Scalable, Flexible and Active Learning on Distributions

Dougal J. Sutherland

Thesis Committee:

Jeff Schneider (Chair)
Nina Balcan
Barnabás Póczos
Arthur Gretton (UCL)

Learning on Distributions

Learning on Distributions

...based on sample sets.

Learning on Distributions

distribution

label

9 components

"seaside city"

Mass $7 \times 10^{14} \ \text{M}_{\odot}$ and more...

Ntampaka et al. (ApJ 2015, 2016)

Jin et al. (NSS 2016)

		AGEP	SEX	 RACSOR	RACWHT
	0	75	1	 0	1
	1	25	0	 0	1

Flaxman et al. (KDD 2015)

no Cs137 present

county voted 54% for Obama

Contributions

- Learning on distributions with nonparametric kernels
- Scalable approximate kernel embeddings
 - Random Fourier features analysis
 - New embeddings for distribution kernels
- Flexible distribution kernels
 - Deep mean maps in computer vision
 - MMD kernel learning for testing
- Active pointillistic pattern search

Kernel Methods

$$f(x) = w^{\mathsf{T}} x + b$$

$$f(x) = \langle w, \phi(x) \rangle_{\mathcal{H}} + b$$
$$= \sum_{i=1}^{n} \alpha_i y_i k(x_i, x) + b$$

Linear models...

...in Hilbert space.

Kernel Methods

Can use a kernel on any domain.

$$f(x) = \langle w, \phi(x) \rangle_{\mathcal{H}} + b$$
$$= \sum_{i=1}^{n} \alpha_i y_i k(x_i, x) + b$$

Linear models...in Hilbert space.

Kernels on Distributions

We'll use a kernel on distributions based on a distance ρ :

$$K(\mathbb{P}, \mathbb{Q}) = \exp\left(-\frac{1}{2\sigma^2}\rho^2(\mathbb{P}, \mathbb{Q})\right)$$

The popular Gaussian RBF kernel has this form, with ρ the Euclidean distance between vectors.

A valid kernel as long as ρ is *Hilbertian*.

Distances on Distributions

Distances on Distributions

$$TV(\mathbb{P}, \mathbb{Q}) = \int \frac{1}{2} |p(x) - q(x)| \, \mathrm{d}x$$

10

Distances on Distributions

Total Variation

$$TV(p,q) = \int \frac{1}{2} |p(x) - q(x)| dx$$

$$L_2$$

$$L_2^2(p,q) = \int (p(x) - q(x))^2 dx$$

Hellinger

 $H^{2}(p,q) = \int \frac{1}{2} \left(\sqrt{p(x)} - \sqrt{q(x)} \right)^{2} dx$

Kullback-Leibler

$$\mathrm{KL}(p||q) = \int p(x) \log \frac{p(x)}{q(x)} \, \mathrm{d}x$$

Rényi- α

$$R_{\alpha}(p||q) = \frac{1}{\alpha - 1} \int p(x)^{\alpha} q(x)^{1 - \alpha} dx$$

Jensen-Shannon

$$JS(p,q) = \frac{1}{2}KL\left(p\left\|\frac{p+q}{2}\right) + \frac{1}{2}KL\left(q\left\|\frac{p+q}{2}\right)\right)$$

Maximum Mean Discrepancy

$$MMD_k(\mathbb{P}, \mathbb{Q}) = \sup_{f \in \mathcal{H}_k} \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}_{11}} f(Y)$$

Estimators of Distributional Distances

- Fit a parametric model and compute distances.
 - Some distances have closed form for some models.
 - Model introduces approximation error

$$\mu, \Sigma$$

$$L_2(\mathcal{N}(\mu, \Sigma), \mathcal{N}(\mu', \Sigma')) = \frac{1}{|4\pi\Sigma|^{\frac{1}{2}}} + \frac{1}{|4\pi\Sigma'|^{\frac{1}{2}}} - 2\frac{\exp\left(-\frac{1}{2}(\mu - \mu')^T(\Sigma + \Sigma')^{-1}(\mu - \mu')\right)}{|2\pi(\Sigma + \Sigma')|^{\frac{1}{2}}}$$

Jebara et al. 2004; Moreno et al. 2004

Estimators of Distributional Distances

- Fit a nonparametric model and compute distances.
 - Histograms
 - Kernel density estimation
 - *k*-nearest neighbor density estimation
 - Basis function projections
 - Empirical distribution (for MMD)

Algorithm: Learning on Distributions

Given sample sets $X_i \sim \mathbb{P}_i$, a distance ρ , and a b.w. σ :

- 1. Estimate $\hat{
 ho}(X_i,X_j)$ for all i,j nonparametrically.
- 2. Assemble into a kernel matrix

$$K_{ij} = \exp\left(-\frac{1}{2\sigma^2}\hat{\rho}(X_i, X_j)\right).$$

3. Run an SVM / GP / ridge regression / ... with K.

Application: Galaxy Cluster Mass

Galaxy clusters are fundamental in the study the universe. Their properties can tell us a lot about cosmology.

But they're mostly dark matter; measuring their mass is hard.

Application: Galaxy Cluster Mass

Fritz Zwicky (1933): Under reasonable assumptions, the velocity dispersion has power-law relationship to total

mass.

Not so great...

- Assumptions violated
- Which galaxies are in cluster?

log mass

Application: Galaxy Cluster Mass

Alternative approach: consider each cluster as a *distribution* of galaxy features, and regress from these distributions to total mass.

17

Cluster Mass: Known Membership

Cluster Mass: With Interlopers

Contributions

- Learning on distributions with nonparametric kernels
- Scalable approximate kernel embeddings
 - Random Fourier features analysis
 - New embeddings for distribution kernels
- Flexible distribution kernels
 - Deep mean maps in computer vision
 - MMD kernel learning for testing
- Active pointillistic pattern search

Scalability

These methods need an *n* x *n* Gram matrix:

$$\mathbf{K} = \begin{bmatrix} K(x_1, x_1) & K(x_1, x_2) & \dots & K(x_1, x_n) \\ K(x_2, x_1) & K(x_2, x_2) & \dots & K(x_2, x_n) \\ \vdots & \vdots & \ddots & \vdots \\ K(x_n, x_1) & K(x_n, x_2) & \dots & K(x_n, x_n) \end{bmatrix}$$

The matrix is n^2 ; operations can be as slow as $O(n^3)$.

Linear-kernel models usually scale like O(n).

Approximate Embeddings

Traditional kernel methods:

$$\{x_i\} \qquad \{\varphi(x_i)\} \subset \mathcal{H}$$
$$\langle \varphi(x_i), \varphi(x_j) \rangle_{\mathcal{H}} = k(x_i, y_j)$$
$$f(x) = \langle w, \varphi(x) \rangle + b = \sum_{i=1}^{n} \alpha_i y_i k(x_i, x) + b$$

$$\mathsf{Approx}\left[\mathsf{K}(\mathbf{S},\mathbf{Z})\approx\mathsf{Z}(\mathbf{S})^\mathsf{T}\mathsf{Z}(\mathbf{S})\right]$$

$$\{x_i\}$$
 $\{z(x_i)\}\subset \mathbb{R}^D$ $z(x_i)^T z(x_i)$

$$f(x) = w^T z(x) + b$$

Random Fourier Features

Rahimi and Recht (2007) developed random Fourier features, a.k.a. "random kitchen sinks":

$$k(x,y) = \underline{k}(\Delta) = \exp\left(-\frac{1}{2\sigma^2} \|\Delta\|^2\right)$$
$$= \langle \varphi(x), \varphi(y) \rangle_{\mathcal{H}} \quad (\dim \mathcal{H} = \infty)$$
$$\approx z(x)^{\mathsf{T}} z(y) \qquad (z : \mathbb{R}^d \to \mathbb{R}^D)$$

Random Fourier Features

Rahimi and Recht (2007) developed random Fourier features, a.k.a. "random kitchen sinks":

$$k(x,y) = \underline{k}(\Delta) = \exp\left(-\frac{1}{2\sigma^2} \|\Delta\|^2\right) \approx z(x)^{\mathsf{T}} z(y)$$
$$\Omega(\omega) := \int \underline{k}(\Delta) \exp\left(-\mathrm{i}\omega^{\mathsf{T}}\Delta\right) d\Delta \propto \exp\left(-\frac{\sigma^2}{2} \|\Delta\|^2\right)$$

Bochner's theorem: Ω is a (scaled) probability distribution.

$$\omega_i \sim \Omega$$

$$\tilde{z}(x) = \sqrt{\frac{2}{D}} \left[\sin(\omega_1^\mathsf{T} x) \quad \cos(\omega_1^\mathsf{T} x) \quad \dots \quad \sin(\omega_{D/2}^\mathsf{T} x) \quad \cos(\omega_{D/2}^\mathsf{T} x) \right]^\mathsf{T}$$

Random Fourier Features

1.0

The L_{∞} error is also tighter, in bounds and empirically. ²⁵

Contributions

- Learning on distributions with nonparametric kernels
- Scalable approximate kernel embeddings
 - Random Fourier features analysis
 - New embeddings for distribution kernels
- Flexible distribution kernels
 - Deep mean maps in computer vision
 - MMD kernel learning for testing
- Active pointillistic pattern search

The mean embedding of a distribution in an RKHS:

$$\mu_{\mathbb{P}} = \mathbb{E}_{x \sim \mathbb{P}}[\varphi(x)]$$

The mean embedding of a distribution in an RKHS:

$$\mu_{\mathbb{P}} = \mathbb{E}_{x \sim \mathbb{P}}[\varphi(x)]$$

The mean embedding of a distribution in an RKHS:

$$\mu_{\mathbb{P}} = \mathbb{E}_{x \sim \mathbb{P}}[\varphi(x)]$$

The mean embedding of a distribution in an RKHS:

$$\mu_{\mathbb{P}} = \mathbb{E}_{x \sim \mathbb{P}}[\varphi(x)]$$

The mean embedding of a distribution in an RKHS:

$$\mu_{\mathbb{P}} = \mathbb{E}_{x \sim \mathbb{P}}[\varphi(x)]$$

Maximum Mean Discrepancy (MMD)

The MMD is the distance between mean embeddings:

$$\mu_{\mathbb{P}} = \mathbb{E}_{X \sim \mathbb{P}}[\varphi(X)]$$

$$\text{MMD}^{2}(\mathbb{P}, \mathbb{Q}) = \|\mu_{\mathbb{P}} - \mu_{\mathbb{Q}}\|_{\mathcal{H}}^{2}$$

$$= \langle \mu_{\mathbb{P}}, \mu_{\mathbb{P}} \rangle + \langle \mu_{\mathbb{Q}}, \mu_{\mathbb{Q}} \rangle - 2\langle \mu_{\mathbb{P}}, \mu_{\mathbb{Q}} \rangle$$

$$\langle \mu_{\mathbb{P}}, \mu_{\mathbb{Q}} \rangle = \langle \mathbb{E}_{X \sim P}[\varphi(X)], \mathbb{E}_{Y \sim Q}[\varphi(Y)] \rangle$$
$$= \mathbb{E}_{\substack{X \sim P \\ Y \sim Q}} [\langle \varphi(X), \varphi(Y) \rangle]$$
$$= \mathbb{E}_{\substack{X \sim P \\ Y \sim Q}} [k(X, Y)]$$

Estimator:
$$\langle \hat{\mu}_{\mathbb{P}}, \hat{\mu}_{\mathbb{Q}} \rangle = \frac{1}{mn} \sum_{i,j} k(X_i, Y_j)$$

Embedding MMD

$$\widehat{\text{MMD}}(X,Y) = \|\hat{\mu}_{\mathbb{P}} - \hat{\mu}_{\mathbb{Q}}\|_{\mathcal{H}}$$

$$\langle \hat{\mu}_{\mathbb{P}}, \hat{\mu}_{\mathbb{Q}} \rangle = \frac{1}{mn} \sum_{ij} k(X_i, Y_j) \qquad \qquad = \frac{1}{m} \mathbb{1}^{\mathsf{T}} \qquad \frac{1}{n} \mathbb{1}$$

$$\approx \frac{1}{mn} \sum_{ij} z(X_i)^{\mathsf{T}} z(Y_j) \qquad \qquad = \frac{1}{m} \mathbb{1}^{\mathsf{T}} \left(\times \right) \frac{1}{n} \mathbb{1}$$

$$= \left[\frac{1}{m} \sum_{i} z(X_i) \right]^{\mathsf{T}} \left[\frac{1}{n} \sum_{j} z(Y_j) \right] = \left(-\frac{1}{m} \mathbb{1} \right)^{\mathsf{T}} \left(-\frac{1}{n} \mathbb{1} \right)$$

$$= \bar{z}(X)^{\mathsf{T}} \bar{z}(Y) \qquad \qquad = -\mathsf{T} \qquad \qquad =$$

$$\widehat{\text{MMD}}_z(X, Y) = \|\bar{z}(X) - \bar{z}(Y)\| \qquad \qquad = \| ---- \|$$

$$\exp\left(-\frac{1}{2\sigma^2}\widehat{\text{MMD}}_z(X,Y)\right) \approx z(\bar{z}(X))^{\mathsf{T}}z(\bar{z}(Y))$$

Embedding L_2

Oliva, Neiswanger, Póczos, Schneider, Xing (AISTATS 2014) gave an embedding for

$$K(\hat{p}, \hat{q}) = \exp\left(-\frac{1}{2\sigma^2} \|\hat{p} - \hat{q}\|_{L_2}^2\right)$$

based on projection coefficients onto an orthonormal basis for L_2 .

Embedding HDDs

$$\rho^2(p,q) = \int_{\mathcal{X}} \kappa(p(x),q(x)) dx$$
 Homogeneous Density Distances

ρ^2 can be:

- Jensen-Shannon
- Total Variation
- Squared Hellinger

Algorithm: HDD Embedding

$$\rho^2(p,q) = \int_{\mathcal{X}} \kappa(p(x),q(x)) dx$$
 Homogeneous Density Distances

- 1. Approximately embed ρ into L_2
 - by embedding \varkappa into L_2 (Fuglede 2005).

$$\rho(p,q) \approx \|\psi(p) - \psi(q)\|_{L_2^{2M}}$$

 ρ on distributions $\approx L_2$ distance on random ψ functions

2. Approximately embed L_2 into \mathbf{R}^m .

$$\|\psi(p) - \psi(q)\|_{L_2^{2M}} \approx \|A(p) - A(q)\|_{\mathbb{R}^{2M|V|}}$$

 L_2 distance on random ψ functions \approx Euclidean distance on A vectors

3. Use random Fourier features to embed K on \mathbb{R}^m into \mathbb{R}^D .

$$\exp\left(-\frac{1}{2\sigma^2}\rho^2(p,q)\right) \approx z(A(p))^{\mathsf{T}}z(A(q))$$

HDD estimator convergence

The embedding is an estimator for the kernel.

For fixed p and q, we have a finite-sample bound on

$$\Pr\left(\left|K(p,q) - z(\hat{A}(\hat{p}))^{\mathsf{T}} z(\hat{A}(\hat{q}))\right| \ge \varepsilon\right)$$

which behaves as expected:

- Lower for smoother, lower-dimensional densities
- Lower for more samples
- More projection coefficients / samples from μ :
 - better approximation, harder integration

Application: Gaussian Mixtures

1.42

1.44

1.48

1.46

1.5

RMSE

1.52

1.54

1.56

Application: Nuclear Threat Detection

Small sensors and cluttered environments make lots of challenges for traditional detection algorithms.

Application: Nuclear Threat Detection

Application: Scene Classification

Scene-15 dataset (4 485 images)

Application: Scene Classification

Features from a deep convnet (16 layers):

Application: Scene Classification

Contributions

- Learning on distributions with nonparametric kernels
- Scalable approximate kernel embeddings
 - Random Fourier features analysis
 - New embeddings for distribution kernels
- Flexible distribution kernels
 - Deep mean maps in computer vision
 - MMD kernel learning for testing
- Active pointillistic pattern search

Deep distribution kernel learning

We can put distribution embeddings in a deep network:

Initial results for scene classification: small but consistent improvement.

45

Contributions

- Learning on distributions with nonparametric kernels
- Scalable approximate kernel embeddings
 - Random Fourier features analysis
 - New embeddings for distribution kernels
- Flexible distribution kernels
 - Deep mean maps in computer vision
 - MMD kernel learning for testing
- Active pointillistic pattern search

Two-sample testing

Observed samples: $X \sim \mathbb{P}$ $Y \sim \mathbb{Q}$

Hypothesis test on unobserved distributions: $\mathbb{P}\stackrel{?}{=}\mathbb{Q}$

Applications:

- Neuroscience: do these areas of the brain behave differently under different conditions?
- Schema alignment: do these two database columns mean the same thing?
- Many more...

Two-sample testing

Test with MMD:

Test: reject if $m \ \widehat{\text{MMD}}^2(\mathbb{P}, \mathbb{Q}) > c_{\alpha}$.

Permutation testing

When $\mathbb{P} = \mathbb{Q}$, MMD is asymptotically gross, so hard to find a threshold c_{α} that way.

Use a permutation test:

$$X = \{x_1, x_2, \dots, x_m\}$$
 $Y = \{y_1, y_2, \dots, y_m\}$

Split randomly to estimate MMD when $\mathbb{P} = \mathbb{Q}$:

$$X$$
 Y $m\widehat{\mathrm{MMD}}^2(X^{(1)},Y^{(1)})$ $m\widehat{\mathrm{MMD}}^2(X^{(2)},Y^{(2)})$

 \hat{c}_{lpha} : (1-lpha)th quantile of $m\widehat{ ext{MMD}}^2(X^{(i)},Y^{(i)})$

The kernel matters!

Witness function f helps compare samples:

$$MMD(\mathbb{P}, \mathbb{Q}) = \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y)$$
$$f(x) = \mathbb{E}_{X \sim \mathbb{P}} k(x, X) - \mathbb{E}_{Y \sim \mathbb{Q}} k(x, Y)$$

The kernel matters!

Witness function f helps compare samples:

$$MMD(\mathbb{P}, \mathbb{Q}) = \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y)$$
$$f(x) = \mathbb{E}_{X \sim \mathbb{P}} k(x, X) - \mathbb{E}_{Y \sim \mathbb{Q}} k(x, Y)$$

The kernel matters!

Witness function f helps compare samples:

$$MMD(\mathbb{P}, \mathbb{Q}) = \mathbb{E}_{X \sim \mathbb{P}} f(X) - \mathbb{E}_{Y \sim \mathbb{Q}} f(Y)$$
$$f(x) = \mathbb{E}_{X \sim \mathbb{P}} k(x, X) - \mathbb{E}_{Y \sim \mathbb{Q}} k(x, Y)$$

Choosing a kernel

So we need a way to pick a kernel to do the test.

Before:

MMD with fixed k

Choosing a kernel

So we need a way to pick a kernel to do the test.

Split data:

How to pick k? Typically: maximize MMD.

But we want the (asymptotically) most powerful test. 54

Asymptotic power of MMD

When $\mathbb{P} \neq \mathbb{Q}$, MMD is asymptotically normal:

$$\frac{\widehat{\text{MMD}^2} - \text{MMD}^2}{\sqrt{V_m}} \xrightarrow{D} \mathcal{N}(0,1) \quad V_m = \text{Var}_{\substack{X \sim P^m \\ Y \sim Q^m}} \left[\widehat{\text{MMD}^2}(X,Y) \right]$$

and we can analyze the power:

$$\Pr_{H_1}\left(\widehat{m_{\text{MMD}}}^2 > \hat{c}_{\alpha}\right)$$

MMD *t*-statistic

$$\Pr_{H_1}\left(\widehat{m_{\text{MMD}}}^2 > \hat{c}_{\alpha}\right) \to 1 - \Phi\left(\frac{c_{\alpha}}{m\sqrt{V_m}} - \frac{\text{MMD}^2}{\sqrt{V_m}}\right)$$

So we can maximize the power by maximizing

$$\tau_U = \frac{\text{MMD}^2}{\sqrt{V_m}} - \frac{c_\alpha}{m\sqrt{V_m}} \qquad \hat{\tau}_U = \frac{\widehat{\text{MMD}^2}}{\sqrt{\widehat{V}_m}} - \frac{\hat{c}_\alpha}{m\sqrt{\widehat{V}_m}}$$

But V_m is O(1/m), so the first term dominates for large m, and we should be able to get away with maximizing

$$t_U = \frac{\text{MMD}^2}{\sqrt{V_m}} \qquad \hat{t}_U = \frac{\widehat{\text{MMD}^2}}{\sqrt{\widehat{V}_m}}$$

t-statistic estimator

$$\hat{\tau}_U = \frac{\widehat{\text{MMD}}^2}{\sqrt{\widehat{V}_m}} - \frac{\hat{c}_\alpha}{m\sqrt{\widehat{V}_m}}$$

$$\widehat{\text{MMD}^2} := \frac{1}{\binom{m}{2}} \sum_{i \neq j} k(X_i, X_j) + k(Y_i, Y_j) - k(X_i, Y_j) - k(X_j, Y_i)$$

 \hat{c}_{lpha} is from a permutation test, so the average of a bunch of MMD estimates

t-statistic estimator

$$\hat{V}_{m} = \frac{4(m-2)}{m(m-1)}\hat{\zeta}_{1} + \frac{2}{m(m-1)}\hat{\zeta}_{2}$$

$$\hat{\zeta}_{1} = \frac{1}{m(m-1)(m-2)} \left(\mathbf{1}^{\mathsf{T}}\tilde{K}_{XX}\tilde{K}_{XX}\mathbf{1} - \|\tilde{K}_{XX}\|_{F}^{2} \right) - \left(\frac{1}{m(m-1)}\mathbf{1}^{\mathsf{T}}\tilde{K}_{XX}\mathbf{1} \right)^{2}$$

$$- \frac{2}{m^{2}(m-1)} \mathbf{1}^{\mathsf{T}}\tilde{K}_{XX}K_{XY}\mathbf{1} + \frac{2}{m^{3}(m-1)} \mathbf{1}^{\mathsf{T}}\tilde{K}_{XX}\mathbf{1}\mathbf{1}^{\mathsf{T}}K_{XY}\mathbf{1}$$

$$+ \frac{1}{m(m-1)(m-2)} \left(\mathbf{1}^{\mathsf{T}}\tilde{K}_{YY}\tilde{K}_{YY}\mathbf{1} - \|\tilde{K}_{YY}\|_{F}^{2} \right) - \left(\frac{1}{m(m-1)}\mathbf{1}^{\mathsf{T}}\tilde{K}_{YY}\mathbf{1} \right)^{2}$$

$$- \frac{2}{m^{2}(m-1)} \mathbf{1}^{\mathsf{T}}\tilde{K}_{YY}K_{XY}^{\mathsf{T}}\mathbf{1} + \frac{2}{m^{3}(m-1)} \mathbf{1}^{\mathsf{T}}\tilde{K}_{YY}\mathbf{1}\mathbf{1}^{\mathsf{T}}K_{XY}\mathbf{1}$$

$$+ \frac{1}{m^{2}(m-1)} \left(\mathbf{1}^{\mathsf{T}} K_{XY}^{\mathsf{T}} K_{XY} \mathbf{1} - \|K_{XY}\|_{F}^{2} \right) - 2 \left(\frac{1}{m^{2}} \mathbf{1}^{\mathsf{T}} K_{XY} \mathbf{1} \right)^{2}$$

$$+ \frac{1}{m^{2}(m-1)} \left(\mathbf{1}^{\mathsf{T}} K_{XY} K_{XY}^{T} \mathbf{1} - \|K_{XY}\|_{F}^{2} \right)$$

$$\hat{\zeta}_2 = \frac{1}{m(m-1)} \left\| \tilde{K}_{XX} + \tilde{K}_{YY} - \tilde{K}_{XY} - \tilde{K}_{XY}^{\mathsf{T}} \right\|_F^2$$

t-statistic estimator

Can even get gradients of t_U and (with some more effort) τ_U , to help maximize it.

(automatic differentiation is your friend)

Kernel choice on Blobs

Blobs dataset:

Mixture of
$$\mathcal{N}\left(\mu_{ij}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right)$$

Mixture of
$$\mathcal{N}\left(\mu_{ij}, \begin{bmatrix} 1 & \frac{\varepsilon-1}{\varepsilon+1} \\ \frac{\varepsilon-1}{\varepsilon+1} & 1 \end{bmatrix}\right)$$

When ε =1, P = Q; this picture has ε =6.

Kernel choice on Blobs

Deep Kernels

Map through layers of a deep network:

Generative Models

Generative adversarial networks:

- Generator comes up with samples; trained to trick the adversary.
- Adversary tries to distinguish between generator sample and true data; trained to beat the generator.

But adversary is really just a two-sample test.

Kernel learning helps prevent the generator's tricks.

Contributions

- Learning on distributions with nonparametric kernels
- Scalable approximate kernel embeddings
 - Random Fourier features analysis
 - New embeddings for distribution kernels
- Flexible distribution kernels
 - Deep mean maps in computer vision
 - MMD kernel learning for testing
- Active pointillistic pattern search

Search for region patterns with point observations.

template

65

Take-Home Messages

- Think about how you model your data.
- Distributions and sets can work pretty well.
 - Cosmology, nuclear threat detection, scene classification, parametric statistical inference, polling, autonomous sensing...
- Random embeddings can help with scalability...
 - if you use random Fourier features, use the right one

- ...and with flexibility
 - Plug the MMD embedding into deep learning and go crazy

Things Still to Do

- Deep kernel learning
 - Different parameterizations of kernels
- More applications!
 - Word and document embeddings
 - Kernel-learning two-sample test as adversary in a GAN
- Active learning on distributions

Thanks!

Rahul De

Contributions

- Learning on distributions with nonparametric kernels
- Scalable approximate kernel embeddings
 - Random Fourier features analysis
 - New embeddings for distribution kernels
- Flexible distribution kernels
 - Deep mean maps in computer vision
 - MMD kernel learning for testing
- Active pointillistic pattern search