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Learning	on	Distribu/ons	
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+ + +

– – –

?

We	want	to	learn	a	distribu/on	classifica/on	func/on….	



Learning	on	Distribu/ons	
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+
[29 points]

+
[44 points]

+
[22 points]

–
[37 points]

–
[18 points]

–
[23 points]

?
[25 points]

...based	on	sample	sets.	



Learning	on	Distribu/ons	
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distribu/on	 observed	sample	 label	Density with 9 Components
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Sample with 9 Components

9	components	

“seaside	city”	

and	more…	

no	Cs137	present	
Jin	et	al.	(NSS	2016)	

Flaxman	et	al.	(KDD	2015)	

county	voted	
54%	for	Obama	

Ntampaka	et	al.	(ApJ	2015,	2016)	

Mass	7	×	1014		M☉	



Contribu/ons	
•  Learning	on	distribu/ons	with	nonparametric	kernels	
	

•  Scalable	approximate	kernel	embeddings	
–  Random	Fourier	features	analysis	
– New	embeddings	for	distribu/on	kernels	

	

•  Flexible	distribu/on	kernels	
– Deep	mean	maps	in	computer	vision	
–  MMD	kernel	learning	for	tes/ng	

	

•  Ac/ve	poin/llis/c	pa?ern	search	
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Kernel	Methods	

6	Linear	models…	 …in	Hilbert	space.	

� : Rd ! H
k(x, x0) = h�(x),�(x0)iH

=
nX

i=1

↵i yi k(xi, x) + b

f(x) = hw,�(x)iH + b

f(x) = w

T
x+ b



Kernel	Methods	

7	Linear	models	…in	Hilbert	space.	

k(x, x0) = h�(x),�(x0)iH

� : X ! H

Can	use	a	kernel	
on	any	domain.	

=
nX

i=1

↵i yi k(xi, x) + b

f(x) = hw,�(x)iH + b



Kernels	on	Distribu/ons	
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We’ll	use	a	kernel	on	distribu/ons	based	on	a	distance	𝜌:		

K(P,Q) = exp

✓
� 1

2�2
⇢2(P,Q)

◆

The	popular	Gaussian	RBF	kernel	has	this	form,	with	𝜌	the	
Euclidean	distance	between	vectors.	

A	valid	kernel	as	long	as	𝜌	is	Hilber(an.	



Distances	on	Distribu/ons	
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Distances	on	Distribu/ons	
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tv(P,Q) =

Z
1
2 |p(x)� q(x)| dx



Distances	on	Distribu/ons	
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Maximum	Mean	Discrepancy	

Total	Varia/on	 tv(p, q) =

Z
1
2 |p(x)� q(x)| dx

L2	 L

2
2(p, q) =

Z
(p(x)� q(x))2 dx

Hellinger	 h2(p, q) =

Z
1
2

⇣p
p(x)�

p
q(x)

⌘2
dx

Rényi-𝛼	 r↵(pkq) =
1

↵� 1

Z
p(x)↵q(x)1�↵ dx

Kullback-Leibler	 kl(pkq) =
Z

p(x) log

p(x)

q(x)

dx

Jensen-Shannon	 js(p, q) = 1
2kl

✓
p

����
p+ q

2

◆
+ 1

2kl

✓
q

����
p+ q

2

◆

mmdk(P,Q) = sup
f2Hk

EX⇠P f(X)� EY⇠Q f(Y )



Es/mators	of	Distribu/onal	Distances	
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–  Some	distances	have	closed	form	for	some	models.	
– Model	introduces	approxima/on	error	

•  Fit	a	parametric	model	and	compute	distances.	

µ,⌃

L2(N (µ,⌃),N (µ0,⌃0
)) =

1

|4⇡⌃|
1
2

+

1

|4⇡⌃0|
1
2

� 2

exp

�
� 1

2 (µ� µ0
)

T
(⌃+ ⌃

0
)

�1
(µ� µ0

)

�

|2⇡(⌃+ ⌃

0
)|

1
2

Jebara	et	al.	2004;	Moreno	et	al.	2004	



Es/mators	of	Distribu/onal	Distances	
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•  Fit	a	nonparametric	model	and	compute	distances.	
•  Histograms	
•  Kernel	density	es/ma/on	
•  k-nearest	neighbor	density	es/ma/on	
•  Basis	func/on	projec/ons	
•  Empirical	distribu/on	(for	MMD)	



Algorithm:	Learning	on	Distribu/ons	

Given	sample	sets																,	a	distance	𝜌,	and	a	b.w.	𝜎:	
	
1.  Es/mate																				for	all	i,	j	nonparametrically.	

2.  Assemble	into	a	kernel	matrix	
	
	
3.  Run	an	SVM	/	GP	/	ridge	regression	/	…	with	K.	

14	

Xi ⇠ Pi

⇢̂(Xi, Xj)

Kij = exp

✓
� 1

2�2
⇢̂(Xi, Xj)

◆
.



Applica/on:	Galaxy	Cluster	Mass	
Galaxy	clusters	are	fundamental	in	the	study	the	universe.	
Their	proper/es	can	tell	us	a	lot	about	cosmology.	
	
But	they’re	mostly	dark	ma?er;	measuring	their	mass	is	hard.	

15	Coma	cluster,	NASA	



Applica/on:	Galaxy	Cluster	Mass	
Fritz	Zwicky	(1933):	Under	reasonable	assump/ons,	the	
velocity	dispersion	has	power-law	rela/onship	to	total	
mass.	

log dispersion

lo
g 

m
as

s

16	

Not	so	great…	
•  Assump/ons	violated	
•  Which	galaxies	are	in	cluster?	



Applica/on:	Galaxy	Cluster	Mass	
Alterna/ve	approach:	consider	each	cluster	as	a	distribu(on	
of	galaxy	features,	and	regress	from	these	distribu/ons	to	
total	mass.	

17	
Ntampaka,	Trac,	Sutherland	et	al.,	ApJ	2015;	Ntampaka,	Trac,	Sutherland	et	al.,	in	press	at	ApJ.	



Cluster	Mass:	Known	Membership	

18	

power	law	 kNN-KL	with	|v|	only	



Cluster	Mass:	With	Interlopers	

19	

power	law	 kNN-KL	with	|v|	only	



Contribu/ons	
•  Learning	on	distribu/ons	with	nonparametric	kernels	
	

•  Scalable	approximate	kernel	embeddings	
–  Random	Fourier	features	analysis	
– New	embeddings	for	distribu/on	kernels	

	

•  Flexible	distribu/on	kernels	
– Deep	mean	maps	in	computer	vision	
–  MMD	kernel	learning	for	tes/ng	

	

•  Ac/ve	poin/llis/c	pa?ern	search	
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Scalability	

These	methods	need	an	n	x	n	Gram	matrix:	

21	

The	matrix	is	n2;	opera/ons	can	be	as	slow	as	O(n3).	

Linear-kernel	models	usually	scale	like	O(n).	

K =

2

6664

K(x1, x1) K(x1, x2) . . . K(x1, xn)
K(x2, x1) K(x2, x2) . . . K(x2, xn)

...
...

. . .
...

K(xn, x1) K(xn, x2) . . . K(xn, xn)

3

7775



Approximate	Embeddings	

22	

Tradi/onal	kernel	methods:	
{xi}

Approximate	kernel	embeddings:	
{xi}

f(x) = w

T
z(x) + b

{z(xi)} ⇢ RD

⇡

n	

n	

⇥ =n	

D	

= k(xi, yj)

=
nX

i=1

↵iyik(xi, x) + b

K(    ,    ) ≈ z(    )Tz(    )



k(x, y) = k(

x�yz}|{
� ) = exp

✓
� 1

2�

2
k�k2

◆

Random	Fourier	Features	
Rahimi	and	Recht	(2007)	developed	random	Fourier	
features,	a.k.a.	“random	kitchen	sinks”:	

23	

= h'(x),'(y)iH (dimH = 1)

⇡ z(x)Tz(y) (z : Rd ! RD)



Random	Fourier	Features	
Rahimi	and	Recht	(2007)	developed	random	Fourier	
features,	a.k.a.	“random	kitchen	sinks”:	

24	

⇡ z(x)Tz(y)

Bochner’s	theorem:	Ω	is	a	(scaled)	probability	distribu/on.	

k(x, y) = k(

x�yz}|{
� ) = exp

✓
� 1

2�

2
k�k2

◆

⌦(!) :=

Z
k(�) exp

�
� !T

�

�
d� / exp

✓
��2

2

k�k2
◆

!i ⇠ ⌦



Random	Fourier	Features	
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DVar s̃ (Δ)

DVar s̆(Δ)

k(Δ)
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The	L∞	error	is	also	/ghter,	in	bounds	and	empirically.	

!i ⇠ ⌦



Contribu/ons	
•  Learning	on	distribu/ons	with	nonparametric	kernels	
	

•  Scalable	approximate	kernel	embeddings	
–  Random	Fourier	features	analysis	
– New	embeddings	for	distribu/on	kernels	

	

•  Flexible	distribu/on	kernels	
– Deep	mean	maps	in	computer	vision	
–  MMD	kernel	learning	for	tes/ng	

	

•  Ac/ve	poin/llis/c	pa?ern	search	

26	



Mean	embeddings	of	distribu/ons	

The	mean	embedding	of	a	distribu/on	in	an	RKHS:	

27	

µP = E
x⇠P['(x)] Remember		h'(x),'(y)i = k(x, y),	

so	we	can	think	of										as												.	'(x)
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The	mean	embedding	of	a	distribu/on	in	an	RKHS:	
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Mean	embeddings	of	distribu/ons	

The	mean	embedding	of	a	distribu/on	in	an	RKHS:	
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Mean	embeddings	of	distribu/ons	

The	mean	embedding	of	a	distribu/on	in	an	RKHS:	
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Mean	embeddings	of	distribu/ons	

The	mean	embedding	of	a	distribu/on	in	an	RKHS:	
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µP = E
x⇠P['(x)]
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Remember		h'(x),'(y)i = k(x, y),	
so	we	can	think	of										as												.	'(x)

k(·, x)



=hµP, µPi+hµQ, µQi�2hµP, µQi

= hEX⇠P ['(X)],EY⇠Q['(Y )]i

Maximum	Mean	Discrepancy	(MMD)	
The	MMD	is	the	distance	between	mean	embeddings:	

32	

mmd2(P,Q) = kµP � µQk2H

= EX⇠P
Y⇠Q

[h'(X),'(Y )i]

= EX⇠P
Y⇠Q

[k(X,Y )]

hµP, µQi

Es/mator:		hµ̂P, µ̂Qi = 1
mn

X

ij

k(Xi, Yj)

µP = EX⇠P['(X)]
����� �

�����

2

H



Embedding	MMD	

33	

hµ̂P, µ̂Qi = 1
mn

X

ij

k(Xi, Yj)

⇡ 1
mn

X

ij

z(Xi)
Tz(Yj)

= z̄(X)Tz̄(Y )

=
h

1
m

X

i

z(Xi)
iTh

1
n

X

j

z(Yj)
i

1
n= 1

m
T

⇥= 1
m

T
⇣ ⌘

1
n

=
⇣

1
m

⌘T⇣
1
n

⌘

= T

[mmd(X,Y ) = kµ̂P � µ̂QkH

=
�� � k[mmdz(X,Y ) = kz̄(X)� z̄(Y )k

⇡ z(z̄(X))Tz(z̄(Y ))exp

✓
� 1

2�2
[mmdz(X,Y )

◆



Embedding	L2	

34	

Oliva,	Neiswanger,	Póczos,	Schneider,	Xing	(AISTATS	2014)	
gave	an	embedding	for		

based	on	projec/on	coefficients	onto	an	orthonormal	
basis	for	L2.	

K(p̂, q̂) = exp

✓
� 1

2�2
kp̂� q̂k2L2

◆



Embedding	HDDs	

35	

⇢

2(p, q) =

Z

X
(p(x), q(x)) dx Homogeneous	Density	Distances	

𝜌2	can	be:	
•  Jensen-Shannon	
•  Total	Varia/on	
•  Squared	Hellinger	



Algorithm:	HDD	Embedding	

36	

1.  Approximately	embed	ρ	into	L2	
•  by	embedding	𝜘	into	L2	(Fuglede	2005).	

	
	

2.  Approximately	embed	L2	into	Rm.	

	
	
3.  Use	random	Fourier	features	to	embed	K	on	Rm	into	RD.	

⇢

2(p, q) =

Z

X
(p(x), q(x)) dx

⇢(p, q) ⇡ k (p)�  (q)kL2M
2

k (p)�  (q)kL2M
2

⇡ kA(p)�A(q)kR2M|V |

exp

�
� 1

2�2 ⇢
2
(p, q)

�
⇡ z(A(p))Tz(A(q))

ρ	on	distribu/ons	≈	L2	distance	on	random	𝜓	func/ons	

L2	distance	on	random	𝜓	func/ons	≈	Euclidean	distance	on	A	vectors	

RBF	kernel	with	𝜌	≈	random	Fourier	features	of	A	vectors	

Homogeneous	Density	Distances	



HDD	es/mator	convergence	
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The	embedding	is	an	es/mator	for	the	kernel.		

Pr
⇣���K(p, q)� z(Â(p̂))Tz(Â(q̂))

��� � "
⌘

For	fixed	p	and	q,	we	have	a	finite-sample	bound	on	

which	behaves	as	expected:	
•  Lower	for	smoother,	lower-dimensional	densi/es	
•  Lower	for	more	samples	
•  More	projec/on	coefficients	/	samples	from	μ:	
•  be?er	approxima/on,	harder	integra/on	



Applica/on:	Gaussian	Mixtures	

38	

AIC:	2.7	
BIC:	3.8	
Mean:	2.8	

Train	with	4K,	8K,	16K	
distribu/ons;	test	on	2K.	
200	iid	points	each.	
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Applica/on:	Nuclear	Threat	Detec/on	

39	

Rapiscan	MP100	

Small	sensors	and	clu?ered	environments	make	lots	of	
challenges	for	tradi/onal	detec/on	algorithms.	



Applica/on:	Nuclear	Threat	Detec/on	

40	



Applica/on:	Scene	Classifica/on	

41	Scene-15	dataset	(4	485	images)	



Applica/on:	Scene	Classifica/on	

42	
Davi	Frossard’s	blog	

Features	from	a	deep	convnet	(16	layers):	

Local	features	here	for	
overlapping	patches	of	

input	image	



Applica/on:	Scene	Classifica/on	

43	Using	A(p)	features	
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•  Scalable	approximate	kernel	embeddings	
–  Random	Fourier	features	analysis	
– New	embeddings	for	distribu/on	kernels	
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Deep	distribu/on	kernel	learning	

45	

We	can	put	distribu/on	embeddings	in	a	deep	network:	

x1

x2

xm

...

f(x1)

f(x2)

f(xm)

...
ŷzconvolu/onal	

layers	
distribu/on	
embedding	

regression	
layers	

Ini/al	results	for	scene	classifica/on:	small	but	consistent	
improvement.	

1.  Convolve	with	frequencies	
2.  Sine/cosines	
3.  Global	pooling	 Fixed	frequencies	

Learn	scale	
Learn	frequencies	
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Two-sample	tes/ng	

47	

Applica/ons:	
•  Neuroscience:	do	these	areas	of	the	brain	behave	
differently	under	different	condi/ons?	

•  Schema	alignment:	do	these	two	database	columns	
mean	the	same	thing?	

•  Many	more…	

Observed	samples:	 X ⇠ P Y ⇠ Q

Hypothesis	test	on	unobserved	distribu/ons:	 P ?
= Q



Two-sample	tes/ng	

Test	with	MMD:	

48	

Test:	reject	if																																							.		m [mmd2
(P,Q) > c↵

X ⇠ P = N (0, 1) Y ⇠ Q = Laplace
⇣
0, 1p

2

⌘−3 −2 −1 0 1 2 3
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Permuta/on	tes/ng	

49	

When											,	MMD	is	asympto/cally	gross,	so	hard	to	
find	a	threshold	c𝛼	that	way.	

P = Q

Use	a	permuta/on	test:	

X = {x1, x2, . . . , xm} Y = {y1, y2, . . . , ym}

:	(1-𝛼)th	quan/le	of		m[mmd2
(X(i), Y (i))ĉ↵

Split	randomly	to	es/mate	MMD	when												:	P = Q
X Y

m[mmd2
(X(1), Y (1)) m[mmd2

(X(2), Y (2))



The	kernel	ma?ers!	
Witness	func(on	f	helps	compare	samples:	

50	

mmd(P,Q) = EX⇠P f(X)� EY⇠Q f(Y )

f(x) = EX⇠P k(x,X)� EY⇠Q k(x, Y )

−4 −3 −2 −1 0 1 2 3 4

σ=0. 75; p=0. 0;



The	kernel	ma?ers!	
Witness	func(on	f	helps	compare	samples:	

51	

mmd(P,Q) = EX⇠P f(X)� EY⇠Q f(Y )

f(x) = EX⇠P k(x,X)� EY⇠Q k(x, Y )

−4 −3 −2 −1 0 1 2 3 4

σ=0. 75; p=0. 0;

σ=2; p=0. ;3



The	kernel	ma?ers!	
Witness	func(on	f	helps	compare	samples:	

52	

mmd(P,Q) = EX⇠P f(X)� EY⇠Q f(Y )

f(x) = EX⇠P k(x,X)� EY⇠Q k(x, Y )

−4 −3 −2 −1 0 1 2 3 4

σ=0. 75; p=0. 0;

σ=1; p=0. ;3

σ=0. 1; p=0. 16



Choosing	a	kernel	

So	we	need	a	way	to	pick	a	kernel	to	do	the	test.	

53	

X Y

MMD	with	fixed	k	

Before:	



YX

Choosing	a	kernel	

So	we	need	a	way	to	pick	a	kernel	to	do	the	test.	
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Split	data:	

Choose	a	kernel	k	

Chosen	k	in	MMD	test	

How	to	pick	k?	

But	we	want	the	(asympto/cally)	most	powerful	test.	

Typically:	maximize	MMD.	



Asympto/c	power	of	MMD	
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When											,	MMD	is	asympto/cally	normal:	

and	we	can	analyze	the	power:	
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MMD	t-sta/s/c	
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So	we	can	maximize	the	power	by	maximizing	

But	Vm	is	O(1/m),	so	the	first	term	dominates	for	large	
m,	and	we	should	be	able	to	get	away	with	maximizing	
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t-sta/s/c	es/mator	
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\mmd2 :=
1�m
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t-sta/s/c	es/mator	
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t-sta/s/c	es/mator	
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Can	even	get	gradients	of	tU	and	(with	some	more	
effort)	𝜏U,	to	help	maximize	it.	

(automa/c	differen/a/on	is	your	friend)	



Kernel	choice	on	Blobs	
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Blobs	dataset:	

vs	

Mixture	of	 N
✓
µij ,


1 "�1

"+1
"�1
"+1 1

�◆
N

✓
µij ,


1 0
0 1

�◆
Mixture	of	

When	𝜀=1,	P	=	Q;	this	picture	has	𝜀=6.	



Kernel	choice	on	Blobs	

61	m	=	500	



...

y1
y2

ym

Deep	Kernels	

Map	through	layers	of	a	deep	network:	
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x1

x2

xm

...

f(x1)

f(x2)

f(xm)

...
convolu/onal	

layers	

...
convolu/onal	

layers	

ˆtU or ⌧̂U

f(ym)

f(y2)

f(y1)



Genera/ve	Models	

Genera/ve	adversarial	networks:	
•  Generator	comes	up	with	samples;	trained	to	trick	
the	adversary.	

•  Adversary	tries	to	dis/nguish	between	generator	
sample	and	true	data;	trained	to	beat	the	generator.	
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Generator	

vs	

Generated	 Real	

But	adversary	is	really	
just	a	two-sample	test.	

Kernel	learning	helps	
prevent	the	generator’s	
tricks.	

Adversary	



Contribu/ons	
•  Learning	on	distribu/ons	with	nonparametric	kernels	
	

•  Scalable	approximate	kernel	embeddings	
–  Random	Fourier	features	analysis	
– New	embeddings	for	distribu/on	kernels	

	

•  Flexible	distribu/on	kernels	
– Deep	mean	maps	in	computer	vision	
–  MMD	kernel	learning	for	tes/ng	

	

•  Ac/ve	poin/llis/c	pa?ern	search	
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Ac/ve	Poin/llis/c	Pa?ern	Search	
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template	 observa/ons	posterior	draws	
X	 ✓	 ✓	

Ma*,	Sutherland*,	Garne?,	Schneider,	AISTATS	2015.	(*:	equal	contribu/on)	

Search	for	region	paMerns	
with	point	observa(ons.	
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Ma*,	Sutherland*,	Garne?,	Schneider,	AISTATS	2015.	(*:	equal	contribu/on)	
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Active Pointillistic Pattern Search

(a) data in one run and true matching regions (black) (b) APPS collected data and posterior region probability

Figure 2: Illustration of dataset and APPS selections for one run. A point marks the location of a measurement whose value
is also reflected in its color. Every grid box is a region whose possibility of matching is reflected on gray-scale.

Figure 3: Recall curves for pond monitoring experiment.
Color bands show standard errors after 15 runs.

collecting data in a region if there is enough confidence, but
does not specifically try to push regions over the threshold,
and so its performance on this objective is inferior.

Last in the comparison are RAND and UNC. It is interest-
ing to observe that RAND was initially better than, but later
crossed by UNC. In the beginning, since UNC is purely
explorative, its reward uniformly remained low across mul-
tiple runs, whereas in some runs RAND queries can be lucky
enough to concentrate around matching regions. At a later
phase, RAND faces the coupon collector’s problem and may
select redundant boring observations, when UNC keeps mak-
ing progress at a constant rate.

Figure 2(b) illustrates the selection locations for our APPS
method. This plot shows that our APPS method can obtain
reasonable data to both explore the available space and gain
enough information around the matching regions.

4.2 Predicting Election Results (Linear Classifier)

Consider the problem of a state-level political party official
who wishes to determine which races will be won, lost, or
might go either way. As surveying likely voters is relatively
expensive, we would like to do so with as few surveys as
possible.

In a simple model of this problem, the problem of finding
races which will be won is a natural fit to a classifier of the
form h

g

(f) = �

�
w

T
f(⌅

g

) + b

g

�
. Our function f maps

from the voting precincts in the state to the vote share of a
given party in that district, with a covariance kernel defined
by demographic similarity and geographic proximity. To
account for multiple races taking place in each district (e.g.,
state and national legislators), we duplicate each precinct
with a flag for the type of election. If g is the set of all
precincts participating in a particular race and w

g

is some
constant c times the voting population of each precinct, then
w

T
f(⌅

g

) gives c times the total vote portion for the given
party in that election. In a simple model which ignores
turnout effects, the probability of winning a race is essen-
tially 1 if the underlying proportion is greater than 0.5 and
0 otherwise; this can be accomplished by setting c to some
fairly large constant, say 100, and b = � 1

2c. (An equally
simple model that nonetheless more thoroughly accounts
for unmodeled effects would just use a smaller value of c.)

We ran experiments based on this model on 2010 Pennsyl-
vania election returns [1]. For each voting precinct in the
dataset, we used the 2010 Decennial Census [18] to obtain
a total population count and percentages of the population
for gender, race, age, and housing type categories; we also
added an (x, y) location based on a Lambert conformal
conic projection of point in the precinct, and used these
features in a squared-exponential kernel. The data for each
precinct was then replicated three times and associated with
Democratic vote shares for its U.S. House of Representa-
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Color bands show standard errors after 15 runs.
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does not specifically try to push regions over the threshold,
and so its performance on this objective is inferior.
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ing to observe that RAND was initially better than, but later
crossed by UNC. In the beginning, since UNC is purely
explorative, its reward uniformly remained low across mul-
tiple runs, whereas in some runs RAND queries can be lucky
enough to concentrate around matching regions. At a later
phase, RAND faces the coupon collector’s problem and may
select redundant boring observations, when UNC keeps mak-
ing progress at a constant rate.

Figure 2(b) illustrates the selection locations for our APPS
method. This plot shows that our APPS method can obtain
reasonable data to both explore the available space and gain
enough information around the matching regions.

4.2 Predicting Election Results (Linear Classifier)

Consider the problem of a state-level political party official
who wishes to determine which races will be won, lost, or
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tially 1 if the underlying proportion is greater than 0.5 and
0 otherwise; this can be accomplished by setting c to some
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simple model that nonetheless more thoroughly accounts
for unmodeled effects would just use a smaller value of c.)

We ran experiments based on this model on 2010 Pennsyl-
vania election returns [1]. For each voting precinct in the
dataset, we used the 2010 Decennial Census [18] to obtain
a total population count and percentages of the population
for gender, race, age, and housing type categories; we also
added an (x, y) location based on a Lambert conformal
conic projection of point in the precinct, and used these
features in a squared-exponential kernel. The data for each
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Ma*,	Sutherland*,	Garne?,	Schneider,	AISTATS	2015.	(*:	equal	contribu/on)	
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Take-Home	Messages	
•  Think	about	how	you	model	your	data.	
•  Distribu/ons	and	sets	can	work	pre?y	well.	
–  Cosmology,	nuclear	threat	detec/on,	scene	classifica/on,	
parametric	sta/s/cal	inference,	polling,	autonomous	
sensing…	
	

•  Random	embeddings	can	help	with	scalability...	
–  if	you	use	random	Fourier	features,	use	the	right	one	

•  ...and	with	flexibility	
–  Plug	the	MMD	embedding	into	deep	learning	and	go	crazy	
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Things	S/ll	to	Do	

•  Deep	kernel	learning	
– Different	parameteriza/ons	of	kernels	

•  More	applica/ons!	
– Word	and	document	embeddings	
–  Kernel-learning	two-sample	test	as	adversary	in	a	GAN	

•  Ac/ve	learning	on	distribu/ons	
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Thanks!	
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Rahul	De	 Ben	
Johnson	



Contribu/ons	
•  Learning	on	distribu/ons	with	nonparametric	kernels	
	

•  Scalable	approximate	kernel	embeddings	
–  Random	Fourier	features	analysis	
– New	embeddings	for	distribu/on	kernels	

	

•  Flexible	distribu/on	kernels	
– Deep	mean	maps	in	computer	vision	
–  MMD	kernel	learning	for	tes/ng	

	

•  Ac/ve	poin/llis/c	pa?ern	search	
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