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Abstract
A wide range of machine learning problems, including astronomical inference

about galaxy clusters, natural image scene classification, parametric statistical infer-
ence, and predictions of public opinion, can be well-modeled as learning a function
on (samples from) distributions. This thesis explores problems in learning such
functions via kernel methods.

The first challenge is one of computational efficiency when learning from large
numbers of distributions: the computation of typicalmethods scales between quadrat-
ically and cubically, and so they are not amenable to large datasets. We investigate the
approach of approximate embeddings into Euclidean spaces such that inner products
in the embedding space approximate kernel values between the source distributions.
We present a new embedding for a class of information-theoretic distribution dis-
tances, and evaluate it and existing embeddings on several real-world applications.
We also propose the integration of these techniques with deep learning models so as
to allow the simultaneous extraction of rich representations for inputs with the use of
expressive distributional classifiers.

In a related problem setting, common to astrophysical observations, autonomous
sensing, and electoral polling, we have the following challenge: when observing
samples is expensive, but we can choose where we would like to do so, how do we
pick where to observe? We propose the development of a method to do so in the
distributional learning setting (which has a natural application to astrophysics), as
well as giving a method for a closely related problem where we search for instances
of patterns by making point observations.

Our final challenge is that the choice of kernel is important for getting good
practical performance, but how to choose a good kernel for a given problem is not
obvious. We propose to adapt recent kernel learning techniques to the distributional
setting, allowing the automatic selection of good kernels for the task at hand. In-
tegration with deep networks, as previously mentioned, may also allow for learning
the distributional distance itself.

Throughout, we combine theoretical results with extensive empirical evaluations
to increase our understanding of the methods.
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Chapter 1

Introduction

Traditional machine learning approaches focus on learning problems defined on vectors, mapping
whatever kind of object we wish to model to a fixed number of real-valued attributes. Though
this approach has been very successful in a variety of application areas, choosing natural and
effective representations can be quite difficult.

In many settings, we wish to perform machine learning tasks on objects that can be viewed as
a collection of lower-level objects or more directly as samples from a distribution. For example:

• Images can be thought of as a collection of local patches (Section 4.2); similarly, videos
are collections of frames.

• The total mass of a galaxy cluster can be predicted based on the positions and velocities of
individual galaxies (Section 4.3).

• Support for a political candidate among various demographic groups can be estimated by
learning a regression model from electoral districts of individual voters to district-level
support for political candidates (Flaxman et al. 2015).

• Documents are made of sentences, which are themselves composed of words, which them-
selves can be seen as being represented by sets of the contexts in which they appear
(Section 6.2).

• Parametric statistical inference problems learn a function from sample sets to model pa-
rameters (Section 4.1).

• Expectation propagation techniques relay on maps from sample sets to messages normally
computed via expensive numerical integration (Jitkrittum et al. 2015).

• Causal arrows between distributions can be estimated from samples (Lopez-Paz et al. 2015).
In order to use traditional techniques on these collective objects, we must create a single

vector that represents the entire set. Though there are various ways to summarize a set as a vector,
we can often discard less information and require less effort in feature engineering by operating
directly on sets of feature vectors.

One method for machine learning on sets is to consider them as samples from some unknown
underlying probability distribution over feature vectors. Each example then has its own distribu-
tion: if we are classifying images as sets of patches, each image is defined as a distribution over
patch features, and each class of clusters is a set of patch-level feature distributions. We can then
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define a kernel based on statistical estimates of a distance between probability distributions. Let-
ting X ⊆ Rd denote the set of possible feature vectors, we thus define a kernel k : 2X × 2X → R.
This lets us perform classification, regression, anomaly detection, clustering, low-dimensional
embedding, and any of many other applications with the well-developed suite of kernel methods.
Chapter 2 discusses various such kernels and their estimators; Chapter 4 gives empirical results
on several problems.

When used for a learning problem with N training items, however, typical kernel methods
require operating on an N × N kernel matrix, which requires far too much computation to
scale to datasets with a large number of instances. Chapter 3 discusses one way to avoid this
problem: approximate embeddings z : X → RD, à la Rahimi and Recht (2007), such that
z(x)Tz(y) ≈ k (x, y). These embeddings are available for several distributional kernels, and are
also evaluated empirically in Chapter 4.

Chapter 5 addresses the application of this type of complex functional classifier to an active
search problem. Consider finding polluted areas in a body of water, based on point measurements.
We wish to, given an observation budget, adaptively choose where we should make these obser-
vations in order to maximize the number of regions we can be confident are polluted. If our notion
of “pollution” is defined simply by a threshold on the mean value of a univariate measurement,
Ma, Garnett, et al. (2014) give a natural selection algorithm based on Gaussian process inference.
If, instead, our sensors measure the concentrations of several chemicals, the vector flow of water
current, or other such more complicated data, we can instead apply a classifier to a region and
consider the problem of finding regions that the classifier marks as relevant.

One area of proposed work, discussed in Section 6.5, bridges the problems of learning on
distributions in Chapters 2 to 4 with that of active pattern search in Chapter 5. Specifically,
we would like to consider the problem of active learning on distributions. There are several
possible avenues of incorporating active selection into distribution learning: given a noisy
understanding of a distribution, which points should be selected for more careful measurement?
Which distributions should be measured in order to best accomplish our objectives? This problem
is intimately related to the setting of Chapter 5 when regions are independent of one another.

Other areas of future work, discussed in Chapter 6, propose integrating the distributional
embeddings of Chapter 3 with deep learning models (Section 6.1) and kernel learning techniques
(Section 6.3), applying them to word embeddings in natural language processing (Section 6.2),
and developing scalable embeddings for other forms of distributional kernel (Section 6.4).

1.1 Summary of contributions
• Section 3.1 improves the theoretical understanding of the randomFourier features of Rahimi
and Recht (2007). (Based on Sutherland and Schneider 2015.)

• Section 3.3.1 provides a method to scale the L2 embedding of J. B. Oliva, Neiswanger,
et al. (2014) to higher dimensions in some situations.

• Section 3.4 gives an approximate embedding for a new class of distributional distances.
(Based on Sutherland, J. B. Oliva, et al. 2015.)

• Chapter 4 provides three empirical studies for the application of distributional distances to
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practical problems. (Based on Póczos, Xiong, Sutherland, et al. 2012; Ntampaka, Trac,
Sutherland, Battaglia, et al. 2014; Sutherland, J. B. Oliva, et al. 2015.)

• Chapter 5 presents and analyzes amethod for the novel problem setting of active pointillistic
pattern search. (Based on Ma, Sutherland, et al. 2015.)

Chapter 6 proposes further work related to these areas.

1.2 The gestalt-learn package
Efficient implementations of many of the methods for learning on distributions discussed in
this thesis are available in the Python package gestalt-learn1, and more will be available
soon. This package integrates with the standard Python numerical ecosystem and presents an api
compatible with that of scikit-learn (Pedregosa et al. 2011).

1Currently https://github.com/dougalsutherland/skl-groups, soon to be renamed to https://
github.com/dougalsutherland/gestalt-learn.
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Chapter 2

Learning on distributions

As discussed in Chapter 1, we consider the problem of learning on probability distributions.
Specifically: let X ⊆ Rd be the set of observable feature vectors, and P the set of probability dis-
tributions under consideration. We then perform machine learning on samples from distributions
by:

1. Choosing a distance ρ : P × P → R.
2. Defining a Mercer kernel k : P × P → R based on ρ.
3. Estimating k based on the observed samples as k̂ : 2X × 2X → R, which should itself be a

kernel on 2X .
4. Using k̂ in a standard kernel method, such as an svm or a Gaussian Process, to perform

classification, regression, collective anomaly detection, or other machine learning tasks.

Certainly, this is not the only approach to learning on distributions. Some distributional
learning methods do not directly compare sample sets to one another, but rather compare their
elements to a class-level distribution (Boiman et al. 2008). Given a distance ρ, one can naturally
use k-nearest neighbor models (Póczos, Xiong, and Schneider 2011; Kusner et al. 2015), or
Nadaraya-Watson–type local regression models (J. B. Oliva, Póczos, et al. 2013; Póczos, Rinaldo,
et al. 2013) with respect to that distance. In this thesis, however, we focus on kernel methods as a
well-studied, flexible, and empirically effective approach to a broad variety of learning problems.

We typically assume that every distribution in P is absolutely continuous with respect to
the Lebesgue measure, and slightly abuse notation by using distributions and their densities
interchangeably.

2.1 Distances on distributions

We will define kernels on distributions by first defining distances between them. We first present
four general frameworks for such distances:
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Lr metrics One natural way to compute distances between distributions is the Lr metric between
their densities, for order r ≥ 1:

Lr (p, q) B
(∫
X

|p(x) − q(x) |r dx
)1/r

.

Note that the limit r = ∞ yields the distance L∞(p, q) = supx∈X |p(x) − q(x) |.

f -divergences For any convex function f with f (1) = 0, the f -divergence of P to Q is

D f (P‖Q) B
∫
X

f
(

p(x)
q(x)

)
q(x) dx.

This class is sometimes called “Csiszár f -divergences”, after Csiszár (1963). Sometimes the
requirement of convexity or that f (1) = 0 is dropped. Note that these functions are not in general
symmetric or respecting of the triangle inequality. They do, however, satisfy D f (P‖P) = 0,
D f (P‖Q) ≥ 0, and are jointly convex:

D f (λP + (1 − λ)P′‖λQ + (1 − λ)Q′) ≤ λD f (P‖Q) + (1 − λ)D f (P′‖Q′).

In fact, the only metric f -divergences are multiples of the total variation distance, discussed
shortly (Khosravifard et al. 2007) — though e.g. the Hellinger distance is the square of a metric.
For an overview, see e.g. Liese and Vajda (2006).

α-β divergences The following somewhat less-standard divergence family, defined e.g. by
Póczos, Xiong, Sutherland, et al. (2012) generalizing the α-divergence of Amari (1985), is also
useful. Given two real parameters α, β, Dα,β is defined as

Dα,β (P‖Q) B
∫

pα (x) q β (x) p(x) dx.

Dα,β (P‖Q) ≥ 0 for any α, β; Dα,−α (P‖P) = 0. Note also that Dα,−α has the form of an
f -divergence with t 7→ tα+1, though this does not satisfy f (1) = 0 and is convex only if
α < (−1, 0).

Integral probability metrics Many useful metrics can be expressed as integral probability
metrics (ipms, Müller 1997):

ρF(P,Q) B sup
f ∈F

�����

∫
f dP −

∫
f dQ

�����
,

where F is some family of functions f : X → R. Note that ρF satisfies ρF(P, P) = 0,
ρF(P,Q) = ρF(Q, P), and ρF(P,Q) ≤ ρF(P, R) + ρF(R,Q) for any F; the only metric property
which depends on F is (ρF(P,Q) = 0) =⇒ (P = Q). Sriperumbudur et al. (2009) give an
overview.
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The various distributional distances below can often be represented in one or more of these
frameworks.

L2 distance The L2 distance is one of the most common metrics used on distributions. It can
also be represented as D1,0 − 2D0,1 + D−1,2.

Kullback-Leibler divergence The Kullback-Leibler (kl) divergence is defined as

kl(P‖Q) B
∫
X

p(x) log
p(x)
q(x)

dx.

For discrete distributions, the kl divergence bears a natural information theoretic interpretation
as the expected excess code length required to send a message for P via the optimal code for Q. It
is nonnegative, and zero iff P = Q almost everywhere; however, kl(P‖Q) , kl(Q‖P) in general.
Note also that if there is any point with p(x) > 0 and q(x) = 0, kl(P‖Q) = ∞.

Applications often use a symmetrization by averaging with the dual:

skl(P,Q) B 1
2 (kl(P‖Q) + kl(Q‖P)) .

skl, however, still does not satisfy the triangle inequality. It is also sometimes called Jeffrey’s
divergence, though that name is also sometimes used to refer to the Jensen-Shannon divergence
(below), so we avoid it.

kl can be viewed as a f divergence, with one direction corresponding to t 7→ t log t and the
other to t 7→ − log t; skl is thus an f divergence with t 7→ 1

2 (t − 1) log t.

Jensen-Shannon divergence The Jensen-Shannon divergence is based on kl:

js(P,Q) B 1
2 kl

(
P


P +Q

2

)
+ 1

2 kl
(
Q


P +Q

2

)
,

where P+Q
2 denotes an equal mixture between P and Q. js is clearly symmetric, and in fact

√
js

satisfies the triangle inequality. Note also that 0 ≤ js(P,Q) ≤ log 2. It gets its name from the
fact that it can be written as the Jensen difference of the Shannon entropy:

js(P,Q) = H
[

P +Q
2

]
−

H[P] + H[Q]
2

,

a view which allows a natural generalization to more than two distributions. Non-equal mixtures
are also natural, but of course asymmetric. For more details, see e.g. Martins et al. (2009).

Rényi-α divergence The Rényi-α divergence generalizes kl as

rα (P‖Q) B
1

α − 1
log

∫
p(x)αq(x)1−α dx;
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note that limα→1 rα (P‖Q) = kl(P‖Q). Like kl, r is asymmetric; we similarly define a sym-
metrization

srα (P,Q) B 1
2 (rα (P‖Q) + rα (Q‖P)) .

srα does not satisfy the triangle inequality.
rα can be represented based on an α-β divergence: r(P‖Q) = 1

α−1 log Dα−1,1−α (P‖Q).
A Jensen-Rényi divergence, defined by replacing kl with rα in the definition of js, has also

been studied (Martins et al. 2009), but we will not consider it here.

Total variation distance The total variation distance (tv) is such an important distance that it
is sometimes referred to simply as “the stastitical distance.” It can be defined as

tv(P,Q) = sup
A
|P(A) −Q(A) |,

where A ranges over every event in the underlying sigma-algebra. It can also be represented as
1
2 L1(P,Q), as an f -divergence with t 7→ |t − 1|, and as an ipm with F = { f : ‖ f ‖∞ ≤ 1}. (Recall
that ‖ f ‖∞ = supx∈X | f (x) |.) Note that tv is a metric, and 0 ≤ tv(P,Q) ≤ 1.

The total variation distance is closely related to the “intersection distance”, most commonly
used on histograms (Cha and Srihari 2002):∫

X

min(p(x), q(x)) dx =
∫
X

1
2
(
p(x) + q(x) − |p(x) − q(x) |

)
dx = 1 − tv(P,Q).

Hellinger distance The square of the Hellinger distance h is defined as

h2(P,Q) B 1
2

∫ (√
p(x) −

√
q(x)

)2
dx = 1 −

∫ √
p(x) q(x) dx.

h2 can be expressed as an f -divergence with either t 7→ 1
2 (
√

t − 1)2 or t 7→ 1 −
√

t; it is also
closely related to an α-β divergence as h2(P,Q) = 1 − D−1/2,1/2. h is a metric, and is bounded
in [0, 1]. It is proportional to the L2 difference between √p and √q, which yields the bounds
h2(P,Q) ≤ tv(P,Q) ≤

√
2 h(P,Q).

Earth mover’s distance The earth mover’s distance (emdρ) is defined for a metric ρ as

emdρ(P,Q) B inf
R∈Γ(P,Q)

E(X,Y )∼R
[
ρ(X,Y )

]
,

where Γ(P,Q) is the set of joint distributions with marginals P and Q. It is also called
the first Wasserstein distance, or the Mallows distance. When (X, ρ) is separable, it is also
equal to the Kantorovich metric, which is the ipm with F = { f : ‖ f ‖L ≤ 1}, where ‖ f ‖L B
sup {| f (x) − f (y) |/ρ(x, y) | x , y ∈ X} is the Lipschitz semi-norm.

For discrete distributions, emd can be computed via linear programming, and is popular in
the computer vision community.
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Maximummean discrepancy The maximum mean discrepancy (mmd, Sriperumbudur, Gret-
ton, et al. 2010; Gretton, Borgwardt, et al. 2012) is defined by embedding distributions into
a reproducing kernel Hilbert space (rkhs; for an overview see Berlinet and Thomas-Agnan
2004). Let k be the kernel associated with some rkhs H with feature map ϕ : X → H ,
such that 〈ϕ(x), ϕ(y)〉 = k (x, y). We can then map a distribution P to its mean embedding
µ(P) B EX∼P

[
ϕ(X )

]
, and define the distance between distributions as the distance between

their mean embeddings:
mmdk (P,Q) B ‖µ(P) − µ(Q)‖.

mmdk can also be viewed as an ipm with F = { f ∈ H | ‖ f ‖H ≤ 1}, where ‖ f ‖H is the
norm in H . (If f ∈ H , f (·) =

∑∞
i=1 αi k (xi, ·) for some points xi ∈ X and weights αi ∈ R;

‖ f ‖2
H
=

∑∞
i=1 αi f (xi).)

The mean embedding always exists when the base kernel k is bounded; ρ is metric for when it
is characteristic. See Sriperumbudur, Gretton, et al. (2010) and Gretton, Borgwardt, et al. (2012)
for details.

Szabó et al. (2014) proved learning-theoretic bounds on the use of ridge regression with mmd.

2.2 Estimators of distributional distances
We now discuss methods for estimating different distributional distances ρ.

The most obvious estimator of most distributional distances is perhaps to first perform density
estimation, and then compute distances between the density estimates: the plug-in approach.
These approaches suffer from the problem that the density is in some sense a nuisance parameter
for the problem of distance estimation, and density estimation is quite difficult, particularly in
higher dimensions.

Some of the methods below are plug-in methods; others correct a plug-in estimate, or use
inconsistent density estimates in such a way that the overall divergence estimate is consistent.

Parametric models Closed forms of some distances are available for certain distributions:
• For members of the same exponential family, closed forms of the Bhattacharyya kernel
(corresponding to Hellinger distance), and certain other kernels of the form Dα−1,α were
computed by Jebara et al. (2004). Nielsen and Nock (2011) give closed forms for all
Dα−1,1−α, allowing the computation of r, kl, and related divergences in addition to h.

• For Gaussian distributions, Muandet, Schölkopf, et al. (2012) compute the closed form of
mmd for a few base kernels. The Euclidean emd is also available.1

• Formixture distributions, L2 andmmd can be computed based on the inner products between
the components by simple linearity arguments. For mixtures specifically of Gaussians, F.
Wang et al. (2009) obtain the quadratic (r2) entropy, which allows the computation of
Jensen-Rényi divergences for α = 2.

For cases when a closed form does not exist, numerical integration may be necessary, often
obviating the computational advantages of this approach.

1http://stats.stackexchange.com/a/144896/9964
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It is thus possible to fit a parametric model to each distribution and compute distances between
the fits; this is done for machine learning applications by e.g. Jebara et al. (2004) and Moreno
et al. (2004). In practice, however, we rarely know that a given parametric family is appropriate,
and so the use of parametric models introduces unavoidable approximation error and bias.

Histograms One common method for representing distributions is the use of histograms; many
distances ρ are then simple to compute. The prominent exception to that is emd, which requires
O(m3 log m) time for exact computation with m-bin histograms, though in some settings O(m)
approximations are available (Shirdhonkar and Jacobs 2008). mmd also requires approximately
O(m2) computation for typical histograms.

The main disadvantages of histograms are their poor performance in even moderate dimen-
sions, and the fact that (for most ρs) choosing the right bin size is both quite important and quite
difficult, since nearby bins do not affect one another.

Vector quantization An improvement over histograms popular in computer vision is to instead
quantize distributions to group points by their nearest codeword from a dictionary, often learned
via k-means or a similar algorithm. This method is known as the bag of words (bow) approach
and was popularized by Leung and Malik (2001). This method scales to much higher dimensions
than the histogram approach, but suffers from similar problems related to the hard assignment of
sample points to bins.

Grauman and Darrell (2007) uses multiple resolutions of histograms to compute distances,
helping somewhat with the issue of choosing bin sizes.

Kernel density estimation Probably the most popular form of general-purpose nonparametric
density estimation is kernel density estimation (kde). kde results in a mixture distribution, which
allow O(n2) exact computation of plug-in mmd and L2 for certain density kernels.

Singh and Póczos (2014) show exponential concentration for a particular plug-in estimator for
a broad class of functionals including Lp, α-β and f -divergences as well as js, though they don’t
discuss computational issues of the estimator, which in general requires numerical integration.

Krishnamurthy et al. (2014) correct a plug-in estimator for L2 andrα divergences by estimating
higher order terms in the vonMises expansion; one of their estimators is computationally attractive
and optimal for smooth distributions, while another is optimal for a broader range of distributions
but requires numerical integration.

k-nn density estimator The k-nn density estimator provides the basis for another family of
estimators. These estimators typically require k-nearest neighbor distances within and between
the sample sets; much research has been put into data structures for approximate nearest neighbor
computation (e.g. Beygelzimer et al. 2006; Muja and Lowe 2009; Andoni and Razenshteyn 2015),
though in high dimensions the problem is quite difficult and brute-force pairwise computation
may be the most efficient method. Plug-in methods require k to grow with sample size for
consistency, which makes computation more difficult.

Q. Wang et al. (2009) give a simple, consistent k-nn kl divergence estimator. Póczos and
Schneider (2011) give a similar estimator for Dα−1,1−α and show consistency; Póczos, Xiong,
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Sutherland, et al. (2012) generalize to Dα,β. This family of estimators is consistent with a fixed
k, though convergence rates are not known.

Moon and Hero (2014a,b) propose an f -divergence estimator based on ensembles of plug-
in estimators, and show the distribution is asymptotically Gaussian. (Their estimator requires
neither convex f nor f (1) = 0.)

Mean map estimators A natural estimator of mmk is simply the mean of the pairwise kernel
evaluations between the two sets; this corresponds to estimating the mean embedding by the
empirical mean of the embedding for each point (Gretton, Borgwardt, et al. 2012). More recently,
Muandet, Fukumizu, et al. (2014) proposed biased estimators with smaller variance via the idea
of Stein shrinkage (1956). Ramdas and Wehbe (2014) showed the efficacy of this approach for
independence testing.

Other approaches Nguyen et al. (2010) provide an estimator for f -divergences (requiring
convex f but not f (1) = 0) by solving a convex program. When an rkhs structure is imposed, it
requires solving a general convex program with dimensionality equal to the number of samples,
so the estimator is quite computationally expensive.

Sriperumbudur et al. (2012) estimate the L1-emd via a linear program.
K. Yang et al. (2014) estimate f - and rα divergences by adaptively partitioning both distribu-

tions simultaneously. Their Bayesian approach requires mcmc and is computationally expensive,
though it does provide a posterior over the divergence value which can be useful in some settings.

2.3 Kernels on distributions
Weconsider twomethods for defining kernels based on distributional distances ρ. Proposition 1 of
Haasdonk and Bahlmann (2004) shows that both methods always create positive definite kernels
iff ρ is isometric to an L2 norm, i.e. there exist a Hilbert space H and a mapping Φ : X → H
such that ρ(P,Q) = ‖Φ(P) − Φ(Q)‖. Such metrics are also called Hilbertian.2

For distances that do not satisfy this property, we will instead construct an indefinite kernel
as below and then “correct” it, as discussed in Section 2.4.1.

The first method is to create a “linear kernel” k such that ρ(P,Q) = k (P, P)2 + k (Q,Q)2 −

2k (P,Q), so that the rkhs with inner product k has metric ρ. Note that, while distances are
translation-invariant, inner products are not; we must thus first choose some origin O. Then

k (O)
lin (P,Q) B 1

2

(
ρ2(P, 0) + ρ2(Q,O) − ρ2(P,Q)

)
(2.1)

is a valid kernel for any O iff ρ is Hilbertian. If ρ is defined for the zero measure, it is often most
natural to use that as the origin.

We can also use ρ in a generalized rbf kernel: for a bandwidth parameter σ > 0,

k (σ)
rbf (x, y) B exp

(
−

1
2σ2 ρ

2(p, q)
)
. (2.2)

2Note that if ρ is Hilbertian, Proposition 1 (ii) of Haasdonk and Bahlmann (2004) shows that−ρ2β is conditionally
positive definite for any 0 ≤ β ≤ 1; by a classic result of Schoenberg (1938), this implies that ρβ is also Hilbertian.
We will use this fact later.
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The L2 distance is clearly Hilbertian; k (0)
lin (P,Q) =

∫
p(x)q(x) dx.

Fuglede (2005) shows that
√

js, tv, and h are Hilbertian.
• For

√
js, k (O)

lin (P,Q) = 1
2

(
H

[
P+O

2

]
+ H

[
Q+O

2

]
− H

[
P+Q

2

]
− H[O]

)
.

• For tv, k (0)
lin (P,Q) = 1

4 (1 − tv(P,Q)).

• For h, k (0)
lin (P,Q) = 1 − 1

2 h2(P,Q) = 1
2 +

∫ √
p(x) q(x)dx, but the halved Bhattacharyya

affinity k (P,Q) = 1
2

∫ √
p(x) q(x)dx is more natural.

Gardner et al. (2015) shows that emd is Hilbertian for the 0-1 distance (an unusual choice
of ground metric for emd). emd is probably not Hilbertian in most cases for Euclidean base
distance: Naor and Schechtman (2007) show that emd on distributions supported on a grid in R2

does not embed in L1, which since L2 embeds into L1 (Bretagnolle et al. 1966) means that emd
on that grid does not embed in L2. It is likely, though the details remain to be checked, that this
also implies L1-emd on continuous distributions over Rd for d ≥ 2 is not Hilbertian. The most
common kernel based on emd, however, is actually exp

(
−γ emd(P,Q)

)
. Whether that kernel

is positive definite seems to remain an open question, defined by whether
√

emd is Hilbertian;
studies that have used it in practice have not reported finding any instance of an indefinite kernel
matrix (Zhang et al. 2006).

The mmd is Hilbertian by definition. The natural associated linear kernel is k (0)
lin (P,Q) =

〈µ(P), µ(Q)〉, which we term the mean map kernel (mmk). (We can easily verify that this is a
valid kernel inducing mmd despite some technical issues with considering it as k (0)

lin .)

2.4 Kernels on sample sets
As discussed previously, in practice we rarely directly observe a probability distribution; rather,
we observe samples from those distributions. We will instead construct a kernel on sample sets,
based on an estimate of a kernel on distributions using an estimate of the base distance ρ.

We wish to estimate a kernel on N distributions {Pi}
N
i=1 based on an iid sample from each

distribution {X (i)}Ni=1, where X (i) = {X (i)
j }

ni
j=1, X (i)

j ∈ Rd . Given an estimator ρ̂(X (i), X ( j)) of
ρ(Pi, Pj ), we estimate k (Pi, Pj ) with k̂ (X (i), X ( j)) by substituting ρ̂(X (i), X ( j)) for ρ(Pi, Pj ) in
(2.1) or (2.2). We thus obtain an estimate K̂ of the true kernelmatrix K , where K̂i, j = k̂ (X (i), X ( j)).

2.4.1 Handling indefinite kernel matrices
Section 2.3 established that K is positive semidefinite for many distributional distances ρ, but for
some, particularly skl and sr, K is indefinite. Even if K is psd, however, depending on the form
of the estimator K̂ is likely to be indefinite.

In this case, formany downstream learning taskswemustmodify K̂ to be positive semidefinite.
Chen et al. (2009) study this setting, presenting four methods to make K̂ psd:

• Spectrum clip: Set any negative eigenvalues in the spectrum of K̂ to zero. This yields the
nearest psd matrix to K̂ in Frobenius norm, and corresponds to the view where negative
eigenvalues are simply noise.

• Spectrum flip: Replace any negative eigenvalues in the spectrum with their absolute value.
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• Spectrum shift: Increase each eigenvalue in the spectrum by the magnitude of the smallest
eigenvalue, by taking K̂ + |λmin |I. When |λmin | is small, this is computationally simpler – it
is easier to find λmin than to find all negative eigenvalues, and requires modifying only the
diagonal elements — but can change K̂ more drastically.

• Spectrum square: Square the eigenvalues, by using K̂ K̂T . This is equivalent to using the
kernel estimates as features.

We denote this operation by Π.
When test values are available at training time, i.e. in a transductive setting, it is best to

perform these operations on the full kernel matrix containing both training and test points: that

is, to use Π
( [

K̂train K̂train,test
K̂test,train K̂test

])
. (Note that K̂test is not actually used by e.g. an svm.) If the

changes are performed only on the training matrix, i.e. using


Π
(
K̂train

)
K̂train,test

K̂test,train K̂test


, which is

necessary in the typical inductive setting, the resulting full kernel matrix may not be psd, and the
kernel estimates may be treated inconsistently between training and test points. This is more of
an issue for a truly-indefinite kernel, e.g. one based on kl or r, where the changes due to Π may
be larger.

When the test values are not available, Chen et al. (2009) propose a heuristic to account for
the effect of Π: they find the linear transformation which maps K̂train to ΠK̂train, based on the
eigendecomposition of K̂train, and apply it to K̂test,train. We compare this method to the transductive
method as well as the method where test evaluations are unaltered in experiments. In general,
the transductive method is better than the heuristic approach, which is better than ignoring the
problem, but the size of these gaps is problem-specific: for some problems, the gap is substantial,
but for others it matters little.

When performing bandwidth selection for a generalized Gaussian rbf kernel, this approach
requires separately eigendecomposing each K̂train. Xiong (2013, Chapter 6) considers a differ-
ent solution: rank-penalized metric multidimensional scaling according to ρ̂, so that standard
Gaussian rbf kernels may be applied to the embedded points. That work does not consider the
inductive setting, though an approach similar to that of Bengio et al. (2004) is probably applicable.
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Chapter 3

Scalable distribution learning with approx-
imate kernel embeddings

The kernel methods of Chapter 2 share a common drawback: solving learning problems with N
distributions typically requires computing all or most of the N×N kernel matrix; further, many of
the methods of Section 2.4.1 to deal with indefinite kernels require O(N3) eigendecompositions.
For large N , this quickly becomes impractical.

Rahimi and Recht (2007) spurred recent interest in a method to avoid this: approximate
embeddings z : X → RD such that k (x, y) ≈ z(x)Tz(y). Learning primal models in RD using the
z features can then usually be accomplished in time linear in n, with themodels on z approximating
the models on k.

This chapter first reviews the method of Rahimi and Recht (2007), providing some additional
theoretical understanding, and then shows how to find embeddings z for various distributional
kernels.

3.1 Random Fourier features

Rahimi and Recht (2007) considered continuous shift-invariant kernels on Rd , i.e. those that can
be written k (x, y) = k (∆), where we will use ∆ B x − y throughout. In this case, Bochner’s
theorem (1959) guarantees that the Fourier transform Ω(·) of k will be a nonnegative measure; if
k (0) = 1, it will be properly normalized. Thus if we define

z̃(x) :=
√

2
D

[
sin(ωT

1 x) cos(ωT
1 x) . . . sin(ωT

D/2x) cos(ωT
D/2x)

]T
, {ωi}

D/2
i=1 ∼ Ω

D/2

and let s̃(x, y) B z̃(x)T z̃(y), we have that

s̃(x, y) =
2
D

D/2∑
i=1

sin(ωT
i x) sin(ωT

i y) + cos(ωT
i x) cos(ωT

i y) =
1

D/2

D/2∑
i=1

cos(ωT
i ∆).

Noting that E cos(ωT∆) =
∫
<eω

T∆idΩ(ω) = <k (∆), we therefore have E s̃(x, y) = k (x, y).
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Note that k is the characteristic function of Ω, and s̃ the empirical characteristic function
corresponding to the samples {ωi}.

Rahimi and Recht (2007) alternatively proposed

z̆(x) :=
√

2
D

[
cos(ωT

1 x + b1) . . . cos(ωT
D x + bD)

]T
, {ωi}

D
i=1 ∼ Ω

D, {bi}
D
i=1

iid
∼ UnifD

[0,2π] .

Letting s̆(x, y) B z̆(x)T z̆(y), we have

s̆(x, y) =
1
D

D∑
i=1

cos(ωT
i x + bi) cos(ωT

i y + bi) =
1
D

D∑
i=1

cos(ωT
i (x − y)) + cos(ωT

i (x + y) + 2bi).

Let t B x + y throughout. Since E cos(ωTt + 2b) = Eω
[
Eb cos(ωTt + 2b)

]
= 0, we also have

E s̆(x, y) = k (x, y).
Thus, in expectation, both z̃ and z̆ work; they are each the average of bounded, independent

terms with the correct mean. For a given embedding dimension, z̃ has half as many terms as
z̆, but each of those terms has lower variance; which embedding is superior is, therefore, not
obvious. We will answer this question, as well as giving uniform convergence bounds for each
embedding.1

3.1.1 Reconstruction variance
We can in fact find the covariance of the reconstructions:

Cov
(
s̃(∆), s̃(∆′)

)
=

2
D

Cov
(
cos(ωT

∆), cos(ωT
∆
′)
)

=
1
D

[
E

[
cos

(
ωT(∆ − ∆′)

)
+ cos

(
ωT(∆ + ∆′)

)]
− 2E

[
cos

(
ωT
∆
)]
E

[
cos

(
ωT
∆
)] ]

=
1
D

[
k (∆ − ∆′) + k (∆ + ∆′) − 2k (∆)k (∆′)

]
,

so that
Var s̃(∆) =

1
D

[
1 + k (2∆) − 2k (∆)2

]
.

Similarly,

Cov
(
s̆(x, y), s̆(x′, y′)

)
=

1
D

Cov
(
cos(ωT

∆) + cos(ωTt + 2b), cos(ωT
∆
′) + cos(ωTt′ + 2b)

)
=

1
D

[
Cov

(
cos(ωT

∆), cos(ωT
∆
′)
)
+ Cov

(
cos(ωTt + 2b), cos(ωTt′ + 2b)

)
+Cov

(
cos(ωT

∆), cos(ωTt′ + 2b)
)︸                                    ︷︷                                    ︸

0

+Cov
(
cos(ωTt + 2b), cos(ωT

∆
′)
)︸                                    ︷︷                                    ︸

0



=
1
D

[
1
2 k (∆ − ∆′) + 1

2 k (∆ + ∆′) − k (∆)k (∆′) + 1
2 k (t − t′)

]
,

1Most of the remainder of Section 3.1 is based on Sutherland and Schneider (2015).
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and so
Var s̆(x, y) =

1
D

[
1 + 1

2 k (2∆) − k (∆)2
]
.

Thus s̃ has lower variance than s̆ when k (2∆) < 2k (∆)2, i.e.

Var cos(ωT
∆) =

1
2
+

1
2

k (2∆) − k (∆)2 ≤
1
2
.

Exponentiated norms Consider a kernel of the form k (∆) = exp(−γ‖∆‖ β) for any norm and
some β ≥ 1. For example, the Gaussian kernel uses ‖·‖2 and β = 2, and the Laplacian kernel
uses ‖·‖1 and β = 1. Then

2k (∆)2 − k (2∆) = 2 exp
(
−γ‖∆‖ β

)2
− exp

(
−γ‖2∆‖ β

)
= 2 exp

(
−2γ‖∆‖ β

)
− exp

(
−2βγ‖∆‖ β

)
≥ 2 exp

(
−2γ‖∆‖ β

)
− exp

(
−2γ‖∆‖ β

)
= exp

(
−2γ‖∆‖ β

)
> 0.

Matérn kernel TheMatérn kernel for half-integer orders also yields s̃ uniformly lower-variance
than s̆. The kernel has two hyperparameters, a length-scale ` and an order ν. If we let r B 1

` ‖∆‖

and ν = η+ 1
2 for η a nonnegative integer; then the kernel can be written (Rasmussen andWilliams

2006, equation 4.16):

k (r) = exp
(
−
√

2η + 1r
) η∑

i=0

η! (2η − i)!
(2η)! i! (η − i)!

(
2
√

2η + 1
) i

︸                                ︷︷                                ︸
ai

r i .

Then we have

2k (r)2 − k (2r) = 2 exp
(
−
√

2η + 1r
)2

η∑
i=0

η∑
j=0

aia jr i+ j − exp
(
−2

√
2η + 1r

) η∑
i=0

ai (2r)i

= exp
(
−2

√
2η + 1r

) *.
,
2

2η∑
m=0

m∑
i=0

aiam−irm −

η∑
m=0

2mamrm+/
-

≥ exp
(
−2

√
2η + 1r

) η∑
m=0

*
,
2

m∑
i=0

aiam−i

am
− 2m+

-
amrm.

Now,
m∑

i=0

aiam−i

am
=

m∑
i=0

m!
i! (m − i)!

η!
(η − i)!

(η − m)!
(η − m + i)!

(2η − m + i)!
(2η − m)!

(2η − i)!
(2η)!

=

m∑
i=0

(
m
i

) i∏
j=1

η − i + j
η − m + j

2η − m + j
2η − i + j

≥

m∑
i=0

(
m
i

)
= 2m

because, since η − i+ j ≥ η −m+ j, each factor in the product is at least 1. Thus 2k (r)2 > k (2r).
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3.1.2 Convergence bounds

Let f̃ (x, y) B s̃(x, y) − k (x, y), and f̆ (x, y) B s̆(x, y) − k (x, y). We know that E f (x, y) = 0
and have a closed form for Var f (x, y), but to better understand the error behavior across inputs,
we wish to bound ‖ f ‖ for various norms.

L2 bound If µ is a finite measure on X × X (µ(X2) < ∞), the L2(X2, µ) norm of f is

‖ f ‖2µ B
∫
X2

f (x, y)2 dµ(x, y).

We know (via Tonelli’s theorem) that

E‖ f̃ ‖2µ =
∫
X2
E f̃ (x, y)2 dµ(x, y)

=
1
D

∫
X2

[
1 + k (2x, 2y) − 2k (x, y)2

]
dµ(x, y)

E‖ f̃ ‖2µ =
1
D

∫
X2

[
1 + 1

2 k (2x, 2y) − k (x, y)2
]

dµ(x, y)

so that, for the kernels considered above, the expected L2(µ) error for z̃ is less than that of z̆.
Note that if µ = µX × µY is a joint distribution of independent variables, then

E‖ f̃ ‖2µ =
1
D

[
1 + mmkk (µ2X, µ2Y ) − 2 mmkk2 (µX, µy)

]

E‖ f̆ ‖2µ =
1
D

[
1 + 1

2 mmkk (µ2X, µ2Y ) − mmkk2 (µX, µy)
]
.

Propositions 7 and 8 of Sutherland and Schneider (2015) further bound the deviation from
this expectation via McDiarmid’s inequality:

Pr
(���‖ f̃ ‖2µ − E‖ f̃ ‖2µ

��� ≥ ε
)
≤ 2 exp

(
−D3ε2

8(4D + 1)2µ(X2)2

)
≤ 2 exp

(
−Dε2

200µ(X2)2

)
Pr

(���‖ f̆ ‖2µ − E‖ f̆ ‖2µ
��� ≥ ε

)
≤ 2 exp

(
−D3ε2

512(D + 1)2µ(X2)2

)
≤ 2 exp

(
−Dε2

2048µ(X2)2

)
.

Sriperumbudur and Szabó (2015) independently bounded the deviation of f in the Lr norm
for any r ∈ [1,∞) but only for µ the Lebesgue measure.

Uniform bound Rahimi and Recht (2007) showed a uniform convergence bound for s̃. Proposi-
tions 1 and 2 of Sutherland and Schneider (2015) tightened that bound, and showed an analogous
one for s̆, which we reproduce here.

When ∇2k (0) exists and X ⊂ Rd is compact with diameter `, let σ2
Ω
B EΩ‖ω‖

2 and

αε B min *
,
1, sup

x,y∈X

1
2 +

1
2 k (2x, 2y) − k (x, y)2 + 1

3ε
+
-
, βd B

((
d
2

)− d
d+2 +

(
d
2

) 2
d+2

)
2

6d+2
d+2 .
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Then, assuming only for the second statement that ε ≤ σp`,

Pr
(
‖ f̃ ‖∞ ≥ ε

)
≤ βd

(
σp`

ε

) 2
1+ 2

d exp
(
−

Dε2

8(d + 2)αε

)
≤ 66

(
σp`

ε

)2
exp

(
−

Dε2

8(d + 2)

)
.

For f̆ , define

α′ε B min *
,
1, sup

x,y∈X

1
4 +

1
8 k (2x, 2y) − 1

4 k (x, y)2 + 1
6ε

+
-
, β′d B

(
d−

d
d+1 + d

1
d+1

)
2

5d+1
d+1 3

d
d+1 .

Then, again assuming only for the second statement that ε ≤ σp`,

Pr
(
‖ f̃ ‖∞ ≥ ε

)
≤ β′d

(
σp`

ε

) 2
1+ 1

d exp
(
−

Dε2

32(d + 1)α′ε

)
≤ 98

(
σp`

ε

)2
exp

(
−

Dε2

32(d + 1)

)
.

For the kernels for which k (2∆) < 2k (∆)2, note that αε ≤ 1
2 +

1
3ε and α

′
ε ≤

1
4 +

1
6ε.

Propositions 3–4 of Sutherland and Schneider (2015) give an upper bound on E‖ f ‖∞, and
Propositions 5–6 bound Pr

(
‖ f ‖∞ − E‖ f ‖∞ ≥ ε

)
. The former bound is quite loose in practice;

the latter, when used with the true value of the expectation, is sometimes tighter than the previous
bounds and sometimes not.

Sriperumbudur and Szabó (2015) later proved a rate-optimal OP(n−1/2) bound on ‖ f̃ ‖∞; in
practice, the constants are often worse than the non-optimal bound above.

3.2 Mean map kernels

Armed with an approximate embedding for shift-invariant kernels on Rd , we now develop our
first embedding for a distributional kernel, mmk. Recall that, given samples {Xi}

n
i=1 ∼ Pn and

{Yj }
m
j=1 ∼ Qm, mmk(P,Q) can be estimated as

mmk(X,Y ) =
1

nm

n∑
i=1

m∑
j=1

k (Xi,Yj ).

Simply plugging in an approximate embedding z(x)Tz(y) ≈ k (x, y) yields

mmk(X,Y ) ≈
1

nm

n∑
i=1

m∑
j=1

z(Xi)Tz(Yj ) =


1
n

n∑
i=1

z(Xi)


T 

1
m

m∑
j=1

z(Yj )

= z̄(X )T z̄(Y ),

where we defined z̄(X ) B 1
n
∑n

i=1 z(Xi). This additionally has a natural interpretation as the
direct estimate of mmd in the Hilbert space induced by the feature map z, which approximates
the Hilbert space associated with k.

Note that e−γ mmd2 can be approximately embedded with z( z̄(·)).
This natural approximation, or its equivalents, have been consideredmany times quite recently

(Mehta and Gray 2010; Li and Tsang 2011; Zhao and Meng 2014; Chwialkowski et al. 2015;
Flaxman et al. 2015; Jitkrittum et al. 2015; Lopez-Paz et al. 2015; Sutherland, J. B. Oliva, et al.
2015; Sutherland and Schneider 2015).
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3.3 L2 distances

J. B. Oliva, Neiswanger, et al. (2014) gave an embedding for e−γL2
2 , by first embedding L2 with

orthonormal projections and then applying random Fourier features.
Suppose that X ⊆ [0, 1]d . Let {ϕi}i∈Z be an orthonormal basis for L2([0, 1]). Then, we

can construct an orthonormal basis for L2([0, 1]d) by the tensor product: letting ϕα (x) B∏d
i=1 ϕαi (xi), {ϕα}α∈Zd is an orthonormal basis, and any function f ∈ L2([0, 1]) can be repre-

sented as f (x) =
∑
α∈Zd aα ( f )ϕα (x), where aα ( f ) = 〈ϕα, f 〉 =

∫
[0,1]d ϕα (t) f (t) dt. Thus for any

f , g ∈ L2([0, 1]d),

〈 f , g〉 =
〈 ∑
α∈Zd

aα ( f )ϕα,
∑
β∈Zd

aβ (g)ϕβ

〉
=

∑
α∈Zd

∑
β∈Zd

aα ( f )aβ (g)〈ϕα, ϕβ〉

=
∑
α∈Zd

aα ( f )aα (g)

Let V ⊂ Zd be an appropriately chosen finite set of indices {α1, . . . , α |V |}. Define ~a( f ) =
(aα1 ( f ), . . . , aα |V | ( f ))T ∈ R|V |. If f and g are smooth with respect to V , i.e. they have only small
contributions from basis functions not in V , we have

〈 f , g〉 =
∑
α∈Zd

aα ( f ) aα (g) ≈
∑
α∈V

aα ( f ) aα (g) = ~a( f )T ~a(g).

Now, given a sample X = {X1, . . . , Xn} ∼ Pn, let P̂(x) = 1
n
∑n

i=1 δ(Xi − x) be the empirical
distribution of X . J. B. Oliva, Neiswanger, et al. (2014) estimate the density p as

p̂(x) =
∑
α∈V

aα (P̂) ϕα (x) where aα (P̂) =
∫

[0,1]d
ϕα (t) dP̂(t) =

1
n

n∑
i=1

ϕα (t).

Note that technically this is an extension of aα to a broader domain than L2([0, 1]). Assuming
the distributions lie in a certain Sobolev ellipsiod with respect to V , we thus have that

〈p, q〉 ≈ 〈p̂, q̂〉 ≈ ~a(P̂)T ~a(Q̂)

and so

z(~a(P̂))Tz(~a(Q̂)) ≈ exp
(
−

1
2σ2 ‖P −Q‖22

)
.

For the Sobolev assumption to hold on a fairly general class of distributions, however, we
need |V | to be Ω(T d) for some constant T . Thus this method is limited in practice to fairly low
dimensions d.
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3.3.1 Direct random Fourier features with Gaussian processes

When we apply z(~a( f )) for the Gaussian kernel with bandwidth σ, we draw ω
iid
∼ N

(
0, σ−2I

)
and then take trigonometric functions of multiples of

ωT~a( f ) =
∑
α

ωαaα ( f ) =
〈∑
α

ωαϕα (·),
∑
β

α β ( f )ϕβ (·)
〉
= 〈g, f 〉 ,

where g(·) B
∑
α ωαϕα (·) is a random function distributed according to a process G. G is in fact

a Gaussian process: any m points have the distribution


G(x1)
...

G(xm)


=



ϕ1(x1) · · · ϕ|V | (x1)
...

. . .
...

ϕ1(xm) · · · ϕ|V | (xm)


ω ∼ N

*.
,
0,

1
σ2



∑
α

ϕα (xi)ϕα (x j )
 i j

+/
-
.

Thus, we can avoid explicitly computing ~a( f ) — which typically grows exponentially in
d — if we can otherwise compute 〈g, f 〉. When f = p̂ as above, this is simply 1

n
∑n

i=1 g(Xi).
Thus for each dimension of z, we need to sample from a gp at every point contained in any of the
samples X .

Doing so with the standard gp machinery requires quadratic storage and cubic computation
in the total number of points contained in any sample, which is typically unacceptable in our
setting: the only case in which it would be reasonable is if the distributions are defined only over
a relatively small number of distinct points, in which case we should probably be using histogram
techniques anyway. If the set of observed points happen to lie on a d-dimensional lattice, we
could use the fast Kronecker inference techniques of Saatçi (2011); however, as these techniques
require a full grid, it is more practical than simply computing ~a( f ) only in very special cases.

Suppose, however, there exists some ψ : X → RB such that ψ(x)Tψ(y) ≈ Cov(G(x),G(y)),
and let Ψ =

[
ψ(x1) · · · ψ(xm)

]
∈ RB×m. Then we can just sample b ∼ N (0, IB) and use

[
G(x1) · · · G(xm)

]T
= ΨTb ∼ N (0,ΨTΨ), which can be computed on-demand as G(x) =

ψ(x)Tb. Not counting the evaluation of ψ, this takes O(A) storage and O(mA) time. Regression
with this technique is known as sparse spectrum Gaussian process regression (Lázaro-Gredilla
et al. 2010).

Suppose that V = {1, . . . ,T }d . Then

Cov(G(x),G(y)) = σ−2
∑

α∈{1,...,T }d

d∏
i=1

ϕαi (xi)ϕαi (yi) = σ−2
d∏

i=1

T∑
j=1

ϕ j (xi)ϕ j (yi).

Further suppose that {ϕi} is the trigonometric basis for L2([0, 1]):

ϕ1(x) = 1 ϕ2m(x) =
√

2 cos(2π m x) ϕ2m+1(x) =
√

2 sin(2π m x)

and that T is odd. Then κ(xi, yi) B
∑T

j=1 ϕ j (xi)ϕ j (yi) =
sin(Tπ(xi−yi ))
sin(π(xi−yi )) is known as the Dirichlet

kernel and can be evaluated in O(1). It also has a simple spectral representation: 1
T κ(0) = 1, and

1
T κ has Fourier transform

ξ ∼ Unif ({−π(T − 1),−π(T − 3), . . . , π(T − 3), π(T − 1)}) . (3.1)
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Ψ is thus obtained via randomFourier features with each dimension of ξ independently distributed
as (3.1).

If the approximation viaΨ is sufficient with A� T d , this allows us to scale the L2 embedding
to higher dimensions.

3.4 Information-theoretic distances
Wewill now show how to extend this general approach to a class of information theoretic distances
that includes tv, js, and squared Hellinger.2

We consider a class of metrics that we term homogeneous density distances (hdds):

ρ2(p, q) =
∫

[0,1]d
κ(p(x), q(x)) dx

where κ : R+ × R+ → R+ is a 1-homogenous negative-type kernel. That is, κ(t x, ty) = tκ(x, y)
for all t > 0, and there exists some Hilbert space with ‖x − y‖2 = κ(x, y). Table 3.1 shows some
important instances.

Name κ(p(x), q(x)) dµ(λ)
Jensen-Shannon (js) p(x)

2 log
( 2p(x)

p(x)+q(x)

)
+

q(x)
2 log

( 2q(x)
p(x)+q(x)

)
dλ

cosh(πλ)(1+λ2)

Squared Hellinger (h2) 1
2

(√
p(x) −

√
q(x)

)2 1
2δ(λ = 1)dλ

Total Variation (tv) |p(x) − q(x) | 2
π

dλ
1+4λ2

Table 3.1: Various squared hdds.

Vedaldi and Zisserman (2012) studied embeddings of a similar class of kernels, also using
the key result of Fuglede (2005), but for discrete distributions only.

Fuglede (2005) shows that κ corresponds to a bounded measure µ(λ) by

κ(x, y) =
∫
R≥0

|x
1
2+iλ − y

1
2+iλ |2 dµ(λ).

Let Z B µ(R≥0) and cλ B (−1
2 + iλ)/( 1

2 + iλ); then

κ(x, y) = Eλ∼ µ
Z
|gλ (x) − gλ (y) |2 where gλ (x) B

√
Zcλ

(
x

1
2+iλ − 1

)
.

We approximate the expectation with an empirical mean. Let λ j
iid
∼

µ
Z for j ∈ {1, . . . , M }; then

κ(x, y) ≈
1
M

M∑
j=1
|gλ j (x) − gλ j (y) |2.

2The method of Section 3.4 is currently in submission as Sutherland, J. B. Oliva, et al. (2015).
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Hence, the squared hdd is, letting R,I denote the real and imaginary parts:

ρ2(p, q) =
∫

[0,1]d
κ(p(x), q(x)) dx

=

∫
[0,1]d
Eλ∼ µ

Z
|gλ (p(x)) − gλ (q(x)) |2 dx

≈
1
M

M∑
j=1

∫
[0,1]d

((
R(gλ j (p(x))) − R(gλ j (q(x)))

)2
+

(
I(gλ j (p(x))) − I(gλ j (q(x)))

)2)
dx

=
1
M

M∑
j=1
‖pR

λ j
− qR

λ j
‖2 + ‖pI

λ j
− qI

λ j
‖2,

where
pR
λ (x) B R(gλ (p(x))), pI

λ (x) B I(gλ (p(x))).

Each pλ function is in L2([0, 1]d), so we can approximate e−γρ
2(p,q) as in Section 3.3: let

A(P) B
1
√

M

(
~a(pR

λ1
)T, ~a(pI

λ1
)T, . . . , ~a(pR

λM
)T, ~a(pI

λM
)T

)T

so that the kernel is estimated by z(A(P)).
However, the projection coefficients of the pλ functions do not have simple forms as before;

instead, we directly estimate the density as p̂ using a technique such as kernel density estimation
(kde), and then estimate ~a(p̂λ ) for each λ with numerical integration. Denote the estimated
features as Â(p̂).

For small d, simple Monte Carlo integration is sufficient.
In higher dimensions, three problems arise: (i) the embedding dimension increases exponen-

tially, (ii) density estimation becomes statistically difficult, and (iii) accurate numerical integration
becomes expensive. We can attempt to address (i) with the approach of Section 3.3.1, (ii) with
sparse nonparametric graphical models (Lafferty et al. 2012), and (iii) with mcmc integration.
High-dimensional multimodal integrals remain particularly challenging to current mcmc tech-
niques, though some progress is being made (Betancourt 2015; Lan et al. 2014 give a heuristic
algorithm).

Sutherland, J. B. Oliva, et al. (2015) bound the error probability for this estimator for a pair
of distributions P, Q satisfying certain smoothness properties.
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Chapter 4

Applications of distribution learning

We now turn to case studies of the application of distributional kernels to real machine learning
tasks.

4.1 Mixture estimation
Statistical inference procedures can be viewed as functions from distributions to the reals; we
can therefore consider learning such procedures. Jitkrittum et al. (2015) trained mmd-based gp
regression for the messages computed by numerical integration in an expectation propagation
system, and saw substantial speedups by doing so. We, inspired by J. B. Oliva, Neiswanger, et al.
(2014), consider a problem where we not only obtain speedups over traditional algorithms, but
actually see far superior results.1 Specifically, we consider predicting the number of components
in a Gaussian mixture. We generate mixtures as follows:

1. Draw the number of components Yi for the ith distribution as Yi ∼ Unif{1, . . . , 10}.
2. For each component, select a mean µ(i)

k ∼ Unif[−5, 5]2 and covariance Σ(i)
k = a(i)

k A(i)
k A(i)T

k +

B(i)
k , where a ∼ Unif[1, 4], A(i)

k (u, v) ∼ Unif[−1, 1], and B(i)
k is a diagonal 2×2 matrix with

B(i)
k (u, u) ∼ Unif[0, 1].

3. Draw a sample X (i) from the equally-weighted mixture of these components.
An example distribution and sample from it is shown in Figure 4.1; predicting the number of
components is difficult even for humans.

We compare generalized rbf kernels based on the mmd, L2, and hdd embeddings of Sec-
tions 3.2 to 3.4 as well as the js embedding of Vedaldi and Zisserman (2012) and the full Gram
matrix techniques of Section 2.4 applied to the skl estimator of Q. Wang et al. (2009).

Figure 4.2 presents results for predicting with ridge regression the number of mixture com-
ponents Yi, given a varying number of sample sets χi, with | χi | ∈ {200, 800}; we use D = 5 000.
The hdd-based kernels achieve substantially lower error than the L2 and mmd kernels in both
cases. They also outperform the histogram kernels, especially with | χi | = 200, and the kl kernel.
Note that fitting mixtures with em and selecting a number of components using aic (Akiake
1973) or bic (Schwarz 1978) performed much worse than regression; only aic with | χi | = 800

1These results are from Sutherland, J. B. Oliva, et al. (2015).
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Density with 9 Components
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Figure 4.1: Example of a mixture with 9 components and a sample of size n = 200 drawn from
it.
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(a) Samples of size 200.
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(b) Samples of size 800.

Figure 4.2: Error and computation time for estimating the number of mixture components. The
three points on each line correspond to training set sizes of 4k, 8k, and 16k; error is on the fixed
test set of size 2k. Note the logarithmic scale on the time axis. The kl kernel for sets of size 800
and 16k training sets was too slow to run. aic-based predictions achieved rmses of 2.7 (for 200
samples) and 2.3 (for 800); bic errors were 3.8 and 2.7; a constant predictor of 5.5 had rmse of
2.8.

outperformed a constant predictor of 5.5. Linear versions of the L2 and mmd kernels were also
no better than the constant predictor.

The hdd embeddings were more computationally expensive than the other embeddings, but
much less expensive than the kl kernel, which grows at least quadratically in the number of distri-
butions. Note that the histogram embeddings used an optimized C implementation by the paper’s
authors (Vedaldi and Fulkerson 2008), and the kl kernel used the fairly optimized implementation
of gestalt-learn, whereas the hdd embeddings used a simple Matlab implementation.

4.2 Scene recognition

Representing images as a collection of local patches has a long and successful history in computer
vision.
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4.2.1 sift features
The traditional approach selects a grid of patches, computes a hand-designed feature vector such
as sift (Lowe 2004) for each patch, possibly appends information about the location of the patch,
and then uses the bow representation for this set of features. We will first consider the use of
distributional distance kernels for this feature representation.2

We present here results on the 8-class ot scene recognition dataset (A. Oliva and Torralba
2001); the original papers show results on additional image datasets. This dataset contains 8
outdoor scene categories, illustrated in Figure 4.3. There are 2 688 total images, each about
256 × 256 pixels.

Figure 4.3: The 8 ot categories: coast, forest, highway, inside city, mountain, open country,
street, tall building.

We extracted dense color sift features (Anna Bosch et al. 2008) at six different bin sizes using
VLfeat (Vedaldi and Fulkerson 2008), resulting in about 1 815 feature vectors per image, each of
dimension 384. We used pca to reduce these to 53 dimensions, preserving 70% of the variance,
appended relative y coordinates, and standardized each dimension. (The paper contains precise
details.)
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Figure 4.4: Accuracies on the ot dataset.

The results of 10 repeats of 10-fold cross-validation are shown in Figure 4.4. Each approach
uses a generalized rbf kernel. Here bow refers to vector quantization with k-means (k = 1 000),

2These results appear in Póczos, Xiong, Sutherland, et al. (2012) and Sutherland, Xiong, et al. (2012).
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plsa to the approach of A. Bosch et al. (2006), g-kl and g-ppk to the kl and Hellinger divergences
between Gaussians fit to the data, gmm-kl to the kl between Gaussian mixtures (computing via
Monte Carlo), pmk to the pyramid matching kernel of Grauman and Darrell (2007), mmk to
the mmk with a Gaussian base kernel, nph to the nonparametric Hellinger estimate of Póczos,
Xiong, Sutherland, et al. (2012), and npr- to the rα estimates. The horizontal line shows the best
previously reported result (Qin and Yung 2010), though others have since slightly surpassed our
results here.

4.2.2 Deep features
For the last several years, however, modern computer vision has become overwhelmingly based
on deep neural networks. Image classification networks typically broadly follow the architecture
of Krizhevsky et al. (2012), i.e. several convolutional and pooling layers to extract complex
features of input images followed by one or two fully-connected layers to classify the images.

The activations are of shape n× h×w, where n is the number of filters; each unit corresponds
to an overlapping patch of the original image. We can therefore treat the activations as a sample
of size hw from an n-dimensional distribution. Wu et al. (2015) set accuracy records on several
scene classification datasets with a particular method of extracting features from distributions.
That method, however, resorts to ad-hoc statistics; we compare to our more principled alternatives
here.3
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Figure 4.5: Mean and standard deviation accuracies on the Scene-15 dataset. The left, black lines
show performance with linear features; the right, blue lines show generalized rbf embedding
features. D3 refers to the method of Wu et al. (2015). mmd bandwidths are relative to σ, the
median of pairwise distances; histogram methods use varying numbers of bins.

We consider here the Scene-15 dataset (Lazebnik et al. 2006), which contains 4 485 natural
images in 15 categories based on location. (It is a superset of the ot dataset previously considered,

3These experiments appear in Sutherland, J. B. Oliva, et al. (2015).
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but is available only in grayscale.) We follow Wu et al. (2015) in extracting features from the
last convolutional layer of the imagenet-vgg-verydeep-16 model (Simonyan and Zisserman
2015). We replace that layer’s rectified linear activations with sigmoid squashing to [0, 1].4 After
resizing the images as did Wu et al. (2015), hw ranges from 400 to 1 000. There are 512 filter
dimensions; we concatenate features Â(p̂i) extracted from each independently.

We select 100 images from each class for training, and test on the remainder; Figure 4.5
shows the results of 10 random splits. We do not add any spatial information to the model, unlike
Wu et al. (2015); still, we match the best prior published performance of 91.59 ± 0.48, using a
deep network trained on a large scene classification dataset (Zhou et al. 2014). Adding spatial
information brought the D3 method of Wu et al. (2015) slightly above 92% accuracy; their best
hybrid method obtained 92.9%. Using these features, however, our methods match or beat mmd
and substantially outperform D3, L2, and the histogram embeddings.

4.3 Dark matter halo mass prediction
Galaxy clusters are the most massive gravitationally bound system in the universe, containing
up to hundreds of galaxies embedded in dark matter halos. Their properties, especially total
mass, are extremely useful for making inferences about fundamental cosmological parameters,
but because they are composed largely of dark matter, measuring that mass is difficult.

One classical method is that of Zwicky (1933). The virial theorem implies that the dispersion
of velocities in a stable system should be approximately related to the halo mass as a power
law; by measuring the Doppler shift of spectra from objects in the cluster, we can estimate the
dispersion of velocities in the direction along our line of sight, and thus predict the total mass.
He did so for the Coma cluster and concluded that dark matter outweighed luminous matter.

Experimental evidence, however, implies points towards various complicating factors that
disturb this relationship, and indeed results based on numerical simulation have shown that the
predictions from this power law relationship are not as accurate as we would hope. We can
therefore consider using all information available in the line-of-sight velocity distribution by
directly learning a regression function from that distribution to total masses, based on data from
simulation.5

We assembled a catalog of massive halos from the MultiDark mdpl simulation (Klypin et
al. 2014).The catalog contains 5 028 unique halos. Since we use only line-of-sight velocities,
however, we can view each halo from multiple directions. For hyperparameter selection and
testing, we use lines of sight corresponding to three perpendicular directions; for training, we
additionally use projections sampled randomly from the unit sphere so as to oversample the rare
high-mass halos. Different projections of the same halo are always assigned to the same fold for
cross-validation. Ntampaka, Trac, Sutherland, Battaglia, et al. (2014) give a detailed description.

We then use the skl estimator of Q. Wang et al. (2009) in a generalized rbf kernel on two
sets of features: a one-dimensional feature set containing only the magnitude of the line-of-sight
velocity, and a two-dimensional set adding |vlos |/σ, where σ is the standard deviation of that

4 We used piecewise-linear weights such that 0 maps to 0.5, the 90th percentile of the positive observations maps
to 0.9, and the 10th percentile of the negative observations to 0.1, for each filter.

5These results appear in Ntampaka, Trac, Sutherland, Battaglia, et al. (2014).
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halo’s vlos values. Thus, for the two-dimensional features, each halo’s features lie on a line whose
slope varies across halos.
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(a) One-dimensional features.
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(b) Two-dimensional features.

Figure 4.6: Performance for halo mass prediction for the two featurizations. Top panel: halo
predicted mass vs. actual mass: median, 68% scatter, and 95% scatter. Middle panel: fractional
mass error as a function of halo mass. Points are the median error; bars show 68% scatter. Bottom
panel: error 68% width relative to that of the power law approach.

The skl kernel substantially outperforms the power law approach.
Future work will compare different distributional regression methods, as well as more non-

distributional methods (e.g. nonlinear regression directly from the velocity dispersion). Work in
preparation (Ntampaka, Trac, Sutherland, Fromenteau, et al. 2015) additionally considers more
realistic catalog construction, where “interloper” galaxies may appear to be part of the cluster, in
which case the distributional regression approach is far more robust than the power law. Under
these assumptions, we can also use features based on the absolute position, which is found to
perform quite well.
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Chapter 5

Active search for patterns

We will now change focuses slightly, and consider another problem setting in which collections
of data play a key role.1

Consider a function containing interesting patterns that are defined only over a region of
space. For example, if you view the direction of wind as a function of geographical location,
it defines fronts, vortices, and other weather patterns, but those patterns are defined only in the
aggregate. If we can only measure the direction and strength of the wind at point locations, we
then need to infer the presence of patterns over broader spatial regions.

Many other real applications also share this feature. For example, an autonomous environ-
mental monitoring vehicle with limited onboard sensors needs to strategically plan routes around
an area to detect harmful plume patterns on a global scale (Valada et al. 2012). In astronomy,
projects like the Sloan Digital Sky Survey (Eisenstein et al. 2011) search the sky for large-scale
objects such as galaxy clusters. Biologists investigating rare species of animals must find the
ranges where they are located and their migration patterns (Brown et al. 2014). We aim to use
active learning to search for such global patterns using as few local measurements as possible.

This bears some resemblance to the artistic technique known as pointillism, where the painter
creates small and distinct dots each of a single color, but when viewed as a whole they reveal
a scene. Pointillist paintings typically use a denser covering of the canvas, but in our setting,
“observing a dot” is expensive. Where should we make these observations in order to uncover
interesting regions as quickly as possible?

We propose a probabilistic solution to this problem, known as active pointillistic pattern
search (apps). We assume we are given a predefined list of candidate regions and a classifier
that estimates the probability that a given region fits the desired pattern. Our goal is then to
find as many regions that are highly likely to match the pattern as we can. We accomplish this
by sequentially selecting point locations to observe so as to approximately maximize expected
reward.

1This chapter was previously published in longer form as Ma, Sutherland, et al. 2015.
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5.1 Related Work
Our concept of active pattern search falls under the broad category of active learning (Settles
2012), where we seek to sequentially build a training set to achieve some goal as fast as possible.
Our focus solely on finding positive (“interesting”) regions, rather than attempting to learn to
discriminate accurately between positives and negatives, is similar to the problem previously
described as active search (Garnett et al. 2012). In previous work on active search, however, it
has been assumed that the labels of interest can be revealed directly. In active pattern search, on
the other hand, the labels are never revealed but must be inferred via a provided classifier. This
indirection increases the difficulty of the search task considerably.

In Bayesian optimization (Osborne et al. 2009; Brochu et al. 2010), we seek to find the global
optimum of an expensive black-box function. Bayesian optimization provides a model-based
approach where a Gaussian process (gp) prior is placed on the objective function, from which a
simpler acquisition function is derived and optimized to drive the selection procedure. Tesch et al.
(2013) extend this idea to optimizing a latent function from binary observations. Our proposed
active pattern search also uses a Gaussian process prior tomodel the unknown underlying function
and derives an acquisition function from it, but differs in that we seek to identify entire regions
of interest, rather than finding a single optimal value.

Another intimately related problem setup is that of multi-arm bandits (Auer et al. 2002), with
more focus on analysis of the cumulative reward over all function evaluations. Originally, the
goal was to maximize the expectation of a random function on a discrete set; a variant considers
the optimization in continuous domains (Kroemer et al. 2010; Niranjan et al. 2010). However,
like Bayesian optimization, multi-arm bandit problems usually do not consider discriminating a
regional pattern.

Level set estimation (Low et al. 2012; Gotovos et al. 2013), rather than finding optima of a
function, seeks to select observations so as to best discriminate the portions of a function above
and below a given threshold. This goal, though related to ours, aims to directly map a portion of
the function on the input space rather than seeking out instances of patterns. lse algorithms can
be used to attempt to find some simple types of patterns, e.g. areas with high mean.

apps can be viewed as a generalization of active area search (aas) (Ma, Garnett, et al. 2014),
which is a considerably simpler version of active search for region-based labels. In aas, the label
of a region is only determined by whether its mean value exceeds some threshold. apps allows for
arbitrary classifiers rather than simple thresholds, and in some cases its expected reward can still
be computed analytically. This extends the usefulness of this class of algorithms considerably.

5.2 Problem Formulation
There are three key components of the apps framework: a function f which maps input covariates
to data observations, a predetermined set of regions wherein instances of function patterns are
expected, and a classifier that evaluates the salience of the pattern of function values in each
region. We define f : Rm → R to be the function of interest,2 which can be observed at any

2For clarity, in this and the next sectionswewill focus on scalar-valued functions f . The extension to vector-valued
functions is straightforward; we consider such a case in the experiments.
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location x ∈ Rm to reveal a noisy observation z. We assume the observation model z = f (x) + ε,
where ε iid

∼ N (0, σ2). We suppose that a set of regions where matching patterns might be found
is predefined, and will denote these {g1, . . . , gk }; gi ⊂ R

m. Finally, for each region g, we assume a
classifier hg which evaluates f on g and returns the probability that it matches the target pattern,
which we call salience: hg ( f ) = h( f ; g) ∈ [0, 1], where the mathematical interpretation of hg is
similar to a functional of f . Classifier forms are typically the same for all regions with different
parameters.

Unfortunately, in general, we will have little knowledge about f other than the limited
observations made at our selected set of points. Classifiers which take functional inputs (such as
our assumed hg) generally do not account for uncertainty in their inputs, which should be inversely
related to the number of observed data points. We thus consider the probability that hg ( f ) is
high enough, marginalized across the range of functions f that might match our observations.
As is common in nonparametric Bayesian modeling, we model f with a Gaussian process (gp)
prior; we assume that hyperparameters, including prior mean and covariance functions, are set
by domain experts. Given a dataset D = (X, z), we define

f ∼ GP (µ, κ); f | D ∼ GP (µ f |D, κ f |D ),

to be a given gp prior and its posterior conditioned onD, respectively. Thus, since f is a random
variable, we can obtain the marginal probability that g is salient,

Tg (D) = E f
[
hg ( f ) | D

]
. (5.1)

We then define a matching region as one whose marginal probability passes a given threshold θ.
Unit reward is assigned to each matching region g:

rg (D) B 1
{
Tg (D) > θ

}
.

We make two assumptions regarding the interactive procedure. The first is that once a region
is flagged as potentially matching (i.e., its marginal probability exceeds θ), it will be immediately
flagged for further review and no longer considered during the run. The second is that the data
resulting from this investigation will not be made immediately available during the course of the
algorithm; rather the classifiers hg will be trained offline. We consider both of these assumptions
to be reasonable when the cost of investigation is relatively high and the investigation collects
different types of data. For example, if the algorithm is being used to run autonomous sensors
and scientists collect separate data to follow up on a matching region, these assumptions allow the
autonomous sensors to continue in parallel with the human intervention, and avoid the substantial
complexity of incorporating a completely different modality of data into the modeling process.

Garnett et al. (2012) attempt to maximize their reward at the end of a fixed number of queries.
Directly optimizing that goal involves an exponential lookahead process. However, this can
be approximated by a greedy search like the one we perform. Similarly, one could attempt to
maximize the area under the recall curve through the search process. This also requires an
intractable amount of computation which is often replaced with a greedy search.

We now write down the greedy criterion our algorithm seeks to optimize. DefineDt to be the
already collected (noisy) observations of f before time step t and Gt = {g : Tg (Dτ) ≤ θ,∀τ ≤ t}
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to be the set of remaining search subjects; we aim to greedily maximize the sum of rewards over
all the regions in Gt in expectation,

max
x∗
E



∑
g∈Gt

rg (D∗)
�������

x∗,Dt


, (5.2)

where D∗ is the (random) dataset augmented with x∗.
This criterion satisfies a desirable property: when the regions are uncoupled and the classifier

hg is probit-linear, the point that maximizes (5.2) in each region also minimizes the variance of
that region’s label (Section 5.3.2).

5.3 Method
For the aim of maximizing the greedy expected reward of finding matching patterns (5.2), a more
careful examination of the gp model can yield a straightforward sampling method. This method,
in the following, turns out to be quite useful in apps problems with rather complex classifiers.
Section 5.3.1 introduces an analytical solution in an important special case.

At each step, given Dt = (X, z) as the set of any already collected (noisy) observations of f
and x∗ as any potential input location, we can assume the distribution of possible observations z∗
as

z∗ | x∗,Dt ∼ N
(
µ f |Dt (x∗), κ f |Dt (x∗, x∗) + σ2) . (5.3)

Conditioned on an observation value z∗, we can update our gp model to include the new observa-
tion (x∗, z∗), which further affects the marginal distribution of region classifier outputs and thus
the probability this region is matching. WithD∗ = Dt ∪

{
(x∗, z∗)

}
as the updated dataset, we use

rg (D∗) to be the updated reward of region g. The utility of this proposed location x∗ for region
g is thus measured by the expected reward function, marginalizing out the unknown observation
value z∗:

ug (x∗,Dt ) B Ez∗
[
rg (D∗) | x∗,Dt

]
(5.4)

= Pr
{
Tg (D∗) > θ | x∗,Dt

}
. (5.5)

Finally, in active pointillistic pattern search, we select the next observation location x∗ by consid-
ering its expected reward over the remaining regions:

x∗ = argmax
x

u(x,Dt ) = argmax
x

∑
g∈Gt

ug (x,Dt ). (5.6)

For the most general definition of the region classifier hg, the basic algorithm is to compute
(5.4) and thus (5.6) via sampling at two stages:

1. Sample the outer variable z∗ in (5.4) according to (5.3).
2. For every draw of z∗, sample enough of ( f | D∗) to compute the marginal reward Tg (D∗)

in (5.1), in order to obtain one draw for the expectation in (5.4).
To speed up the process, we can evaluate (5.6) for a subset of possible x∗ values, as long as a

good action is likely to be contained in the set.
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5.3.1 Analytic Expected Utility for Functional Probit Models
For a broad family of classifiers, we can compute both (5.1) and (5.5) analytically, allowing us
to efficiently perform exact searches for potentially complex patterns. This family is formed by a
probit link function of any affine functional of f .

Suppose we have observed data D, yielding the posterior p( f | D) = GP ( f ; µ f |D, κ f |D ).
Let Lg be a linear functional, Lg : f 7→ Lg f ∈ R, associated with region g. The family of
classifiers is:

hg ( f ) = Φ(Lg f + bg),

where Φ is the cumulative distribution function of the standard normal and b ∈ R is an offset.
Two examples of such functionals are:

• Lg f : f 7→ c
|g |

∫
g

f (x)dx, where |g | is the volume of region g ⊂ Rm. Here Lg f is the mean
value of f on g, scaled by an arbitrary c ∈ R. When |c | → ∞ the model becomes quite
similar to that of Ma, Garnett, et al. (2014).

• Lg f : f 7→ wT f (Ξ), where Ξ is a finite set of fixed points {ξi}
|Ξ|

i=1, and w ∈ R|Ξ| is an
arbitrary vector. This mapping applies a linear classifier to a fixed, discrete set of values
from f .

Section 3.1 of Ma, Sutherland, et al. (2015) shows that the expected reward is:

ug (x∗,D) = Φ
*..
,

Lgµ f |D + b −
√

1 + L2
gκ f |D∗ Φ

−1(θ)√
V−1
∗|D

Lg
[
κ f |D (·, x∗)

]2

+//
-

(5.7)

where L2
g is the bilinear form L2

gκ : κ 7→ L[Lκ(x, ·)] = L[Lκ(·, x′)].

5.3.2 Analysis for Independent Regions
The analytical solution to (5.5) by (5.7) enables us to further study the theory behind the explo-
ration/exploitation tradeoff of apps in one nontrivial case: when all regions are approximately
independent. This assumption allows us to ignore the effect a data point has on regions other
than its own. We will answer two questions in this case: which region will apps explore next,
and what location will be queried for that region.

Define

ρg (x∗) B

√
V−1
∗|D

Lg

[
κ f |D (·, x∗)

]2√
1 + L2

gκ f |D

=
���Corr

(
z∗, Lg f + b + ε1

��� x∗,D
) ��� ,

where ε1 ∼ N (0, 1) is independent noise, denote how informative the point z∗ is to the label of
its region g. Also define how close g is to receiving a reward by

Rg B
Φ−1(Tg (D))
Φ−1(θ)

.

Section 3.2 ofMa, Sutherland, et al. (2015) shows that for regions not currently carrying a reward:
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1. For any region g, ug (x,D) is maximized by choosing the x that yields ρ∗g B maxx ρg (x).
2. If two regions g and g′ can be equally explored (ρ∗g = ρ∗g′), then the region with more

probability of matching R will be selected.
3. If two regions are equally likely tomatch the desired pattern (Rg = Rg′), themore explorable

region (that with a larger ρ∗) will be selected.

4. In general, apps will trade off the two factors by maximizing
(
Rg −

√
1 − (ρ∗g)2

)
/ρ∗g.

5.4 Empirical Evaluation
Ma, Sutherland, et al. (2015) evaluates the framework in three different settings, with three
different classifiers. We reproduce only one of these evaluations here. The others are based on
real environmental monitoring data and electoral prediction data, using the analytical results of
Section 5.3.1.

The problem we consider here requires more complex pattern classifiers. We study the task
of identifying vortices in a vector field based on limited observations of flow vectors. Linear
classifiers are insufficient for this problem,3 so we will demonstrate the flexibility of our approach
with a black-box classifier.

To illustrate this setting, we consider the results of a large-scale simulation of a turbulent fluid
in three dimensions over time in the Johns Hopkins Turbulence Databases4 (Perlman et al. 2007).
Following Sutherland, Xiong, et al. (2012), we aim to recognize vortices in two-dimensional
slices of the data at a single timestep, based on the same small training set of 11 vortices and 20
non-vortices, partially shown in Figure 5.1.

Recall that hg assigns probability estimates to the entire function class F confined to region
g. We can consider the average flow across sectors (angular slices from the center) of our region
as building blocks in detecting vortices. We count how many sectors have clockwise/counter-
clockwise flows to give a classification result, in three steps:

1. First, we divide a region into K sectors. In each sector, we take the integral of the inner
product between the actual flow vectors and a template. The template is an “ideal” vortex,
but with larger weights in the center than the periphery. This produces a K-dimensional
summary statistic Lg ( f ) for each region.

2. Next, we improve robustness against different flow speeds in the data by scaling Lg ( f ) to
have maximum entry 1, and flip its sign if its mean is negative. Call the result L̃g ( f ).

3. Finally, we feed the normalized L̃g ( f ) vector through a 2-layer neural network of the form

hg ( f ) = σ *
,
wout

K∑
i=1

σ
(
win L̃g ( f )i + bin

)
+ bout+

-
,

where σ is the logistic sigmoid function.

3The set of vortices is not convex: consider the midpoint between a clockwise vortex and its identical counter-
clockwise case.

4http://turbulence.pha.jhu.edu
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Lg ( f ) | D obeys a K-dimensional multivariate normal distribution, from which we can
sample many possible Lg ( f ), which we then normalize and pass through the neural network as
described above. This gives samples of probabilities hg, whose mean is a Monte Carlo estimate
of (5.1).
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Figure 5.1: (a): Positive (top) and negative (bottom) training examples for the vortex classifier.
(b): The velocity field used; each arrow is the average of a 2 × 2 square of actual data points.
Background color shows the probability obtained by each region classifier on the 200 circled
points; red circles mark points selected by one run of apps initialized at the green circles.

We used K = 4 sectors, and the weights in the template were fixed such that the length scale
matches the distance from the center to an edge. The network was optimized for classification
accuracy on the training set. We then identified a 50× 50-pixel slice of the data that contains two
vortices, some other “interesting” regions, and some “boring” regions, mostly overlapping with
Figure 11 of Sutherland, Xiong, et al. (2012); the region, along with the output of the classifier
when given all of the input points, is shown in Figure 5.1a. We then ran apps, initialized with
10 uniformly random points, for 200 steps. We defined the regions to be squares of size 11 × 11
and spaced them every 2 points along the grid, for 400 total regions. We again thresholded at
θ = 0.7. We evaluate (5.1) via a Monte Carlo approximation: first we took 4 samples of z∗, and
then 15 samples from the posterior of f over the window for each z∗. Furthermore, at each step
we evaluate a random subset of 80 possible candidates x∗.

Figure 5.2a shows recall curves of apps, uncertainty sampling (unc), and random selection
(rand), where for the purpose of these curves we call the true label the output of the classifier
when all data is known, and the proposed label is true if Tg > θ at that point of the search
(evaluated using more Monte Carlo samples than in the search process, to gain assurance in our
evaluation but without increasing the time required for the search). We can see that active pattern
search substantially outperforms uncertainty sampling and random selection. It is interesting to
observe that rand was initially better than, but later crossed by unc. In the beginning, since
unc is purely explorative, its reward uniformly remained low across multiple runs, whereas in
some runs rand queries can be lucky enough to concentrate around matching regions. At a later
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(a) Recall curves. (b) Precision curves.

Figure 5.2: Results for the vortex experiment. Color bands show standard errors over 15 runs.

phase, rand faces the coupon collector’s problem and may select redundant boring observations,
whereas unc keeps making progress at a constant rate.
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Chapter 6

Proposed work

6.1 Integration with deep computer vision models

In Section 4.2, we considered using the features learned by a standard convolutional deep network
as samples from an image-level distribution of local features, and classified images based on those
sets of features. Here features are trained using fully-connected final layers as the learning model,
but then used in a separate distributional kernel model.

We can instead make a coherent model which combines feature extraction with a learning
model based on a distributional kernel, by treating the approximate distributional embedding as
a layer in the network. With the mean map-based embedding, gradients propagate through this
layer easily, and so standard stochastic gradient algorithms can be used either to fine-tune features
trained on a different task or to learn features well-suited to distributional kernel models from the
start.

In fact, we can also consider using distributional embeddings in intermediate layers of the
net; gradients propagate in the same way. This could help in learning more complex filters inside
the net with fewer training examples.

I propose to:
1. Implement the necessary components to add approximate distribution embedding layers to

standard deep learning software such as Caffe or Torch.
2. Evaluate the use of fine-tuning features for scene recognition models using distributional

classifiers in the last layers.
3. Experiment with image recognition using distributional filters in earlier layers.

6.2 Word embeddings as distributions

Until recently, much work in natural language processing treated words as unique symbols, e.g.
with “one-hot” vectors, where the ith word from a vocabulary of size V is represented as a
vector with ith component 1 and all other components 0. It has recently become widely accepted
that applications can benefit from richer word embeddings which take into account the similarity
between distinct words, andmuchwork has been done on denseword embeddings so that distances
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or inner products betweenword embeddings represent word similarity in someway (e.g. Collobert
and Weston 2008; Turian et al. 2010; Mikolov et al. 2013). These embeddings can be learned in
various ways, but often involve optimizing the representation’s performance in some supervised
learning task.

Document representations First, it is worth noting that although this breaks the traditional
“bag of words” text model (where documents can be represented simply by the sum of the words’
one-hot encodings), we can represent documents by viewing them as sample sets of word vectors.

Kusner et al. (2015) recently adopted this model, using kNN classifiers based on the emd
between documents, and obtained excellent empirical results. emd, however, is expensive to
compute even for each pair of documents when the vocabulary is large, and additionally must be
computed pairwise between documents; an approximate embedding in the style of Chapter 3 is
not known.

Yoshikawa et al. (2014), in their empirical results, considered this model with mmd-based
kernels (but computing pairwise kernel values rather than approximate embeddings). Their
main contribution, however, is to optimize the word embedding vectors for final classification
performance; by doing so with random initializations, they saw mild performance improvements
over mmd kernels using substantially less training data for the embeddings but at much higher
computational cost. Yoshikawa et al. (2015) extend the approach to Gaussian process regression
models, but do not compare to separately-learned word embeddings.

I propose to:
4. Empirically compare these embedding methods, particularly on larger datasets, to establish

the best method for bag-of-words document representation.
5. Fine-tune word embeddings learned on a standard dataset simultaneously with learning the

model for a particular application, as is common in deep learning models for computer
vision, using techniques similar to those of Section 6.1.

Richer word representation Embedding words as a single vector does not allow for as rich
a word representation as we might wish. Vilnis and McCallum (2015) embed words instead as
Gaussian distributions, and use the kl divergence between word embeddings to measure asym-
metric hypernym relationships: for example, their embedding for the word Bach is “included” in
their embeddings for famous and man, and mostly included in composer. Gaussian distributions,
of course, are still fairly limiting; for example, a multimodal embedding might be able to capture
word sense ambiguity, whereas a Gaussian embedding would be forced to attempt to combine
both senses in a single broad embedding.

We can thus consider richer, nonparametric classes of word embeddings: perhaps by rep-
resenting a word as a (possibly weighted) set of latent vectors. Comparisons could then be
performed either with an mmd-based kernel, when symmetry is desired, or with kl estimators (or
similar) when not.

One approach would be to choose these vectors arbitrarily, optimizing them for the output of
some learning problem: this would be implemantionally similar to the approach of Yoshikawa
et al. (2014, 2015) for mmd distances, or somewhat like that of Vilnis and McCallum (2015) but
with greater computational cost, and greater flexibility, for kl distances.
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Another approach is inspired by the classic distributional hypothesis of Harris (1954), that the
semantics of words are characterized by the contexts in which it appears. Many word embedding
approaches can be viewed as matrix factorizations of a matrix M with rows corresponding to
words, columns to some notion of context, and entries containing some measure of association
between the two; the factorization M = WCT then typically discards the matrix C and uses
the rows of W as word vectors. This approach is sometimes taken explicitly; interestingly, the
popular method of Mikolov et al. (2013) can be seen as approximating this form as well (Levy
and Goldberg 2014). This view inspires a natural alternative: treat each word as the sample
set of contexts in which it appears, representing each context via the learned context vectors.
This is perhaps the most direct instantiation of the distributional hypothesis: compare words by
comparing the distribution of contexts in which they appear.

I propose to:
6. Develop efficient methods for learning nonparametric distributional word embeddings for

asymmetric divergences.
7. Empirically evaluate nonparametric distribution-based word embeddings, based both on

arbitrary embeddings and context features, both on analogy tasks and downstreamdocument
classification tasks.

6.3 Kernel learning for distribution embeddings

Mean map methods rely on having a good base kernel in order to make good comparisons
between distributions, whether for kernels in learning problems or for two sample tests. The most
common technique is to choose a simple family of kernels, perhaps the Gaussian kernel with
various bandwidths selected as multiples of the median inter-point distance, and then pick the
kernel that performs best on a validation set — as with typical hyperparameter optimization. For
two-sample tests, Sriperumbudur, Fukumizu, Gretton, Lanckriet, et al. (2009) propose instead
using the kernel that yields the maximum distance between distributions over certain families of
distributions. Gretton, Sriperumbudur, et al. (2012) find the optimal positive linear combination
of kernels for (linear variants of) a two-sample test. Neither technique, however, seems to have
been thoroughly evaluated outside the context of two-sample testing.

We can also consider more complex kernel learning frameworks thanmultiple kernel learning.
Z. Yang et al. (2015) recently proposed a spectral kernel learning method capable of learning
richer kernels than simple linear combinations or bandwidth selection; integrating that method
into the mean map kernel, for two-sample testing as well as for machine learning models, could
prove fruitful in increasing the power and reducing the amount of human intervention needed in
using these models.

For distances being used within a deep network, as in Section 6.1, allowing the network to
adapt the embedding may also provide an effective technique for learning the base kernel.

I propose to:
8. Adapt the spectral kernel method of Z. Yang et al. (2015) to mean map methods, in

both classification or regression settings and in the two-sample test setting (as in Gretton,
Sriperumbudur, et al. 2012).
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9. Evaluate kernel learning for mmd kernel embeddings in deep networks.

6.4 Embeddings for other kernels

Despite the advantages of mean-map approaches, it may be that in some settings, other distances
such as emd may induce more useful kernels. If this holds true experimentally, it may make sense
to attempt to develop approximate embeddings for other kernels.

Given the close relation between mmd and other integral probability metrics (Müller 1997), as
discussed in Chapter 2, the question of finding base kernels such that mmd approximates related
distances is also quite interesting.

In fact, Sriperumbudur, Gretton, et al. (2010, Theorem 21) show the following: Let k be
a measurable kernel with supx∈X k (x, x) ≤ C < ∞, and define ρ(x, y) = ‖k (·, x) − k (·, y)‖H .
Then mmdk (P,Q) ≤

√
C tv(P,Q), and if (X, ρ) is separable then mmdk (P,Q) ≤ emdρ(P,Q) ≤√

mmdk (P,Q)2 + 4C.
The first statement implies that choosing k to maximize mmdk (from a family with fixed C),

similar to Sriperumbudur, Fukumizu, Gretton, Lanckriet, et al. (2009), makes mmd approximate
tv more closely. But how close is this approximation? For certain classes of distributions, can
we find a kernel that closely approximates tv?

When k is the linear kernel (so ρ(x, y) = ‖x − y‖2) and X ⊆ {x ∈ Rd : ‖x‖ ≤ R} (so
C = R2), mmd approximates the Euclidean emd, but the bounds are quite loose — note that
the linear-kernel mmd is simply the distance between the means of the distributions. Can we
choose a kernel k such that mmdk more closely approximates the Euclidean emd? (Since mmd is
Hilbertian and emd is not, some distortion is unavoidable.)

I propose to:
10. Look intowhether, for certain classes of distributions, kernels can be obtained such thatmmd

approximates emd or tv — particularly kernels admitting a good approximate embedding.
11. Investigate emperically if areas where emd or tv are in common usage cannot be handled

more simply by more efficient mmd kernels, particularly with the kernel learning methods
of Section 6.3.

6.5 Active learning on distributions

Suppose we have a collection of distributions, but initially we have very few samples from
each distribution. We can choose to take additional iid observations, but doing so is relatively
expensive; perhaps it requires real-world expenditure of time or resources to collect samples,
or perhaps these distributions are available only through computationally intensive numerical
simulations. We may wish to learn a classification or regression function mapping from these
distributions to some label (similar to traditional active learning settings), to locate distributions
which follow some prespecified pattern (similar to the setting of Chapter 5 with independent
regions), or to find the distribution which is “best” in some sense (as in pure-exploration bandit
problems, Bubeck et al. 2010). In any of these cases, we need to choose some selection criterion
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that will appropriately consider the utility of selecting points from distributions, a problem that
is related to but certainly distinct from typical fully-observed active learning models.

In the dark matter prediction experiments of Section 4.3, we assumed that each observed
galaxy has a well-known line-of-sight velocity estimated via redshift. In practice, good velocity
estimates are available only through relatively-expensive spectroscopic imaging; cheaper few-
color imaging techniques give extremely uncertain velocity estimates. We could simply ignore
the imaging estimates and apply the previous model, selecting a random galaxy from each halo
to perform spectroscopy upon. It would probably be more effective, however, to consider active
learning methods that begin with visual imaging, and then identify which objects will be useful
for spectroscopy in order to best identify the masses of their dark matter halos. One modeling
option would be to take a probability distribution over the sample set, and then identify the
resulting distribution of the mean map embedding and therefore its predicted label under a
learned predictor; we would then identify objects to observe that most reduce uncertainty in the
predicted label. This could be conducted either for a single halo, where the objective is to best
learn its mass, or across multiple halos, where the objective is either to find themost massive halos
(active search) or to reduce some form of overall uncertainty in all of the halo mass predictions
(active learning).

I propose to:
12. Develop and evaluate efficient active learning selection criteria for each of the problem

settings discussed here.

6.6 Timeline
My rough plan for the proposed work is as follows:

September – December 2015: Integration with deep networks; experiments in computer
vision and document representation. Conference submission. (Partially complete.)

October – December 2015: Investigate embeddings for other kernels. If successful, experi-
ments in various domains and possible conference submission.

December 2015 – February 2016: Kernel learning for distribution embeddings. Conference
submission.

March – April 2016: Word embeddings. Possible conference submission.
April – July 2016: Active learning on distributions, with astronomical application. Submis-

sion to a machine learning conference and/or an astrophysics venue.
August 2016: Thesis writing.
September 2016: Thesis defense.
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