
Driven by technological advances, recent years have 
witnessed a deluge of new methods for interrogating 
different properties of a cell on a genome-wide scale. 
Each offers a unique, although complementary, view of 
genome organization and cellular function. It is expected 
that integrating these data sets will provide more bio-
logical insights than using one data set alone. Thanks 
to the development of next-generation sequencing (NGS) 
technologies, the human genome has been mapped in 
many individuals; the challenge we now face is to under-
stand this blueprint and to determine how errors lead 
to disease. The traditional approach of isolating indi-
vidual genes and studying them in a model system is 
being rapidly replaced by data sets generated by both 
individual laboratories and large consortia using new 
high-throughput technologies.

Although individual data sets — including genomic, 
epigenomic, transcriptomic and proteomic infor-
mation — are highly informative, integrating them 
together offers the exciting potential to answer many 
long-standing questions. For example, what are the 
functional variants of gene-distal loci identified by 
association studies? Where are the regulatory elements? 
And to what extent does the activity of regulatory ele-
ments contribute to disease phenotypes or to individual 
gene expression variation? Therefore, integrative analy-
sis has become an essential part of experimental design  
in the era of next-generation genomics and is no longer 
the preserve of bioinformaticians. However, with the 

diversity of the high-throughput data and the seemingly 
endless analyses that can be performed, data integra-
tion is posing challenges for both bench scientists and  
computational biologists.

In this Review, we first briefly introduce the main 
high-throughput approaches. We then consider the 
types of biological questions that can be addressed 
through integrative analysis and insights that are start-
ing to emerge, followed by discussion of commonly used 
data-integration strategies. We also consider the need 
for unified next-generation tools for data visualization, 
manipulation and analysis.

What types of genomic data sets are available?
In recent years, many high-throughput technologies 
have been developed to interrogate various aspects of 
cellular processes, including sequence and structural 
variation and the transcriptome, epigenome, proteome 
and interactome. Several recent reviews1–7 have pro-
vided in-depth discussion of various platforms, so we 
only briefly introduce them below. Large collaborative 
projects are notably involved in using and developing 
genome-scale techniques, as discussed in BOX 1.

Sequence variation data. The ultimate goal of human 
genetics is to map every genetic variant and link each to 
phenotype. Currently, two high-throughput approaches 
are used to catalogue genetic variants: SNP genotyping 
arrays and resequencing. SNP arrays are cost-effective, 
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Next-generation sequencing
Here, we define this as the use 
of established sequencing 
platforms, including the 
Illumina/Solexa Genome 
Analyzer, Roche/454 Genome 
Sequencer and Applied 
Biosystems SOLiD platforms, 
as well as newer platforms, 
such as the Helicos and Pacific 
Biosciences platforms.
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Abstract | Integrating results from diverse experiments is an essential process in our 
effort to understand the logic of complex systems, such as development, homeostasis 
and responses to the environment. With the advent of high-throughput methods — 
including genome-wide association (GWA) studies, chromatin immunoprecipitation 
followed by sequencing (ChIP–seq) and RNA sequencing (RNA–seq) — acquisition of 
genome-scale data has never been easier. Epigenomics, transcriptomics, proteomics and 
genomics each provide an insightful, and yet one-dimensional, view of genome function; 
integrative analysis promises a unified, global view. However, the large amount of 
information and diverse technology platforms pose multiple challenges for data access 
and processing. This Review discusses emerging issues and strategies related to data 
integration in the era of next-generation genomics.
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Reduced representation 
bisulphite sequencing
This technique cuts genomic 
DNA with restriction enzymes 
to enrich for CG-rich regions, 
which are then converted 
through bisulphite treatment 
and sequenced with 
next-generation sequencing. 
Bisulphite treatment converts 
unmethylated C to uracil — 
which appears as T in 
sequencing reads — while 
leaving methylated C intact.

MeDIP–seq
Methylated DNA is 
immunoprecipitated with an 
antibody against methylated 
cytosine and then sequenced 
by next-generation sequencing.

MethylC–seq
(Also known as bisulphite 
conversion followed by 
sequencing (BS–seq).) 
Methylated DNA is identified 
by shotgun sequencing of 
bisulphite-converted DNA.

and this strategy has been instrumental in the identi-
fication of disease-associated genes by groups such as 
the International Hapmap Consortium8. more recently, 
NGS has reduced the cost of DNA sequencing, so it is 
feasible to directly sequence the exomes of an individual 
using methods such as sequence capture9,10 or to sequence 
individual genomes, as is being performed in the 1000 
Genomes project. NGS can also detect copy-number var-
iants and gene-fusion events11,12, and in the future NGS 
will probably overtake array-based detection methods  
owing to its superior coverage and resolution.

Transcriptomic data. NGS is also driving advances in 
transcriptomics2,13. For example, RNA sequencing (RNA–
seq) can detect alternative splice variants using paired-
end, relatively short reads (on the Illumina and Applied 
Biosystems platforms) or longer reads (using the Roche 
platform). In addition, RNA–seq can identify transcripts 
arising from gene fusion events (which are typical in  
cancer14) and can detect novel classes of non-coding 
RNAs (ncRNAs). For example, new classes of short RNAs  
have been identified that originate from promoters and 
gene termini15, and many more large intergenic non-
coding RNAs (lincRNAs) have been found16. In addition, 

a method that combines nuclear run-on with RNA–seq 
has been developed, which enables transcriptional rates 
in cells to be monitored17.

Epigenomic data. DNA methylation and covalent modi-
fications of histone proteins have been broadly defined as 
epigenetic modifications18,19 and are important for tran-
scriptional control20–22. High-throughput technologies now 
allow genome-scale mapping of these modifications23–25. 
Several large-scale analysis techniques are available that 
enable the survey of DNA methylation status at nucleotide 
resolution throughout the genome6,26–29, including NGS 
coupled with bisulphite treatment of DNA. Chromatin 
immunoprecipitation followed by microarray (ChIP–
chip) or, more recently, by sequencing (ChIP–seq)3,4  
can determine the genome-wide localization of histone 
modifications30,31. In addition, DNase I hypersensitivity site 
footprinting coupled with genomic arrays (DHS–chip) or 
NGS (DHS–seq, also known as DNase–seq)32–36 defines 
regions of open chromatin structure, which can indicate 
potential regulatory sequences33.

Interactome data. Interactions — both physical and 
functional — are an important layer of information  
for functional genomics. ChIP–chip and ChIP–seq are 
able to provide genome-scale information on DNA–
protein interactions, and high-throughput sequencing of 
RNAs isolated by crosslinking and immunoprecipitation  
(HITS-CLIP, also known as CLIP–seq) is emerging as an 
important method for understanding RNA–protein 
interactions37. High-throughput dissection of protein–
protein interaction networks has proved a greater chal-
lenge. It is largely done by the two-hybrid system38, and 
in yeast this has been expedited by the cloning of all 
genes. However, in mammalian systems we are much 
further away. At a lower throughput, immunoprecipita-
tion followed by mass spectrometry is becoming more  
widely available39.

Technologies based on chromosome confirma-
tion capture (3C) provide a snapshot of long-range  
interactions40 among regions of DNA, which can be 
mediated through protein interactions. Circularized 
chromosome confirmation capture (4C)41 and carbon-
copy chromosome confirmation capture (5C)42 provide 
large-scale analyses but are still limited to selected sites 
of interrogation43,44. However, recently developed meth-
ods have demonstrated the identification of long-range 
genomic interactions at a genomic scale through high-
throughput, paired-end sequencing of the DNA frag-
ments generated by the 3C method45–47. one method, 
Hi-C, maps numerous interactions in an unbiased fash-
ion, whereas another, chromatin interaction analysis 
by paired-end tag sequencing (ChIA-PET), identifies 
interactions mediated by a particular protein through 
a ChIP step.

In addition, high-throughput methods are being used 
to define genetic and signalling pathways. For example, 
through large-scale RNAi screens, a number of key genes 
were linked to pathways regulating metastasis, apoptosis 
and senescence48–53, and this provided new insights into 
cancer biology. In yeast, genetic interaction pathways 

 Box 1 | collaborative projects and technology development

Over the next few years, technologies such as next-generation sequencing will 
generate a massive quantity of scientific data. Because of this, the scientific 
community must call for analytical tools to be developed alongside large-scale  
data production. For projects such as the Roadmap Epigenomics Project,  
the ENCODE Project and The Cancer Genome Atlas, data analysis and integration 
are clearly defined aims.

There is a broad selection of genome-scale approaches available, some of which 
might be redundant or might answer a different need. For example, for mapping  
DNA methylation on a large scale, some approaches, including reduced representation 
bisulphite sequencing (RRBS) and MeDIP–seq, provide cheaper but less 
comprehensive alternatives to full genome methylation mapping (MethylC–seq)25. 
The US National Institutes of Health Epigenome Roadmap Consortium has 
undertaken the task of a comparative analysis to determine how much pertinent 
information is gathered from different approaches. This comparative analysis will 
benefit the scientific community and could be of particular value to groups studying 
the role of DNA methylation across a cohort of patients — studies in which large 
numbers of samples necessitate cost efficiency. It is anticipated that such 
collaborative projects will lead to the first epigenome-wide association (EWA or 
epiGWA) studies.

In a similar way to the sequencing of the human genome itself, the mapping of the 
human epigenome and the cataloguing of human regulatory elements are not being 
left to individual laboratories. Collaborative efforts that result in a shared resource  
in which regulatory elements are consistently defined across the cohort of all 
experiments are being undertaken — for example, through the Roadmap Epigenome 
Consortium. This project will generate epigenomic maps for over 100 human cell 
types within the next several years. Similarly, the mapping of histone modifications 
and transcription factors in human cells by the ENCODE Consortium will provide 
additional insights into distal regulatory elements. Recently, several experiments 
using chromatin immunoprecipitation followed by sequencing (ChIP–seq) to search 
for such factors and modifications have been made publicly available, giving the 
scientific community the opportunity to begin using this resource. For model 
systems, Drosophila melanogaster and Caenorhabditis elegans are being investigated 
by the ModENCODE Consortium116, and efforts are being made to develop a mouse 
ENCODE project. Maps of regulatory elements in multiple species will enable the 
investigation of specific questions and improve understanding of what is conserved 
among species.
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Sequence capture
This uses oligonucleotide 
microarrays or oligonucleotide-
coupled beads to select for 
regions of the genome, such as 
all exons (exome sequencing) 
for targeted sequencing.

RNA sequencing
(RNA–seq.) RNA isolated  
from cells are sequenced by 
next-generation sequencing 
after conversion to cDNA.

Nuclear run-on
An assay that directly measures 
the transcriptional activity of a 
gene by incorporation of 
labelled UTP into its mRNA.

Histones
Small, highly conserved basic 
proteins, found in the chromatin 
of all eukaryotic cells, which 
associate with DNA to  
form a nucleosome. The 
amino-terminal tails of  
histones are subject to various 
post-translational modifications.

Chromatin 
immunoprecipitation
A technique used to identify 
potential regulatory sequences 
by isolating soluble DNA 
chromatin extracts (complexes 
of DNA and protein) using 
antibodies that recognize 
specific DNA-binding proteins.

DNase I hypersensitivity  
site footprinting
An assay that identifies regions 
of the genome that lack 
nucleosome structure and are 
therefore readily degraded by 
the enzyme DNase I. Such 
regions tend to be associated 
with transcriptional activity. 
When coupled with 
sequencing, the ends of DNA 
fragments generated by 
treatment of chromatin with 
DNase I are sequenced.

are being identified through large-scale epistasis screens 
(epistatic miniarray profiles (E-mAPs))54,55, and soon such 
approaches might be applied to other model organisms 
or human cells. The power of such maps was recently 
shown by combining the information they provide 
with genome-wide association (GWA) studies in yeast 
to illustrate how single mutations are mechanistically  
relevant to key pathways56.

Why perform integrative genomic analysis?
This broad array of data provides unprecedented oppor-
tunities for investigators to address some long-stand-
ing questions related to fundamental mechanisms of 
genome function and disease. For example, how might 
particular risk-associated SNPs affect cellular func-
tion and lead to specific diseases? What functional 
sequences exist in the human genome? And how are 
key developmental pathways regulated by epigenetic 
mechanisms? In this section we introduce some of 
the questions that integrative analysis is being used to 
answer; the methods for such integration are discussed 
in the following section.

Annotating functional features of the genome. A major 
challenge of understanding transcriptional control in 
higher eukaryotes is the incomplete catalogue of regu-
latory elements, particularly long-range regulatory 
elements, such as enhancers and insulators. As the char-
acteristics of known regulatory elements are determined, 
these features can be used to identify novel elements. 
For example, the chromatin ‘signature’ of enhancers 
(FIG. 1) was determined and integrative analysis of his-
tone modifications and localization profiles of the tran-
scriptional co-activator p300 in human cells was used to 
find new enhancers57,58. Enhancer locations were con-
firmed by DHS analysis and functional assay, which is an  
important step for validating large-scale findings.

Although chromatin signatures define general classes 
of regulatory elements, their specific functions are dic-
tated by transcription factors that bind the elements. For 
the human genome, the ENCoDE Consortium mem-
bers and others have used genome-wide localization of 
key factors to define regulatory elements, such as RNA 

polymerase II (RNAPII) and transcription initiation 
factor TFIID-associated factor 1 (TAF1) for promoter 
elements59, CCCTC-binding factor (CTCF) for insula-
tor elements60, signal transducer and activator of tran-
scription 1 (STAT1) and p300 for enhancers58,61–63, and  
the transcriptional repressors KRAB-associated protein 1  
(KAP1), suppressor of zeste 12 (SuZ12) and neural-
restrictive silencer factor (NRSF, also known as REST) 
for silencing or repressor elements24,64,65 (FIG. 1). These 
results support the feasibility for genome-wide identi-
fication of cis-regulatory elements, but additional func-
tional studies are necessary for specific sites of interest. 
However, the activities of cis-regulatory elements are 
often restricted to specific cell types or development 
stages and so a comprehensive and precise catalogue of 
all cis-regulatory sequences will necessitate a thorough 
investigation of a multitude of transcription factors in 
various physiological conditions.

Inferring the function of genetic variants. GWA studies 
have revealed numerous SNPs that are linked to disease 
risk66. But one major obstacle is that if these SNPs fall 
within non-coding regions of the genome, our ability to 
assign functional roles to them is limited because func-
tional features in the genome are still poorly defined in 
humans and other higher eukaryotes.

Recently, it was shown that SNPs could be called from 
short sequenced tags acquired from Illumina sequenc-
ing during ChIP–seq67,68. It would be highly informative 
to know whether transcription-factor-binding sites or 
chromatin-marked regulatory elements (see below) 
contain single-nucleotide variants (SNVs), which might 
be used to determine regulatory SNPs69–71 (FIG. 2). For 
example, a study by Snyder and colleagues showed that 
SNPs found in binding regions for RNAPII and nuclear 
factor-κB (NF-κB) accounted for individual variability 
in gene expression levels72. Studies that identify open 
chromatin structures have also recovered known diabe-
tes risk-associated SNPs73. Some algorithms that are used 
to find peaks of binding in ChIP–seq data have built-in 
SNP detection74, so identifying variants could become a 
standard part of ChIP–seq analysis. However, it should 
be noted that in all efforts to identify SNPs there is an 

Figure 1 | Annotating the genome through detecting transcription-factor binding sites and histone-modification 
states. Promoters can be mapped by the localization of general transcription machinery and transcription factors 
(TFs), such as RNA polymerase II (RNAPII) or transcription initiation factor TFIID-associated factor 1 (TAF1), or by the 
localization of histone 3 lysine 4 trimethylation (H3K4me3). The bodies of transcribed genes and non-coding RNAs 
are marked by H3K36me3. Enhancers can be found by distal TF binding sites or by H3K4me1. This modification often 
coincides with H3K4me2, which has been shown to be necessary to recruit pioneering TFs to enhancer elements121. 
In addition, H3K4me1 sites overlap acetylated histone lysines, in agreement with acetylation islands outside 
promoters identifying functional enhancer elements122,123. Insulators are bound by CCCTC-binding factor (CTCF). 
Nucleosomes are shown as cylinders and example histone tails are in green. Various TFs are shown as coloured 
shapes. TFs bound to the insulator include CTCF and subunits of cohesin.
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HITS-CLIP
A technique similar to 
ChIP–seq in which proteins 
bound to RNA — such as 
splicing factors — are 
immunoprecipitated and the 
RNA fragments are sequenced.

Two-hybrid
An assay system in which one 
protein is fused to an activation 
domain and the other to a 
DNA-binding domain, and both 
fusion proteins are expressed in 
cells. Expression of a reporter 
gene indicates that the two 
proteins physically interact.

Epistatic miniarray profiles
These are created by screening 
the fitness of double mutants  
in a high-throughput manner.  
The results, when analysed  
as a whole, can reveal both  
positive and negative genetic 
interactions between genes and 
provide insights into biological 
pathways and protein–protein 
complexes in the cell.

Single-nucleotide variant
Sequence variations that 
include insertions and 
deletions in addition to base 
substitutions (which are known 
as SNPs).

Genomic imprinting
The epigenetic marking of a 
gene on the basis of parental 
origin, which results in 
monoallelic expression.

Cap analysis of gene 
expression
(CAGE.) The high-throughput 
sequencing of concatamers  
of DNA tags that are derived 
from the initial nucleotides  
of 5′ mRNA.

inherent bias in mapping to the reference genome75. 
Therefore, additional measures should be taken to  
maximize mapped tags (for example, see REF. 72).

Calling variants in sequence-based assays will also 
provide important information beyond the SNP itself, 
as the presence of a SNP or SNV may enable detection of 
allele-specific expression. In the case of RNA–seq, if the 
transcriptional output of a heterologous locus contains 
a variant at or near 100% frequency, it is indicative of 
monoallelic expression. Allele-specific ChIP signals for 
transcription factors or RNAPII might offer a regula-
tory explanation for such allele-specific expression. For 
example, our group has previously demonstrated this 
with SNP arrays coupled with ChIP (SNP-ChIP)76. more 
recently, allele-specific regulatory regions in humans 
were identified through mapping DHS regions with 
CTCF colocalization77. Allele-specific DNA methyla-
tion, which can now be assayed at genome-scale, can also 
suggest potential mechanisms for monoallelic expres-
sion or repression, such as imprinting (see also below)78. 
Therefore, integrative analysis of allelic-specific tran-
scription factor binding, epigenomic information and 
large-scale phenotypic read-outs, such as allelic-specific 
RNA expression data, will be key to identifying genetic 
or epigenetic mechanisms of gene expression. The 
extension of functional studies to structural variants  
will also be an important aim for future studies.

Understanding mechanisms of gene regulation. Because 
epigenetic features can control transcriptional output, and  
therefore traits, correlating epigenomic information 
and transcriptomic information can be highly informa-
tive. A classic example is genomic imprinting. Individual 
examples of imprinted loci — such as the H19 locus in 
mammals — have been studied in detail79 and show the  
complexity of transcriptional regulation, including  
the combined action of insulators, enhancers, chromo-
some looping and epigenetic marks. Genome-scale 
integrative analyses will enable broader questions to be 
answered, such as how many imprinted genes are there? 
How common is dysregulation of imprinting in disease? 
When does DNA methylation alter transcription factor  
binding? And what range of factors can be affected?

Coupling histone modification data to transcriptomic 
data can also be valuable for the annotation of ncRNAs. 
young and colleagues80 identified microRNA (miRNA) 
transcription start sites by mapping the promoter-
specific modification histone 3 lysine 4 trimethylation 
(H3K4me3) and comparing regions outside known 
promoters with annotated miRNAs, conserved regions, 
CpG islands and histone modifications (H3K36me3 and 
H3K79me2) that are associated with transcription elon-
gation. Rinn and colleagues16 mapped the location of 
thousands of lincRNAs by integrating these same chro-
matin modifications with RNA–seq data for expressed 
ncRNAs. It is now thought that many of these lincRNAs 
can influence histone modification or chromatin  
structure or subsequent methylation of DNA81–83.

Integration of epigenomics with genomics and tran-
scriptomics can also provide insights into transcription- 
coupled RNA processing. Recently, several groups 

found a correlation between exon expression and  
levels of H3K36me3 (REFS 84–89), and a subsequent study 
suggested a direct role for this modification in splicing 
control87. Further analysis of histone modifications in 
relation to splicing may provide additional insights into 
exon usage across genes31,90. Integration of exon expres-
sion data with HITS-CLIP data on the interaction of 
splicing factors with mRNA can also help to map splicing 
sites precisely91. In addition, integration of data on the 
promoter histone modification H3K4me3 (FIG. 1) with 
methods for the capture of the 5′ ends of genes (such as 
cap analysis of gene expression (CAGE) tags92, which can 
be readily adapted to NGS) will improve annotation of 
transcription start sites (TSSs).

To understand what controls the spatial organization 
of gene expression and how regulatory elements and 
proteins interact with their targets, it is useful to inte-
grate interaction data with other data sets. For example, 
nuclear architecture is, at least in part, defined by how 
chromosomes attach to the nuclear envelope. Nuclear-
membrane-attached loci are typically marked by H3K9 
methylation, and this modification is decreased in the 
laminin-associated diseases Hutchinson–Gilford prog-
eria syndrome and facioscapulohumeral dystrophy93,94.  
The nuclear-membrane-attached regions often lie 
outside genes, so structural variants in unannotated 
genomic regions may be informative for understand-
ing three-dimensional architecture. Future studies that 
integrate histone-modification profiles, transcriptomes, 
structural variations and chromosomal interaction data 
will expedite our understanding of nuclear architecture 
and define new mechanisms of disease.

Approaches to an integrative analysis
Several consortia are systematically interrogating 
genetic variation, the transcriptome, the epigenome 
and the interactome on a genomic scale. Each experi-
ment adds another dimension of data to the genome, so 
there are now hundreds of dimensions of experimen-
tal data tethered onto the human genome (and other 
genomes), and this number is growing rapidly. The 
key to fully exploiting these data is integrating them. 
There are many ways to approach the challenge of data 

Figure 2 | identification of regulatory snPs. The 
sequence of a transcription factor (TF) binding site is 
shown with the position of an A/T polymorphism. By 
integrating chromatin signatures of enhancers or TF 
binding sites with SNP data, SNPs falling with the region 
would be predicted as regulatory SNPs. These could then 
be correlated to changes in gene expression. H3K4me1, 
histone 3 lysine 4 monomethylation.
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Formaldehyde-assisted 
isolation of regulatory 
elements followed by 
sequencing
(FAIRE–seq.) This technique 
isolates nucleosome-free 
regions of DNA from chromatin 
during phenol:chloroform 
extraction.

Discretization
The conversion of a continuous 
signal to a discrete signal.

integration, and we discuss three important — although 
not mutually exclusive — approaches below.

Data complexity reduction. For a growing number of 
sequencing-based assays, such as ChIP–seq, DHS–seq, 
formaldehyde-assisted isolation of regulatory elements 
followed by sequencing (FAIRE–seq), RNA–seq and 
Hi-C, the result of each experiment is millions of short 
sequence reads, which essentially give a continuous sig-
nal of enrichment across the genome. A simple approach 
to reducing the complexity of this data set from mil-
lions of data points to a more manageable hundreds 
or thousands of sites is to summarize each experiment 
as a collection of genomic regions with strong enrich-
ment of signal. For ChIP–seq, peak-finders discretize 
the genome-wide profiles into regions with enrichment 
and those without. Therefore, a commonly used method 
of data integration is to perform intersection analysis 
on enriched regions from different experiments. For 
example, Chen et al.95 mapped a collection of 13 tran-
scription factors using ChIP–seq in mouse embryonic 
stem cells, used a custom peak-finder to call regions 
of enrichment and observed significant co-binding of 
transcription factors.

Although intersection analysis on discretized data 
sets is straightforward to perform, special attention must 
be paid to the underlying assumptions of different data 
discretizers. For example, blanket application of a peak-
finding method and set of parameters to different types 

of data — such as histone modifications, transcription-
factor binding and open chromatin — is often ill-advised 
for several reasons. Firstly, the type of experiment usually 
dictates a specific kind of data analysis. For instance, tran-
scription factors often bind discrete, specific sites and so 
ChIP–seq tags at the point of binding have a biased distri-
bution between positive and negative strands, which can 
be used by peak-finders to obtain excellent precision74,96.  
However, this assumption is less suitable when binding 
or enrichment occurs contiguously across large stretches 
of DNA or in clusters, as is the case for certain chromatin 
modifications30,97. Therefore, one must be mindful of the 
underlying assumptions and limitations of peak-finders 
before applying them. Secondly, even among the same 
type of data, variability in data quality may necessitate 
calling peaks with different thresholds and/or data- 
normalization methods. This is especially true for  
ChIP–seq experiments, in which variable quality of anti-
bodies or suboptimal ChIP conditions can lead to vari-
able ChIP enrichment, which will require the adjustment 
of significance thresholds individually to achieve high 
sensitivity and specificity.

It is important to note that the inherently noisy nature 
of genome-wide data means that a perfect peak-finder 
cannot exist: in calling regions of enrichment, one can 
only hope to minimize, but not eliminate, false-positives 
and false-negatives. Realizing this, it is evident that we 
cannot simply trust peak-finders blindly and that it is 
especially important to inspect at least some of the results 
by eye. Thus, if we are to perform meaningful analysis, 
we cannot be far removed from the original data and 
should validate computational analyses experimentally.

Unsupervised integration. A more scalable method for 
integrating data is unsupervised learning, in which the 
data is approached with no prior biases, knowledge or 
hypotheses. To summarize a large data set into smaller 
groups that can be more easily conceptualized, an  
unsupervised approach simply asks the question: what 
kinds of patterns exist in a data set? one common 
assumption made by unsupervised approaches is that 
the interesting features of the data are the ones that occur 
frequently, and therefore the goal is to find common pat-
terns. As diverse experimental methods equate frequency 
of genomic mapping with activity, an unsupervised 
analysis can treat these data sets equally and need not 
know the nature of the measurement. For example, Zhao 
and colleagues30,31 profiled 37 histone modifications in 
human CD4+ T cells. Although the number of different 
possible combinations of modifications is a staggering 
237 ≈ 137.4 billion, it is likely that most combinations do 
not exist or occur very infrequently. To enumerate com-
monly occurring chromatin signatures or other patterns, 
clustering approaches can be applied (BOX 2).

The genome serves as a scaffold on which high-
throughput data are assembled, and from a genome-
centric perspective, clustering can be seen as a way of 
classifying genomic loci into conceptual groups with 
shared attributes. Clustering data from different kinds 
of experiments gives distinct types of conceptual groups, 
and the first phase of data integration can be seen as 

 Box 2 | clustering

Clustering is an integral bioinformatics tool for partitioning a large data set into 
more easily digestible, conceptual pieces. It can be applied to a wide variety of data, 
but traditionally has been applied to gene-expression profiles. Here, each gene is 
represented by a list of expression values in various cell types or conditions, and 
clustering identifies sets of co-expressed genes. In general, conventional clustering 
works well when the experimental values can be easily discretized into the 
clustered entities — for example, RNA–seq reads spanning exons in gene models  
are discretized to a single number (RPKM-normalized expression of genes).

However, for other applications, discretization is not possible or not desired. One 
example is for histone-modification data derived from chromatin immunoprecipita-
tion followed by sequencing (ChIP–seq), in which the profile of experimental values 
over a contiguous region is informative. Conventional clustering can be applied to this 
data, provided that the profiles are well aligned. For example, to enumerate 
commonly occurring chromatin signatures in an unbiased way, conventional 
clustering can be applied to a subset of genomic regions, such as promoters. If a 
predefined number of clusters k is expected, then k-means clustering can be applied, 
in which each promoter is assigned to the most similar cluster. Alternatively, 
hierarchical clustering (in which each promoter is related to all other promoters, as 
represented in a ‘tree-like’ pattern) can be used to offer more flexibility. Clearly, 
conventional clustering can be applied to a wide variety of genomic data sets, 
including genomes, epigenomes57, transcriptomes16 and interactomes117. However, 
this method gives the best results when the set of loci examined are well-aligned, 
which is the case for gene definitions for which excellent annotations exist.

To cluster loci with poorly aligned or asymmetric chromatin signatures, or for 
poorly annotated loci such as gene-distal regulatory elements, our laboratory has 
developed an approach called ChromaSig89,99. Given a set of genomic loci, 
ChromaSig aligns and orients the epigenetic profiles around the loci, outputting 
clusters of loci that share similar profiles. Alternatively, given the genome-wide 
nature of epigenetic data, another clustering approach is to assign a cluster to every 
part of the genome. To accomplish this task, Jaschek et al.118 used a hidden Markov 
model approach to ascertain the most likely epigenetic states given the data.
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enumerating the conceptual modules of each data set. 
For example, clustering of RNA expression reveals co-
expressed genes98, clustering of histone modifications 
gives loci that share similar chromatin structure57,89,99, 
protein–protein interaction clustering finds proteins in 
the same complex100, and genetic interaction clustering 
reveals members of the same or similar pathways55.

Although all modules are tethered to the genome, 
modules from one experiment are not linked to those 
from others. Thus, the next task in data integration is 
to connect these modules. one approach is to examine 
a module from one data type — for example, chromatin 
signatures — in the context of another data type — for 
example, DNA methylation25,101,102. Alignment of data 
sets on a browser, such as the university of California-
Santa Cruz (uCSC) Genome Browser103, might be useful 
in this regard (FIG. 3). Furthermore, the Genome Browser 
also contains annotations, such as gene definitions, 
evolutionary conservation and disease associations104.  
Therefore, co-clustering of new experimental data 
with known annotations can provide an easy bridge 

to hypothesis generation. In the past, when genomics  
consisted only of global gene-expression analysis, anno-
tation libraries such as Gene ontology105 and the more 
sophisticated Gene Set Enrichment Analysis106 were 
developed to provide an easy way to assess the biological 
significance of gene hits. As data sets are now extending 
to include ncRNAs, disease-associated SNPs and regions 
of transcription-factor binding, it seems that ‘Locus 
Set Enrichment Analysis’ will be an important part of 
genomics. Sets of loci that share factor binding, epigenetic 
modifications or disease association will provide efficient 
ways to form hypotheses regarding function outside of  
coding regions.

Another approach to connecting conceptual mod-
ules involves network biology, which leverages high-
throughput techniques to find relationships that connect 
genomic loci and conceptual groups. Such approaches 
include: Hi-C, which maps how chromosomal interac-
tions connect genomic loci to each other; E-mAPs, which 
use genetic interactions to connect proteins to pathways; 
and ChIP–seq, which links transcription factors with 

Figure 3 | Data visualization. The University of California-Santa Cruz (UCSC) Genome Browser is a tool for viewing 
genomic data sets. A vast amount of data is available for viewing through this browser. This example from the browser 
shows numerous data types in K562 cells from the ENCODE Consortium. A random gene was selected — katanin p60 
subunit A-like 1 (KATNAL1) — that shows several points that can be identified by using this tool. The promoter has a 
typical chromatin structure (a peak of histone 3 lysine 4 trimethylation (H3K4me3) between the bimodal peaks of 
H3K4me1), is bound by RNA polymerase II (RNAPII) and is DNase hypersensitive. The gene is transcribed, as indicated 
by RNA sequencing (RNA–seq) data, as well as H3K36me3 localization. The gene lies between two CCCTC-binding 
factor (CTCF)-bound sites that could be tested for insulator activity. An intronic H3K4me1 peak (highlighted) predicts 
an enhancer element, corroborated by the DNase I hypersensitivity site peak. There is a broad repressive domain of 
H3K27me3 downstream, which could have an open chromatin structure in another cell type.

R E V I E W S

NATuRE REVIEWS | Genetics  VoLumE 11 | juLy 2010 | 481

© 20  Macmillan Publishers Limited. All rights reserved10

http://genome.ucsc.edu
http://genome.ucsc.edu
http://www.geneontology.org
http://www.broadinstitute.org/gsea


regulated genes. This second level of integration — link-
ing different kinds of experiments — can form a knowl-
edge base that can be used to provide biological insights 
or to formulate hypotheses for further study.

As a hypothetical example, suppose we used ChIP–seq  
to map a novel transcription factor genome-wide and 
wanted to know the significance of its binding profile. 
Complicating matters, most of the binding sites are distal 
to promoters. Clustering reveals that a subset of binding 
sites share a similar chromatin environment, which sug-
gests that these sites may function similarly. Hi-C data 
then links this subset of binding sites with their target 
genes and RNA–seq data reveals that these genes are 
highly expressed. Finally, protein–protein and genetic 
interaction data reveal that some of these expressed 
genes belong to related but distinct protein complexes 
that regulate RNA splicing. Thus, data integration would 
allow us to efficiently propose the hypothesis that the 
binding of this new factor to DNA regulates the process 
of RNA splicing.

often, the scope of genomic experiments performed 
is so diverse that it is not immediately clear how, or even 
if, one experiment relates to another. It is in such cases 
that unsupervised, data-driven approaches to integration 
are most useful. unsupervised integration is a discov-
ery tool for finding correlations between two or more 
experiments. Novel associations lead to hypotheses 
of function, which can be followed up by supervised 
integration and by direct experimental validation (see 
below). In this way, high-throughput experiments are 
screens for identifying interesting, unexpected associa-
tions. Because of the power of the approach and because 
the inputs required are minimal, unsupervised integra-
tion is arguably the first tool that should be applied to 
a new data set, and it should be constantly run as new 
experiments are added to an existing data set to find 
additional associations.

Supervised integration. The discovery of patterns is 
one output of unsupervised integration, but the pat-
terns alone do not advance our understanding of biol-
ogy or disease. Like most systems biology approaches,  
unsupervised integration excels at generating hypotheses.  
Therefore, a novel pattern is simply an observation 
from which we must make and test predictions of func-
tion, often by incorporating external data sets or new 
experiments. This is the realm of supervised integration. 
Supervised integration is driven by testable hypotheses 
and so often relies on only a few dimensions of a full  
data set.

It is important to note that the choice of data to 
include in supervised integration and the specific 
method used depend crucially on the question posed. 
For example, using an unsupervised clustering approach, 
we recently observed a set of distinct histone modifica-
tions at exons, which led to the hypothesis that these 
modifications mark alternatively expressed exons89. To 
test this hypothesis, we needed to examine these chro-
matin modifications in the context of expression at the 
exonic level, and we were able to use previously published 
exon expression array data from the same cell type107.

However, in most instances the impetus for supervised 
integration is anecdotal evidence obtained from observa-
tions of genome-scale data on a browser or from previ-
ously published studies. For example, Guttman et al.16  
took advantage of previous observations that RNAPII-
transcribed genes are marked by H3K4me3 at promot-
ers and by the spread of H3K36me3 into the transcribed 
region, and they used this chromatin signature to identify 
RNAPII-transcribed lincRNAs. Thus, supervised inte-
gration starts with a prediction based on an observation 
and ends with a test of this prediction. This is arguably 
how our biological understanding is advanced most: 
the more predictive the hypothesis, the more biological  
insights are gained. Therefore, observation and data 
integration cannot be independent from each other and 
there is no substitute for seeing the data with one’s own 
eyes. For example, our opinion that it is necessary to see 
raw data using a browser is consistent with the current 
trend in data visualization towards replacing traditional 
averaged plots with more information-rich heatmaps, 
which provide experimental profiles for thousands of loci 
simultaneously (for example, genome-wide heatmaps of 
ChIP–chip data58).

As there are now tens of thousands of high-throughput  
experiments linked to the human genome, finding 
dependence relationships among the many dimen-
sions of experimental data is essential to increasing 
our knowledge. In the simplest case, relationships can 
be discovered by correlation analysis. For example, a 
strong, positive correlation between the binding profiles 
of two transcription factors indicates that one may be 
dependent on the other. Additionally, for genetic inter-
actions, finding positive and negative correlations for 
a mutant under different conditions can allow the sys-
tematic discovery of condition-dependent relationships  
(S. Bandyopadhyay, personal communication).

Although informative, correlation analysis can become 
unwieldy as the number of data sets grows — doubling a 
data set would effectively quadruple the number of com-
putations necessary and the number of visualizations 
required. Luckily, machine learning techniques, notably 
Bayesian networks108, offer a supervised approach for 
discovering relationships among data entities. using a 
probabilistic framework, Bayesian networks can find 
dependence relationships, as van Steensel et al.109 did 
for a panel of chromatin modifications and chromatin-
associated proteins and modifiers. Bayesian networks can 
also readily integrate data from different kinds of experi-
ments. For example, yu et al.110 modelled the interdepend-
ence of histone-modification profiles with the binding of 
transcription factors, together with their relationship to 
gene expression. However, it is important to note that the 
types of prediction that are the output of a Bayesian net-
work crucially depend on how the network is designed, 
which in turn depends on the question asked. For exam-
ple, jansen et al.111 designed a Bayesian network to predict 
protein complexes by integrating diverse data sources, 
including protein–protein interactions, expression and 
gene annotation. In summary, Bayesian networks can find 
relationships among diverse kinds of data and thereby  
create hypotheses that can be tested experimentally.
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using large-scale data sets for integrative analysis
one of the greatest challenges that comes with high-
throughput technologies is the vast amount of data that 
they produce. The sheer amount of data produced can 
be difficult to manage, especially for experiments involv-
ing NGS methods. For example, Lister et al.25 recently 
sequenced the human methylome using bisulphite 
shotgun sequencing, which generated 90 gigabases of 
sequence reads, representing 30× coverage of the human 
diploid genome. Transferring this amount of data to the 
National Center for Biotechnology Information (NCBI) 
public database servers took one full week. The ques-
tion is how can investigators efficiently use data of this 
scale for comparative analyses? This challenge can be 
broadly divided into two: how can bench scientists look 
to see how one data set fits with others (from their own 
or other laboratories), and how can bioinformaticians 
provide better tools for integrated analyses?

For the bench scientist. To make strides in the era of 
NGS, we need tools for the bench scientist to analyse 
their own data in an efficient and straightforward man-
ner. We propose that a solution would be similar to an 
open-source web browser, such as FireFox. It would 
have a series of ‘add-ons’, and a core group of program-
mers would maintain the browser code and listen to  
the community for ways of updating it. Importantly, the 
programmers would allow the community to build indi-
vidual tools to enhance the browser’s capabilities. The 
‘gatekeepers’ would ensure that the tools produced are 
safe and work with the browser, and users could decide 
which add-ons are suited to their needs. users would 
also see previews and read reviews and ratings for each 
add-on. A tool along these lines — Galaxy112,113 — has 
been in development for many years and is described in 
BOX 3, along with other popular online tools.

one potential downside of an online analytical tool, 
such as Galaxy, is computational load. If the majority 

of scientists conducting RNA–seq or ChIP–seq experi-
ments begin running Galaxy on a regular basis, will the 
whole system creep to a halt? Also, to prevent inefficient 
computation, add-ons would need to meet specific 
benchmarks for performance, such as time complexity 
and storage space, as the system cannot tolerate ineffi-
cient computation. Therefore it can be argued that it may 
be advisable to have a stand-alone analytical system. one 
example of such a tool is CisGenome114, which is down-
loadable and compatible with several operating systems. 
Designed for the analysis of ChIP–chip and ChIP–seq 
data, it includes a browser, file-conversion tools and tools 
to call peaks of ChIP enrichment and to perform motif 
analysis. These features enable a basic workflow that  
is needed by many scientists. An example workflow 
using a range of tools is shown in FIG. 4.

Resources such as genome browsers are still some of 
our best tools. A good browser can distinguish good-
quality from poor-quality data sets and can show trends 
and patterns in the data without the need for statistical 
measures. Such anecdotal observations can spur ques-
tions that require more sophisticated analysis. Several 
browsers are available, including Entrez Genome, 
Ensembl and the uCSC Genome Browser. Although the 
amount of data available on the uCSC browser, including 
many large-scale data sets103, makes it very valuable, it can 
be slow when attempting to browse through several data 
sets at various locations. other browsers, such as Anno-j, 
which was used for visualizing the Arabidopsis thaliana 
and human methylomes at nucleotide resolution25,27,  
are much more dynamic. Scrolling through the 
genome is very rapid and tracks can be zoomed, scaled,  
re-ordered and removed almost instantly.

Bioinformatic hurdles. There are still a number of key 
issues in analysing NGS data, several of which have 
been touched on in previous reviews4,6. For example, 
it remains unclear how RNA–seq data from platforms 

 Box 3 | online tools for integrative analysis

Galaxy is an online genomics analysis tool that allows users to perform a number of integrative data analyses on 
genomic data sets. Although not a database itself, it is directly linked into many genomic resources, such as the 
University of California-Santa Cruz (UCSC) Genome Browser. Galaxy allows users to upload data, parse it, reorder 
columns and change file formats for browser compatibility. Galaxy also provides several tools for data integration.  
For example, it has tools for data-set intersection and union analysis, which enables users to compare their data sets 
with annotated genomic loci and view the output directly on the Genome Browser. In the process, users can create 
and save not just new files but entire workflows that can be reused and shared with others. Best of all, Galaxy provides 
a platform for running tools developed by the community. In the near future, tools like Galaxy will provide bench 
scientists with a one-stop-shop for data analysis: given sequencing reads, add-ons will map these reads and call peaks, 
allowing for subsequent analyses.

Another popular online tool is DAVID119, which is used for Gene Ontology analysis (for a step-by-step protocol,  
see REF. 120). Therefore, using the range of tools available online, with a few clicks one can map reads from chromatin 
immunoprecipitation followed by sequencing (ChIP–seq) using Galaxy, call peaks with CisGenome, use Galaxy’s 
intersection tool to find overlapped genes and, finally, upload the transcription-factor-bound gene list to DAVID for 
Gene Ontology annotation (FIG. 4). Although not as efficient as a single tool, this method allows a substantial amount 
of analysis to be done without the need to write new software.

It is also important to note that known and novel motif finding for peaks or promoters can be done online using 
CEAS (Cis-regulatory Element Annotation System) and The MEME Suite. In addition to Gene Ontology annotations, 
understanding gene functions, pathway interactions or protein–protein interactions might be of interest for key 
genes. A number of online tools can now assist in this (STRING, Cytoscape and mouseNET are a few examples).
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that sequence short tags will be normalized against data 
from longer read platforms. Also, will RNA–seq meth-
ods be as universal as Affymetrix microarrays? most 
scientists feel comfortable comparing their own and 
published Affymetrix platform data. It is still unclear 
in these early stages of data processing and normaliza-
tion of RNA–seq how relative levels of expression can 
be compared, especially if there is a variation in the 
number of reads sequenced.

To address these questions more thoroughly, it will 
be important to revisit data normalization. Because 
NGS-based assays provide a digital read-out, the data 
is often used ‘as is’. However, different experiments are 
sure to provide slightly varying degrees of enrichment, 
possibly due to antibody differences (for ChIP–seq or 
HITS-CLIP) or experimental variation. Therefore, two 
data sets used in a comparative analysis should first be 
normalized to each other. This applies to samples from  
different research groups, as well as to samples  
from within a data set. For example, if one experiment 
has a uniform reduction in peak height, non-normalized 
peak-finding may result in calling a cell-type-specific 

peak at a site that is actually shared. Normalization 
is therefore imperative in experiments that examine 
time points of differentiation or stages of disease pro-
gression in which the changes may be subtle between 
neighbouring stages115. In this regard, we will probably 
benefit from the numerous normalization methodolo-
gies that have been developed for microarray analysis. 
However, like gene-expression analysis, we are sure to 
find that one method does not fit all data sets and that 
Loess, quantile and rank-order normalizations will all 
be useful.

future perspectives
Data integration itself is not an end: it is designed to 
generate novel hypotheses and help to test them. If a 
hypothetical ‘data integrator’ existed, its most impor-
tant input would not be the data to be analysed but a 
specific question to answer. Depending on the question 
posed, analyses of the data — from what data sources are 
chosen to how normalization is performed, how con-
trols are selected and precisely what is being calculated 
— can vary dramatically. A frequent misconception is 
that a data integrator is a black box that takes in data as 
input and generates interesting observations (or better, 
papers) as output. unbiased integration strategies focus 
on a single question, whereas supervised integration can 
address any number of questions, so the scope of the 
types of analyses possible with supervised integration 
is much greater, and arguably endless. For this reason, 
it is unfeasible to automatically perform all possible 
integrated analyses, as if the data integrator were seek-
ing both a question and its answer simultaneously. The 
choice of interesting questions must always be left to 
the researcher, and supervised integration must be tai-
lored to each hypothesis. It is our opinion that, although 
unsupervised approaches can excel at finding patterns, 
it will be the supervised integrative methods stemming 
from either unsupervised methods or simple observa-
tions that will further our understanding of biology  
most effectively.

The future of genomic technologies holds great 
promise, but for genomic data and its integration to have 
a more meaningful impact on our understanding of biol-
ogy, we must make an effort to link together all of the 
information that is being generated. This may require 
a community-wide effort, akin to Wikipedia, in which 
information can be updated by all but monitored for 
the correct citations that directly link to Pubmed and 
the NCBI website. Each gene entry would be linked to 
a browser for visualizing all genomic and epigenomic 
information in a manner similar to viewing Gene 
Expression omnibus (GEo) profiles on the NCBI web-
site. All of the related information should be searchable 
with Google-like capabilities. That is, a search engine 
examines the entire text for terms and phrases and finds 
related information, even if it does not contain the exact 
key words. For example, NextBio currently provides a 
similar approach when searching for genes. This integra-
tion of knowledge will make each of us a better scientist 
through a greater understanding of the information 
around us.

Figure 4 | Flow chart for data analysis. This example shows a workflow for the 
analysis of data from chromatin immunoprecipitation followed by sequencing 
(ChIP–seq). This analysis can be done by a bench scientist using current resources,  
and a similar strategy could be used for other types of next-generation sequencing 
data. Blue boxes show steps that can be performed using Galaxy. Integration or 
cross-sectioning of data can often be done in the University of California-Santa Cruz 
(UCSC) Genome Browser or by joining lists in Galaxy (purple box). Downstream steps, 
such as known motif analysis and Gene Ontology analysis, can be achieved with online 
or stand-alone tools (orange boxes). Galaxy can also be used to establish analytical 
pipelines for calling SNPs that could then be integrated into sequencing-based data, 
such as reads from ChIP–seq. CEAS, Cis-regulatory Element Annotation System; 
MACS, Model-based Analysis of ChIP–Seq; TSS, transcription start site.
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