation strategy, the resulting empirical
target frequencies will converge to the theoretical frequencies specified in Equation 6.5.

What is the relationship between substitution matrices, target frequencies, and the
accuracy of Blast searches? Karlin and Altschul5 assert that the scoring matrix that
corresponds to qQjk, the target frequencies of Q

SN [x, y] = log
qQxy
pxpy

best discriminates between alignments of sequences related to Q and alignments of unrelated
sequences with chance similarity. To see why this is true, consider what happens if we assume
the opposite. Suppose that S∗ is the matrix that best distinguishes chance alignments from
related alignments, but that the theoretical target frequencies specified by S∗

q∗xy = pxpye
λS∗[x,y]

differ from qQxy. Since the two sets of frequencies differ, there must be some pair of amino

acids a and b such that qQab > q∗ab, and some c and d such that qQcd < q∗cd. Thus, we can
construct a new substitution matrix by increasing the score of (a, b) pairs relative to S∗[a, b]
and decreasing the score of (c, d) pairs relative to S∗[c, d]. Using this new substitution
matrix will increase the scores of MSPs in alignments of related sequences and therefore
yield greater discriminatory power. But that means that S∗[x, y] does not have the best
discriminatory power, leading to a contradiction.

The best discriminatory power is obtained by using the substitution matrix with
theoretical target frequencies that are identical to the observed amino acid pair frequencies
in the alignment of the query and matching sequence. However, when we start the

5Methods for assessing the statistical significance of molecular sequence features by using general scoring
schemes. Karlin, S. and Altschul, S. 1990, PNAS, 87:2264-2268.

132 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

6.3 Limitations on retrieval accuracy

search the matching sequence(s) is unknown. Moreover, in any given search, we expect
to retrieve multiple matching sequences spanning a range of evolutionary divergences, so
which substitution matrix should we use? Fortunately, Blast will give reasonable accuracy
as long as the observed pair frequencies in the alignments of interest do not deviate too
far from the theoretical target frequencies given in Equation 6.5. For many queries, a
search with the BLOSUM62 matrix will be sufficient. Greater accuracy can be achieved
over the entire range of sequence divergence by searching with the same query two or three
times using different matrices corresponding to different levels of divergence, e.g., PAM30,
BLOSUM62, and BLOSUM45 (see Table 2 in Altschul 19916 and Figure 1 in Altschul
19937). For any given database sequence that is related to the query, one of these matrices
will have target frequencies that are reasonably close to the amino acid pair frequencies
that are characteristic of the divergence between that sequence and the query.

6.3.2 Information content of substitution matrices

We can also approach the problem of discrimination between related and chance alignments
from an information theoretic perspective. As a warm up, let us first consider the problem
of determining whether a coin is biased. Each time the coin is tossed, there are two possible
outcomes: Heads (H) or Tails (T). According to the alternate hypothesis, HA, the coin is
biased; the probability of observing heads is q 6= 0.5. The null hypothesis, H0, says that
the coin is fair; the probability of observing heads is p = 0.5. How many tosses do we need
to observe before we are ready to decide whether the coin is biased or not?

For a single coin toss, the information available to discriminate between HA and H0 is
given by the Relative Entropy,

H =
∑

i∈{H,T}

qi log2

qi
pi
.

The first term, qi, is the probability of outcome i given HA. The second term is the log-odds
ratio of the probabilities of outcome i under the alternate and null hypotheses. H, the
number of bits of information available to distinguish between HA and H0 in a single toss,
increases as the deviation between qi and pi increases. This makes intuitive sense. If the
probability of observing heads with a biased coin is 0.8, only a few tosses will be required
to convince ourselves that the coin is, in fact, biased. If the probability of observing heads
with a biased coin is 0.51, a much longer sequence of trials will be needed.

The information content of a substitution matrix can be defined analogously. Instead of
considering a sequence of coin tosses, we consider a sequence of aligned amino acid pairs

6Amino acid substitution matrices from an information theoretic perspective, Altschul, S. 1991, J Mol
Biol, 219:555-565.

7A protein alignment scoring system sensitive at all evolutionary distances, Altschul, S. 1993, J Mol
Evol, 36:290-300.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 133

Chapter 6 Searching Sequence Databases

in an MSP. In this case, there are 210 possible outcomes, corresponding to all possible
combinations of two (possibly identical) amino acids, given that we do not distinguish
between xy and yx. The amount of information, per position, available to distinguish
between chance alignments and alignments in related sequences with divergence N is the
relative entropy,

HN =
∑
x,y

qNxy log2

qNxy
pxpy

, (6.6)

where the sum is over all 210 amino acid pairs. The first term is the probability of seeing x
aligned with y in related sequences. The second term is the log odds ratio of the probabilities
of observing x aligned with y in related sequences and in randomly sampled amino acid
pairs. As above, the more qNxy deviates from pxpy, the greater the information per position
available to determine whether a matching sequence is truly related to the query sequence.
Again, this makes intuitive sense. If the amino acid pairs commonly observed in alignments
of related sequences are only rarely observed by chance, then even a short alignment is
sufficient to convince us that a pair of aligned sequences is truly related. If the amino acid
pair frequencies in related and chance alignments are similar, we may need to see a very
long alignment before we can decide whether the sequences are related or not.

Since the log odds term in Equation 6.6 is proportional to SN [x, y], the right hand side
can be rewritten to yield

HN =
∑
x,y

qNxyS
N [x, y].

In other words, HN is the expected score for each position in an MSP in related sequences
with divergence N . Thus, we can think of HN as the relative entropy or information
content of matrix SN . That is, HN is the number of bits available to discriminate between
related and chance alignments in each position of an MSP with divergence N , when scored
with matrix SN [x, y]. The relative entropies of selected substitution matrices are given in
Table 6.1.

BLOSUM bits/site PAM bits/site % identity

30 2.57
60 2.00 63%

90 1.18 100 1.18 43%
80 0.99 120 0.98 38%
60 0.66 160 0.70 30%
56 0.52 200 0.51 25%
45 0.38 250 0.36 20%

Table 6.1: Relative entropies

134 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

6.3 Limitations on retrieval accuracy

6.3.3 Information content of alignments

In the previous section, we discussed the amount of information available to distinguish
between related and chance alignments, per position. Ultimately, the success of a database
search depends the total amount of discriminatory information available in alignments
between the query sequence and matching database sequences. Thus, the choice of a
substitution matrix for a specific search has practical implications for how the query length
may limit the amount of discriminatory information available to find related matches. The
discriminatory information available in an alignment depends on the number of bits per
position associated with the scoring matrix used in the search. The lower the information
per position, the longer the minimum alignment length required to distinguish between
related and chance alignments. How long does a sequence have to be in order to find a
statistically significant match at a given evolutionary divergence?

We approach this question by first asking how many bits are needed to assert with
confidence that the query and matching sequence are not similar by chance. To obtain a
rough estimate, we solve Equation 6.4 to obtain an expression for Sb in terms of m′, n′, and
the E value threshold, ET :

Sb = log2

(
m′n′

ET

)
. (6.7)

This is the minimum score, in bits, required to identify MSPs in related sequences at our
specified E value threshold in a search space of size m′ n′. For mathematical convenience,
let us consider an E value threshold of ET = 1, which is more permissive than the current
default, but not an unreasonable choice. Then

Sb = log2(m′n′),

is equivalent to the logarithm base 2 of the size of the search space. We can interpret this as
the number of bits required to specify the starting positions of the alignment in the query
and the database. To see this, note that the indices required to specify the starting position
of any alignment in a search space of size m′n′, in binary, would require log2m

′ bits to
specify the starting position in the query, and log2 n

′ bits to specify the starting position in
the database. Given a matrix with an information content of HN bits per position, a rough
estimate of the minimum length of an alignment required to obtain at least log2(m′n′) bits
of information is

log2(m′n′)

HN
. (6.8)

Since the alignments found in a given search can never be longer than the query length,
Equation 6.8 can be used to estimate an upper bound on the maximum evolutionary
divergence of sequences we can expect to retrieve with a particular substitution matrix,
given the lengths of the query and the database.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 135

Chapter 6 Searching Sequence Databases

Let’s try an example. How many bits are required to find meaningful alignments in
a database of 1 billion residues? For a typical amino acid sequence of effective length
m′ = 250 and a database of size n′ = 109,

log2(m′n′) = log2(2.5× 1011)

≈ 38 bits

are required to distinguish significant MSPs from chance. Since an MSP cannot be longer
than the query sequence, this suggests that in a database of length n = 109, a query
sequence must be at least 38/Hn residues long to distinguish significant HSPs from chance.
The PAM30 matrix has 2.57 bits per position (Table 6.1), so if the PAM30 matrix is used to
score alignments in matching sequences, then the shortest alignment for which significance
can be reliably determined is 38/2.57 or 15 residues long. Recall that the PAM30 matrix
only yields 2.57 bits per position if σ and τ are truly separated by 30 PAMs. At the other
extreme, at least 38/0.36 = 105 residues are required to find significant alignments with a
PAM250 matrix. Again, this is assuming that the divergence between the aligned regions
of the query and the match is, in fact, 250 PAMs. If it is not, the number of bits provided
by each position of the alignment would be lower than 0.36 and an even longer alignment
would be required.

This has implications for searches with short query sequences. Suppose that you wish
to find sequences related to a query sequence of 28 residues. In order to obtain the 38 bits
required to find significant matches in a database with 1 billion residues, you will need
to search with a matrix with a relative entropy that is fairly high. (How many bits per
position will you need?) If you have reason to believe that your query sequence is a member
of a highly conserved gene family, then you are in luck! The PAM30 matrix will provide
enough information to find matches in a database of 1 billion residues, and this matrix is
suitable for a conserved family.

If, on the other hand, you have reason to believe that your query sequence is a member
of a highly diverged gene family, you have a problem. We know from the Karlin-Altschul
“theorem” that we will obtain the best sensitivity with a matrix that corresponds to the
evolutionary divergence of the matches we seek. If the family is highly diverged, the best
sensitivity will be obtained with the PAM250 matrix, but an alignment of length 28 will only
give you 28 × 0.36 ≈ 9 bits of information, when the sequences have 250 PAMs divergence.

In this case, you could try to find a longer query sequence. Or, you could consider
searching a smaller database, which requires fewer bits. (Why?) Perhaps restricting your
search to, say, mammals to find related sequences would be sufficient for your study.

136 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

Chapter 7

Multiple Sequence Alignment

In multiple sequence alignment, the goal is to align k sequences, so that residues in each
column share a property of interest, typically descent from a common ancestor or a shared
structural or functional role. Applications of multiple sequence alignment include identifying
functionally important mutations, predicting RNA secondary structure, and constructing
phylogenetic trees.

Given sequences s1,...,sk of lengths n1,...,nk, α = {s′1,...,s′k} is an alignment of s1,...,sk
if and only if

• s′a ∈ (Σ′)∗, for 1 ≤ a ≤ k

• |s′a| = l, for 1 ≤ a ≤ k, where l ≥ max(n1, . . . , nk)

• sa is the sequence obtained by removing gaps from s′a

• No column contains all gaps

7.0.1 Scoring a multiple alignment

As with pairwise alignment, multiple sequence alignments (MSAs) are typically scored
by assigning a score to each column and summing over the columns. The most common
approach to scoring individual columns in a multiple alignment is to calculate a score for
each pair of symbols in the column, and then sum over the pair scores. This is called
sum-of-pairs or SP-scoring. For global multiple sequence alignment, SP-scoring can be used
with either a distance metric or a similarity scoring function. The sum-of-pairs similarity
score of an alignment of k sequences is

Ssp(s
′
1, . . . , s

′
k) = Σl

i=1Σk
a=1Σb>a p(s

′
a[i], s

′
b[i]), (7.1)

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 137

Chapter 7 Multiple Sequence Alignment

where l is the length of the alignment. As before, p(x, y) is a numerical score that represents
the similarity of x and y and p(x,) is the gap score. Further, we define p(,) to be zero.
In pairwise alignment there is no need to assign a value to p(,), because the definition of
a pairwise alignment specifies that no column may contain two gaps. However, in a multiple
alignment, two aligned sequences can have a gap in the same column (i.e., s′a[i] = s′b[i] =),
as long as there exists at least one sequence in the MSA that does not have a gap in that
column.

As an example, let us calculate the SP-score for the alignment of three sequences shown
below:

s1 A TT

s2 A T

s3 ACAT

We can calculate the SP-score for each column separately:

A TT

A T

ACAT

s1, s2 M0Mg

s1, s3 MgmM

s2, s3 Mgmg

Note that the second column contains two gaps and that these are assigned a score of
zero. The total SP-score is 5M + 2m+ 4g. (Is this alignment optimal? If not, how could
you improve it?)

We can also use sum-of-pairs with distance scoring for global multiple alignment. This
is how we would score the same alignment using unweighted edit distance:

A TT

A T

ACAT

s1, s2 0001

s1, s3 0110

s2, s3 0111

The sum-of-pairs edit distance for this alignment is 6.

Sum-of-pairs scoring tends to overestimate the number of mutations required to explain
the data. For example, a single mutation is required to explain the column (A, A, A, G,

G), when scored on the tree in Fig. 7.1a. In contrast, SP-scoring assigns this column a score
of six (Fig 7.1b), because SP-scoring is based on the implicit assumption that each pair of
symbols is independent of all other pairs.

138 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

Chapter 7 Multiple Sequence Alignment

(a) (b)

Figure 7.1: Two ways of scoring the column (A, A, A, G, G) in a multiple alignment. Green
edges represent mismatches. (a) Scoring mutations on a tree. (b) Sum-of-pairs scoring

Scoring an alignment on a tree, also known as tree alignment, is based on the assumption
that the residues in the columns of the multiple sequence alignment share an evolutionary
history and that this history can be expressed as a single tree for all columns.

Given a known tree topology as input, the k extant sequences are associated with the
k leaves of the tree. Sequences for the internal nodes are selected such that the sum of
edge costs, i.e. the total number of mutations required along the branches of the tree, is
minimized. Under this model, the cost of an edge (Xi, Xj) in the tree is the minimum
number of mutations required to transform sequence Xi into sequence Xj .

In order to use this approach, several issues must be resolved. First, a tree topology is
needed. In general, the underlying tree is not known. In fact, multiple sequence alignments
are generally used to estimate evolutionary trees and not vice versa. Second, tree alignment
methods are often based on the assumption that every column in the alignment has the
same underlying tree topology. For many sequences, such as those that that have undergone
domain shuffling, this is not the case. Third, in order to compute the branch costs of the tree,
we must infer the ancestral sequences associated with the internal nodes. Tree alignment has
historically been based exclusively upon the parsimony criterion; that is, on the assumption
that mutations are rare and the minimum number of evolutionary steps required to explain
the data is the best evolutionary hypothesis. Data that does not happen to be parsimonious
can favor the wrong tree model. In addition, column-oriented optimization approaches to
MSA usually assume that sequence positions are independent and identically distributed.
These assumptions frequently do not hold for biological sequence data.

Finally, for some data sets, a tree may not be a suitable model for describing the
relationship between residues in each column, for example, when property of interest is
functional or structural. When alignment is used to study function or structure, residues
in a column do not always share a common ancestor. Although residues that share a
functional or structural role often also share an evolutionary history, this is not the case

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 139

Chapter 7 Multiple Sequence Alignment

when functional or structural roles migrate to neighboring residues. For all of these reasons,
tree alignment is rarely used in practice.

Given two sequences sa and sb in a multiple alignment, the pairwise alignment of sa and
sb induced by the MSA is the alignment obtained by deleting the other sequences in the
MSA and then removing any column that contains two gaps. For example, in the multiple
alignment below,

AC T G

A GT G

ACGTAG

the induced alignment of the first two sequences is

AC TG

A GTG.

Further, the pairwise alignment induced by the optimal multiple alignment is not necessarily
the optimal pairwise alignment. In this example, the optimal pairwise alignment is

ACTG

AGTG.

Although the optimal pairwise alignment may have a better score, the induced pairwise
alignment may be a biologically more realistic alignment because it reflects properties of
the family as a whole.

7.0.2 A dynamic programming algorithm for multiple alignment

The dynamic programming algorithm used for finding the optimal global alignment of two
sequences can be extended to the problem of global alignment of k sequences. First, let
us consider a dynamic program to align three sequences using a sum-of-pairs similarity score.

Global alignment of three sequences with similarity scoring:

Input:

Sequences s1, s2, and s3 of lengths n1, n2, and n3, respectively.

Initialization:

A[i1, 0, 0] = A[i1 − 1, 0, 0] + 2g

A[0, i2, 0] = A[0, i2 − 1, 0] + 2g

A[0, 0, i3] = A[0, 0, i3 − 1] + 2g

140 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

Chapter 7 Multiple Sequence Alignment

Recurrence:

A[i1, i2, i3] = max

A[i1 − 1, i2, i3] + 2g

A[i1, i2 − 1, i3] + 2g

A[i1, i2, i3 − 1] + 2g

A[i1 − 1, i2 − 1, i3] + 2g + p(s1[i1], s2[i2])

A[i1 − 1, i2, i3 − 1] + 2g + p(s1[i1], s3[i3])

A[i1, i2 − 1, i3 − 1] + 2g + p(s2[i2], s3[i3])

A[i1 − 1, i2 − 1, i3 − 1] + p(s1[i1], s2[i2]) + p(s1[i1], s3[i3]) + p(s2[i2], s3[i3])

Store the indices of the entry in A that maximize the right hand side of the recurrence
in a trace-back matrix, T .

Trace back:

From T [n1, n2, n3] to T [0, 0, 0] to obtain the optimal alignment.

Output:

The optimal alignment score, A[n1, n2, n3].

The optimal alignment of s1, s2, and s3 with respect to similarity function, S.

The dynamic program for multiple sequence alignment has the same structure as the
algorithms for pairwise sequence alignment, but the initiation and recurrence steps are
more complex. Since the alignment matrix, A, is a 3-dimensional matrix, the first row in
each of the three dimensions must be initialized. The algorithm calculates the entries in A
according to the recurrence proceeding diagonally from A[0, 0, 0] to A[n1, n2, n3]. As in the
pairwise case, a trace-back matrix, T , is used to record the indices that gave the optimal
score for each i1, i2, i3 prefix. Once the entire matrix has been filled in, the optimal score is
found in A[n1, n2, n3].

It is straightforward, if messy, to generalize the dynamic program for three sequences
to a dynamic program for k sequences. To convince yourself that you understand how
this works, try writing down the algorithm for four sequences. For three sequences, the
recurrence has seven entries. How many entries will there be in the recurrence when k = 4?
How many entries will there be for arbitrary k?

The computational complexity of the dynamic programming algorithm to align k
sequences is O(nk2kk2). To see this, note that for k sequences, the alignment matrix has
O(nk) entries. For each entry in A, the recurrence relation considers O(2k) neighboring cells.
Calculating the SP-score for each of those neighbors requires O(k2) time. (Why?) Thus,

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 141

Chapter 7 Multiple Sequence Alignment

the time complexity of the dynamic program for multiple sequence alignment is exponential
in the number of sequences. Given 10 sequences of length at most 500, it is possible to
calculate the optimal alignment using dynamic programming. For larger problem instances,
a heuristic is typically used.

7.0.3 Heuristics for global multiple alignment

The dynamic programming approach to global multiple sequence alignment is framed as an
optimization problem. In this approach, we design an optimization criterion over the set
of all possible MSAs and then seek the MSA that optimizes this criterion using dynamic
programming. The advantage of this approach is that the optimization criterion makes
explicit the assumptions upon which the optimization is based. Because they are explicit,
these assumptions are open to scrutiny and falsification.

However, this formal optimization approach has disadvantages as well. One, as we have
already seen, is that the computational complexity is exponential in the number of sequences.
A second problem is the selection of an optimization criterion. In computational biology,
the optimization criterion must follow a specific biological model relating the data to the
evolutionary, structural, or functional question at hand. If the optimization criterion is not
directly linked to a biological model, then the optimal solution may not reflect biological
relationships. As we have seen, both sum-of-pairs and tree alignment have limitations in
how well they capture the underlying biology.

In practice, the most widely used multiple alignment programs are based on heuristic
methods, not only because of the exponential running time of the exact algorithm, but
also because heuristics often give MSAs that are more convincing biologically, even though
they do not guarantee mathematically optimal alignments. A survey of multiple alignment
software based on heuristic methods, Protein multiple sequence alignment by Do and
Katoh, 2008, is posted in the “Optional reading” section of the course syllabus.

The performance of MSA programs is typically evaluated empirically using curated or
automated structural alignments. BALiBase (http://www.lbgi.fr/balibase/), a collection of
“high quality, manually refined, reference alignments based on 3D structural superpositions”1,
is one of the most widely used benchmarks. The BALiBase reference data sets are designed
to mimic properties of different types of data sets encountered in practice, especially those
that are challenging to align. Examples of challenging data sets include highly divergent
sequences that are variable in length and have less than 50% identity, related sequences
combined with several outlier, or “orphan”, sequences, and related sequences that differ
due to large insertions, deletions or terminal extensions.

One of the most commonly used heuristic strategies is progressive alignment. This
approach is used in a number of programs, including the widely-used CLUSTAL family

1 “BAliBASE 3.0: latest developments of the multiple sequence alignment benchmark.” Thompson JD,
Koehl P, Ripp R, Poch O., Proteins. 2005 Oct 1;61(1):127-36.

142 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

Chapter 7 Multiple Sequence Alignment

of multiple alignment programs. Given k sequences, s1, . . . , sk, of lengths n1, . . . , nk,
progressive methods construct an alignment as follows:

1. Construct pairwise alignments for all pairs of sequences.
2. Compute D, the matrix of pairwise distances, where D[a, b] is the distance between

sequences sa and sb. Note that D is a symmetric matrix with zeros on the diagonal.
3. Construct a “guide tree”, T , from D. T is a rooted tree with k leaves corresponding

to the k sequences.
4. Construct an MSA by repeatedly merging intermediate multiple alignments to obtain

progressively larger alignments, until all k sequences have been incorporated in the
alignment. The order of merging is determined by the guide tree, T .

The merge operation in Step 4 takes as input two multiple alignments of k1 sequences
and k2 sequences and returns a multiple alignment of k1 + k2 sequences. This is repeated
until all k sequences are incorporated into the alignment. The order in which sequences are
merged is determined by a bottom up traversal of the guide tree. For example, if the tree
in Fig. 7.2 were the guide tree, then the pairwise alignment of s1 and s2 would be merged
with the pairwise alignment of s3 and s4, yielding an intermediate MSA of four sequences.
A similar merging of two pairwise alignments would result in the MSA of s5, s6, s7 and s8.
Finally, these two alignments, of four sequences each, would be merged to obtain a full
alignment of eight sequences.

The actual merge operation is carried out using the pairwise global alignment algorithm
to align the two alignments, where the input alignments are treated as sequences over an
expanded alphabet. Durbin calls this a “profile.” Two aligned sequences can be viewed as
a sequence over the alphabet Σ′ × Σ′ \ {()}. For example, when Σ = {A,C,G, T}, this
alphabet contains 24 symbols ({AA,AC,AG,AT,A ,CA, . . . T}).

We illustrate profile alignment with the case where a multiple alignment of three
sequences is obtained by aligning a profile t with a single sequence s. The elements in s[i]
are of the form x

y , x
− , or −y , where x and y are symbols in Σ. The score for aligning t[i]

with s[j] is the sum of the scores for aligning the first character in t[i] with s[j] and the
second character in t[i] with s[j]. For example, when similarity scoring is used and s[i] is of
the form, x

y , the recurrence relation for calculating the alignment matrix A[i, j] is

A[i, j] = max

A[i− 1, j − 1] + p(x, s[j]) + p(y, s[j]),
A[i, j − 1] + 2g,
A[i− 1, j] + 2g

 . (7.2)

When t[i] contains an indel (i.e., t[i] is of the form x
−), the recurrence relation for calculating

A[i, j] is

A[i, j] = max

A[i− 1, j − 1] + p(x, s[j]) + g,
A[i, j − 1] + 2g,
A[i− 1, j] + g

 . (7.3)

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 143

Chapter 7 Multiple Sequence Alignment

Note that p(x, y), the similarity of x and y, does not appear in the right hand side
of Equation 7.2. Similarly, the gap score for the alignment of x

− does not appear in the
recurrence in Equation 7.3. This is because the two symbols in s[i] were compared and scored
during the pairwise alignment in a previous step in the progressive alignment procedure.

A key aspect of the merging operation is that we are not allowed to modify the profiles
being aligned. For the example above, that means we cannot change juxtaposition of the
two symbols in t[i], even if modifying the alignment in t would result in a better alignment
with s. This is called the “once a gap, always a gap” rule (although it also applies to
mismatches). A consequence of this rule is that if a bad decision is made with regard
to the placement of gaps early in the procedure, then that bad decision will propagate
through subsequent iterations and cannot be corrected. It is this rule that makes progressive
alignment a fast heuristic; that is, this rule underlies both the improvement in running time
and the possibility that the result may be suboptimal.

The complexity of progressive alignment is O(k2n2), where n = max{na}, 1 ≤ a ≤ k.
Calculating the distance matrix in Step 2 requires O(k2) pairwise alignments. The cost of
each pairwise alignment is O(n2). The merging process also requires O(k2n2) time. The
computational complexity of merging depends on the number of profile alignments required,
the number of cells in the alignment matrix for each profile alignment, and number of
comparisons required for each cell. The size of alignment matrix is O(n2) in all profile
alignments. The number of comparisons for a single cell in an alignment of two profiles
with k1 and k2 sequences, respectively, is O(k1 · k2).

The number of profile alignments and the values of k1 and k2 depend on the shape of the
guide tree. At one extreme, we have a completely unbalanced guide tree with k sequences
(e.g., Fig. 7.3, where k = 8). In this case, each merge represents an alignment of a single
sequence (k1 = 1) with a profile of size k2 = h, 1 ≤ h ≤ k − 1, resulting in a complexity of

k−1∑
h=1

n2h,

which is O(k2n2).

At the other extreme, we have a balanced guide tree with k leaves (e.g., Fig. 7.2). We
consider the case when k is a power of 2. We leave the case where k is not a power of
two to the masochistic reader. In a balanced guide tree, there are k/2h merges at height,
h. Each of these represents an alignment of two profiles, each comprising 2h−1 sequences.
The computational complexity is the sum of the complexity of the merges at height h,
1 ≤ h ≤ log2 k, or

log2k∑
h=1

n2 · (2h−1)2 · k
2h
.

144 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

Chapter 7 Multiple Sequence Alignment

This reduces to

kn2 ·
log2k∑
h=1

2h−2. (7.4)

It is easy to verify that the series

N∑
i=1

2(i−1) = 2N − 1. (7.5)

Substituting the right hand side of Equation 7.5 into Equation 7.4, where N = log2 k, we
obtain

1

2
kn2(2(log2 k) − 1).

This reduces to (k − 1)kn2/2, so we again obtain a computational complexity of O(k2n2).

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 145

Chapter 7 Multiple Sequence Alignment

Figure 7.2: A balanced guide tree for 8 sequences.

Figure 7.3: An unbalanced guide tree for 8 sequences.

146 Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved.

Bibliography

[1] S. Altschul, Amino acid substitution matrices from an information theoretic perspective,
J Mol Biol 219 (1991), 555–565.

[2] , A protein alignment scoring system sensitive at all evolutionary distances, J
Mol Evol 36 (1993), no. 3, 290–300.

Computational Molecular Biology. Copyright c©2022 D. Durand. All rights reserved. 147

