Scalable, Flexible and Active Learning on Distributions

Dougal J. Sutherland

Thesis Committee:
Jeff Schneider (Chair)
Nina Balcan
Barnabás Póczos
Arthur Gretton (UCL)

Learning on Distributions

?

Learning on Distributions

...based on sample sets.

Learning on Distributions

observed sample

Ntampaka et al. (ApJ 2015, 2016)

Jin et al. (NSS 2016)

Flaxman et al. (KDD 2015)
label
9 components
"seaside city"

Mass $7 \times 10^{14} \mathrm{M}_{\odot}$ and more...
no Cs137 present
county voted
54\% for Obama

Contributions

- Learning on distributions with nonparametric kernels
- Scalable approximate kernel embeddings
- Random Fourier features analysis
- New embeddings for distribution kernels
- Flexible distribution kernels
- Deep mean maps in computer vision
- MMD kernel learning for testing
- Active pointillistic pattern search

Kernel Methods

Linear models...
...in Hilbert space.

Kernel Methods

Can use a kernel on any domain.

$$
\begin{aligned}
f(x) & =\langle w, \phi(x)\rangle_{\mathcal{H}}+b \\
& =\sum_{i=1}^{n} \alpha_{i} y_{i} k\left(x_{i}, x\right)+b
\end{aligned}
$$

Linear models...in Hilbert space.

Kernels on Distributions

We'll use a kernel on distributions based on a distance ρ :

$$
K(\mathbb{P}, \mathbb{Q})=\exp \left(-\frac{1}{2 \sigma^{2}} \rho^{2}(\mathbb{P}, \mathbb{Q})\right)
$$

The popular Gaussian RBF kernel has this form, with ρ the Euclidean distance between vectors.

A valid kernel as long as ρ is Hilbertian.

Distances on Distributions

Distances on Distributions

$$
\operatorname{Tv}(\mathbb{P}, \mathbb{Q})=\int \frac{1}{2}|p(x)-q(x)| \mathrm{d} x
$$

Distances on Distributions

Total Variation

L_{2}

$$
\operatorname{Tv}(p, q)=\int \frac{1}{2}|p(x)-q(x)| \mathrm{d} x
$$

$$
L_{2}^{2}(p, q)=\int(p(x)-q(x))^{2} \mathrm{~d} x
$$

Hellinger

$$
\mathrm{H}^{2}(p, q)=\int \frac{1}{2}(\sqrt{p(x)}-\sqrt{q(x)})^{2} \mathrm{~d} x
$$

Kullback-Leibler
Rényi- α

$$
\mathrm{KL}(p \| q)=\int p(x) \log \frac{p(x)}{q(x)} \mathrm{d} x
$$

$$
\mathrm{R}_{\alpha}(p \| q)=\frac{1}{\alpha-1} \int p(x)^{\alpha} q(x)^{1-\alpha} \mathrm{d} x
$$

$$
\mathrm{JS}(p, q)=\frac{1}{2} \mathrm{KL}\left(p \| \frac{p+q}{2}\right)+\frac{1}{2} \mathrm{KL}\left(q \| \frac{p+q}{2}\right)
$$

Maximum Mean Discrepancy

$$
\operatorname{MMD}_{k}(\mathbb{P}, \mathbb{Q})=\sup _{f \in \mathcal{H}_{k}} \mathbb{E}_{X \sim \mathbb{P}} f(X)-\mathbb{E}_{Y \sim \mathbb{Q}}^{11} f_{11}(Y)
$$

Estimators of Distributional Distances

- Fit a parametric model and compute distances.
- Some distances have closed form for some models.
- Model introduces approximation error

$$
L_{2}\left(\mathcal{N}(\mu, \Sigma), \mathcal{N}\left(\mu^{\prime}, \Sigma^{\prime}\right)\right)=\frac{1}{|4 \pi \Sigma|^{\frac{1}{2}}}+\frac{1}{\left|4 \pi \Sigma^{\prime}\right|^{\frac{1}{2}}}-2 \frac{\exp \left(-\frac{1}{2}\left(\mu-\mu^{\prime}\right)^{T}\left(\Sigma+\Sigma^{\prime}\right)^{-1}\left(\mu-\mu^{\prime}\right)\right)}{\left|2 \pi\left(\Sigma+\Sigma^{\prime}\right)\right|^{\frac{1}{2}}}
$$

Jebara et al. 2004; Moreno et al. 2004

Estimators of Distributional Distances

- Fit a nonparametric model and compute distances.
- Histograms
- Kernel density estimation
- k-nearest neighbor density estimation
- Basis function projections
- Empirical distribution (for MMD)

Algorithm: Learning on Distributions

Given sample sets $X_{i} \sim \mathbb{P}_{i}$, a distance ρ, and a b.w. σ :

1. Estimate $\hat{\rho}\left(X_{i}, X_{j}\right)$ for all i, j nonparametrically.
2. Assemble into a kernel matrix

$$
K_{i j}=\exp \left(-\frac{1}{2 \sigma^{2}} \hat{\rho}\left(X_{i}, X_{j}\right)\right)
$$

3. Run an SVM / GP / ridge regression / ... with K.

Application: Galaxy Cluster Mass

Galaxy clusters are fundamental in the study the universe. Their properties can tell us a lot about cosmology.

But they're mostly dark matter; measuring their mass is hard.
$\log M=14.13$

Coma cluster, NASA
$\log M=15.40$

Application: Galaxy Cluster Mass

Fritz Zwicky (1933): Under reasonable assumptions, the velocity dispersion has power-law relationship to total mass.

Not so great...

- Assumptions violated
- Which galaxies are in cluster?

$$
\log M=14.13
$$

$\log M=14.63$

$\log M=14.88$

$\log M=15.40$
$\log M=15.12$

16

Application: Galaxy Cluster Mass

Alternative approach: consider each cluster as a distribution of galaxy features, and regress from these distributions to total mass.

$\log M=14.13$

$\log M=14.38$

$\log M=14.63$

$\log M=14.88$

$\log M=15.12$

$\log M=15.40$

Cluster Mass: Known Membership

Cluster Mass: With Interlopers

Contributions

- Learning on distributions with nonparametric kernels
- Scalable approximate kernel embeddings
- Random Fourier features analysis
- New embeddings for distribution kernels
- Flexible distribution kernels
- Deep mean maps in computer vision
- MMD kernel learning for testing
- Active pointillistic pattern search

Scalability

These methods need an $n \times n$ Gram matrix:

$$
\mathbf{K}=\left[\begin{array}{cccc}
K\left(x_{1}, x_{1}\right) & K\left(x_{1}, x_{2}\right) & \ldots & K\left(x_{1}, x_{n}\right) \\
K\left(x_{2}, x_{1}\right) & K\left(x_{2}, x_{2}\right) & \ldots & K\left(x_{2}, x_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
K\left(x_{n}, x_{1}\right) & K\left(x_{n}, x_{2}\right) & \ldots & K\left(x_{n}, x_{n}\right)
\end{array}\right]
$$

The matrix is n^{2}; operations can be as slow as $\mathrm{O}\left(n^{3}\right)$.

Linear-kernel models usually scale like $O(n)$.

Approximate Embeddings

Traditional kernel methods:

$\left\{x_{i}\right\} \quad\left\{\varphi\left(x_{i}\right)\right\} \subset \mathcal{H}$
$\left\langle\varphi\left(x_{i}\right), \varphi\left(x_{j}\right)\right\rangle_{\mathcal{H}}=k\left(x_{i}, y_{j}\right)$
$f(x)=\langle w, \varphi(x)\rangle+b=\sum^{n} \alpha_{i} y_{i} k\left(x_{i}, x\right)+b$

$\left\{x_{i}\right\} \quad\left\{z\left(x_{i}\right)\right\} \subset \mathbb{R}^{D}$
$z\left(x_{i}\right)^{T} z\left(x_{j}\right)$
$f(x)=w^{T} z(x)+b$

Random Fourier Features

Rahimi and Recht (2007) developed random Fourier features, a.k.a. "random kitchen sinks":

$$
\begin{aligned}
k(x, y) & =\underline{k}(\overbrace{\Delta}^{x-y})=\exp \left(-\frac{1}{2 \sigma^{2}}\|\Delta\|^{2}\right) \\
& =\langle\varphi(x), \varphi(y)\rangle_{\mathcal{H}} \quad(\operatorname{dim} \mathcal{H}=\infty) \\
& \approx z(x)^{\top} z(y) \quad\left(z: \mathbb{R}^{d} \rightarrow \mathbb{R}^{D}\right)
\end{aligned}
$$

Random Fourier Features

Rahimi and Recht (2007) developed random Fourier features, a.k.a. "random kitchen sinks":

$$
\begin{aligned}
& k(x, y)=\underline{k}(\overbrace{\Delta}^{x-y})=\exp \left(-\frac{1}{2 \sigma^{2}}\|\Delta\|^{2}\right) \approx z(x)^{\top} z(y) \\
& \Omega(\omega):=\int \underline{k}(\Delta) \exp \left(-\dot{\mathrm{i}} \omega^{\top} \Delta\right) \mathrm{d} \Delta \propto \exp \left(-\frac{\sigma^{2}}{2}\|\Delta\|^{2}\right)
\end{aligned}
$$

Bochner's theorem: Ω is a (scaled) probability distribution. $\omega_{i} \sim \Omega$
$\tilde{z}(x)=\sqrt{\frac{2}{D}}\left[\begin{array}{lllll}\sin \left(\omega_{1}^{\top} x\right) & \cos \left(\omega_{1}^{\top} x\right) & \ldots & \sin \left(\omega_{D / 2}^{\top} x\right) & \cos \left(\omega_{D / 2}^{\top} x\right)\end{array}\right]^{\top}$ $\breve{z}(x)=\sqrt{\frac{2}{D}}\left[\begin{array}{lll}\cos \left(\omega_{1}^{\top} x+b_{1}\right) & \ldots & \cos \left(\omega_{D}^{\top} x+b_{D}\right)\end{array}\right]^{\top} b_{i} \sim \operatorname{Unif}(0,2 \pi)$

Random Fourier Features

$\tilde{z}(x)=\sqrt{\frac{2}{D}}\left[\begin{array}{lllll}\sin \left(\omega_{1}^{\top} x\right) & \cos \left(\omega_{1}^{\top} x\right) & \ldots & \sin \left(\omega_{D / 2}^{\top} x\right) & \cos \left(\omega_{D / 2}^{\top} x\right)\end{array}\right]^{\top}$
$\breve{z}(x)=\sqrt{\frac{2}{D}}\left[\begin{array}{lll}\cos \left(\omega_{1}^{\top} x+b_{1}\right) & \ldots & \cos \left(\omega_{D}^{\top} x+b_{D}\right)\end{array}\right]^{\top} b_{i} \sim \operatorname{Unif}(0,2 \pi)$
The L_{∞} error is also tighter, in bounds and empirically.

Contributions

- Learning on distributions with nonparametric kernels
- Scalable approximate kernel embeddings
- Random Fourier features analysis
- New embeddings for distribution kernels
- Flexible distribution kernels
- Deep mean maps in computer vision
- MMD kernel learning for testing
- Active pointillistic pattern search

Mean embeddings of distributions

The mean embedding of a distribution in an RкнS:

$$
\mu_{\mathbb{P}}=\mathbb{E}_{x \sim \mathbb{P}}[\varphi(x)]
$$

Remember $\langle\varphi(x), \varphi(y)\rangle=k(x, y)$, so we can think of $\varphi(x)$ as $k(x, \cdot)$.

Mean embeddings of distributions

The mean embedding of a distribution in an RкнS:

$$
\mu_{\mathbb{P}}=\mathbb{E}_{x \sim \mathbb{P}}[\varphi(x)]
$$

Remember $\langle\varphi(x), \varphi(y)\rangle=k(x, y)$, so we can think of $\varphi(x)$ as $k(x, \cdot)$.

Mean embeddings of distributions

The mean embedding of a distribution in an RKHS:

$$
\mu_{\mathbb{P}}=\mathbb{E}_{x \sim \mathbb{P}}[\varphi(x)]
$$

Remember $\langle\varphi(x), \varphi(y)\rangle=k(x, y)$, so we can think of $\varphi(x)$ as $k(x, \cdot)$.

Mean embeddings of distributions

The mean embedding of a distribution in an RкнS:

$$
\mu_{\mathbb{P}}=\mathbb{E}_{x \sim \mathbb{P}}[\varphi(x)]
$$

Remember $\langle\varphi(x), \varphi(y)\rangle=k(x, y)$, so we can think of $\varphi(x)$ as $k(x, \cdot)$.

Mean embeddings of distributions

The mean embedding of a distribution in an RкнS:

$$
\mu_{\mathbb{P}}=\mathbb{E}_{x \sim \mathbb{P}}[\varphi(x)]
$$

Remember $\langle\varphi(x), \varphi(y)\rangle=k(x, y)$, so we can think of $\varphi(x)$ as $k(\cdot, x)$.

Maximum Mean Discrepancy (MMD)

The MMD is the distance between mean embeddings:

$$
\begin{aligned}
& \mu_{\mathbb{P}}=\mathbb{E}_{X \sim \mathbb{P}} {[\varphi(X)] } \\
& \operatorname{MMD}^{2}(\mathbb{P}, \mathbb{Q})=\left\|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\right\|_{\mathcal{H}}^{2} \\
&=\left\langle\mu_{\mathbb{P}}, \mu_{\mathbb{P}}\right\rangle+\left\langle\mu_{\mathbb{Q}}, \mu_{\mathbb{Q}}\right\rangle-2\left\langle\mu_{\mathbb{P}}, \mu_{\mathbb{Q}}\right\rangle \\
&\left\langle\mu_{\mathbb{P}}, \mu_{\mathbb{Q}}\right\rangle=\left\langle\mathbb{E}_{X \sim P}[\varphi(X)], \mathbb{E}_{Y \sim Q}[\varphi(Y)]\right\rangle \\
&= \mathbb{E}_{Y \sim P}[\langle\varphi(X), \varphi(Y)\rangle] \\
&= \mathbb{E}_{Y \sim Q} \\
& Y \sim Q \\
&
\end{aligned}
$$

Embedding MMD

$\widehat{\operatorname{MMD}}(X, Y)=\left\|\hat{\mu}_{\mathbb{P}}-\hat{\mu}_{\mathbb{Q}}\right\|_{\mathcal{H}}$ $\left\langle\hat{\mu}_{\mathbb{P}}, \hat{\mu}_{\mathbb{Q}}\right\rangle=\frac{1}{m n} \sum_{i j} k\left(X_{i}, Y_{j}\right)$

$$
=\frac{1}{m} \mathbb{1}^{\top} \square \frac{1}{n} \mathbb{1}
$$

$$
\approx \frac{1}{m n} \sum_{i j} z\left(X_{i}\right)^{\top} z\left(Y_{j}\right) \quad=\frac{1}{m} \mathbb{1}^{\top}(\times \times) \frac{1}{n} \mathbb{1}
$$

$$
=\left[\frac{1}{m} \sum_{i}^{i j} z\left(X_{i}\right)\right]^{\top}\left[\frac{1}{n} \sum_{j} z\left(Y_{j}\right)\right]=\left(\frac{1}{m} \mathbb{1}\right)^{\top}\left(\frac{1}{n} \mathbb{1}\right)
$$

$$
=\bar{z}(X)^{\top} \bar{z}(Y)
$$

$$
=]^{\top}
$$

$\widehat{\mathrm{MMD}}_{z}(X, Y)=\|\bar{z}(X)-\bar{z}(Y)\|$
$=\|--m$

$$
\exp \left(-\frac{1}{2 \sigma^{2}} \widehat{\operatorname{MMD}}_{z}(X, Y)\right) \approx z(\bar{z}(X))^{\top} z(\bar{z}(Y))
$$

Embedding L_{2}

Oliva, Neiswanger, Póczos, Schneider, Xing (AISTATS 2014) gave an embedding for

$$
K(\hat{p}, \hat{q})=\exp \left(-\frac{1}{2 \sigma^{2}}\|\hat{p}-\hat{q}\|_{L_{2}}^{2}\right)
$$

based on projection coefficients onto an orthonormal basis for L_{2}.

Embedding HDDS

$\rho^{2}(p, q)=\int_{\mathcal{X}} \kappa(p(x), q(x)) \mathrm{d} x \quad$ Homogeneous Density Distances
ρ^{2} can be:

- Jensen-Shannon
- Total Variation
- Squared Hellinger

Algorithm: HDD Embedding

$\rho^{2}(p, q)=\int_{\mathcal{X}} \kappa(p(x), q(x)) \mathrm{d} x \quad$ Homogeneous Density Distances

1. Approximately embed ρ into L_{2}

- by embedding $\mathcal{\psi}$ into L_{2} (Fuglede 2005).
$\rho(p, q) \approx\|\psi(p)-\psi(q)\|_{L_{2}^{2 M}}$
ρ on distributions $\approx L_{2}$ distance on random ψ functions

2. Approximately embed L_{2} into \mathbf{R}^{m}.
$\|\psi(p)-\psi(q)\|_{L_{2}^{2 M}} \approx\|A(p)-A(q)\|_{\mathbb{R}^{2 M|V|}}$
L_{2} distance on random ψ functions \approx Euclidean distance on A vectors
3. Use random Fourier features to embed K on \mathbf{R}^{m} into \mathbf{R}^{D}. $\exp \left(-\frac{1}{2 \sigma^{2}} \rho^{2}(p, q)\right) \approx z(A(p))^{\top} z(A(q))$
RBF kernel with $\rho \approx$ random Fourier features of A vectors

HDD estimator convergence

The embedding is an estimator for the kernel.
For fixed p and q, we have a finite-sample bound on

$$
\operatorname{Pr}\left(\left|K(p, q)-z(\hat{A}(\hat{p}))^{\top} z(\hat{A}(\hat{q}))\right| \geq \varepsilon\right)
$$

which behaves as expected:

- Lower for smoother, lower-dimensional densities
- Lower for more samples
- More projection coefficients / samples from μ :
- better approximation, harder integration

Application: Gaussian Mixtures

Underlying density
Observed sample

Regression

Prediction

Train with $4 \mathrm{~K}, 8 \mathrm{~K}, 16 \mathrm{~K}$ distributions; test on 2 K . 200 iid points each.

AIC: 2.7
BIC: 3.8
Mean: 2.8

Application: Nuclear Threat Detection

Small sensors and cluttered environments make lots of challenges for traditional detection algorithms.

Application: Nuclear Threat Detection

Application: Scene Classification

Scene-15 dataset (4 485 images)

Application: Scene Classification

Features from a deep convnet (16 layers):

Application: Scene Classification

Using $A(p)$ features

Contributions

- Learning on distributions with nonparametric kernels
- Scalable approximate kernel embeddings
- Random Fourier features analysis
- New embeddings for distribution kernels
- Flexible distribution kernels
- Deep mean maps in computer vision
- MMD kernel learning for testing
- Active pointillistic pattern search

Deep distribution kernel learning

We can put distribution embeddings in a deep network:

Initial results for scene classification: small but consistent improvement.

Contributions

- Learning on distributions with nonparametric kernels
- Scalable approximate kernel embeddings
- Random Fourier features analysis
- New embeddings for distribution kernels
- Flexible distribution kernels
- Deep mean maps in computer vision
- MMD kernel learning for testing
- Active pointillistic pattern search

Two-sample testing

Observed samples: $\quad X \sim \mathbb{P} \quad Y \sim \mathbb{Q}$

Hypothesis test on unobserved distributions: $\mathbb{P} \stackrel{?}{=} \mathbb{Q}$

Applications:

- Neuroscience: do these areas of the brain behave differently under different conditions?
- Schema alignment: do these two database columns mean the same thing?
- Many more...

Two-sample testing

Test with MMD:

Test: reject if $m \widehat{\mathrm{MMD}}^{2}(\mathbb{P}, \mathbb{Q})>c_{\alpha}$.

Permutation testing

When $\mathbb{P}=\mathbb{Q}, \mathrm{MMD}$ is asymptotically gross, so hard to find a threshold c_{α} that way.

Use a permutation test:

$$
X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \quad Y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}
$$

Split randomly to estimate MMD when $\mathbb{P}=\mathbb{Q}$:

$\hat{c}_{\alpha}:(1-\alpha)$ th quantile of $m \widehat{\mathrm{MMD}}^{2}\left(X^{(i)}, Y^{(i)}\right)$

The kernel matters!

Witness function f helps compare samples:

$$
\begin{gathered}
\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=\mathbb{E}_{X \sim \mathbb{P}} f(X)-\mathbb{E}_{Y \sim \mathbb{Q}} f(Y) \\
f(x)=\mathbb{E}_{X \sim \mathbb{P}} k(x, X)-\mathbb{E}_{Y \sim \mathbb{Q}} k(x, Y)
\end{gathered}
$$

The kernel matters!

Witness function f helps compare samples:

$$
\begin{gathered}
\operatorname{MMD}(\mathbb{P}, \mathbb{Q})=\mathbb{E}_{X \sim \mathbb{P}} f(X)-\mathbb{E}_{Y \sim \mathbb{Q}} f(Y) \\
f(x)=\mathbb{E}_{X \sim \mathbb{P}} k(x, X)-\mathbb{E}_{Y \sim \mathbb{Q}} k(x, Y)
\end{gathered}
$$

The kernel matters!

Witness function f helps compare samples:

$$
\begin{gathered}
\operatorname{MmD}(\mathbb{P}, \mathbb{Q})=\mathbb{E}_{X \sim \mathbb{P}} f(X)-\mathbb{E}_{Y \sim \mathbb{Q}} f(Y) \\
f(x)=\mathbb{E}_{X \sim \mathbb{P}} k(x, X)-\mathbb{E}_{Y \sim \mathbb{Q}} k(x, Y)
\end{gathered}
$$

Choosing a kernel

So we need a way to pick a kernel to do the test.

Before:

Choosing a kernel

So we need a way to pick a kernel to do the test.

Split data:

How to pick k ? Typically: maximize MMD.
But we want the (asymptotically) most powerful test. ${ }^{54}$

Asymptotic power of MMD

When $\mathbb{P} \neq \mathbb{Q}$, MMD is asymptotically normal:

$$
\frac{\widehat{\mathrm{MMD}^{2}}-\mathrm{MMD}^{2}}{\sqrt{V_{m}}} \xrightarrow{D} \mathcal{N}(0,1) \quad V_{m}=\operatorname{Var}_{\underset{Y}{X} \sim P^{m}}\left[\widehat{\mathrm{MMD}^{2}}(X, Y)\right]
$$

and we can analyze the power:

$$
\operatorname{Pr}_{H_{1}}\left(m \widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right)
$$

MMD t-statistic

$$
\operatorname{Pr}_{H_{1}}\left(m \widehat{\mathrm{MMD}}^{2}>\hat{c}_{\alpha}\right) \rightarrow 1-\Phi\left(\frac{c_{\alpha}}{m \sqrt{V_{m}}}-\frac{\mathrm{MMD}^{2}}{\sqrt{V_{m}}}\right)
$$

So we can maximize the power by maximizing

$$
\tau_{U}=\frac{\mathrm{MMD}^{2}}{\sqrt{V_{m}}}-\frac{c_{\alpha}}{m \sqrt{V_{m}}}
$$

$$
\hat{\tau}_{U}=\frac{\widehat{\mathrm{MMD}^{2}}}{\sqrt{\widehat{V}_{m}}}-\frac{\hat{c}_{\alpha}}{m \sqrt{\widehat{V}_{m}}}
$$

But V_{m} is $O(1 / m)$, so the first term dominates for large m, and we should be able to get away with maximizing

$$
t_{U}=\frac{\mathrm{MMD}^{2}}{\sqrt{V_{m}}} \quad \hat{t}_{U}=\frac{\widehat{\mathrm{MMD}^{2}}}{\sqrt{\widehat{V}_{m}}}
$$

t-statistic estimator

$\hat{\tau}_{U}=\frac{\widehat{\mathrm{MMD}^{2}}}{\sqrt{\widehat{V}_{m}}}-\frac{\hat{c}_{\alpha}}{m \sqrt{\widehat{V}_{m}}}$
$\widehat{\mathrm{MMD}^{2}}:=\frac{1}{\binom{m}{2}} \sum_{i \neq j} k\left(X_{i}, X_{j}\right)+k\left(Y_{i}, Y_{j}\right)-k\left(X_{i}, Y_{j}\right)-k\left(X_{j}, Y_{i}\right)$
\hat{c}_{α} is from a permutation test, so the average of a bunch of MMD estimates

t-statistic estimator

$$
\widehat{V}_{m}=\frac{4(m-2)}{m(m-1)} \hat{\zeta}_{1}+\frac{2}{m(m-1)} \hat{\zeta}_{2}
$$

$$
\hat{\zeta}_{1}=\frac{1}{m(m-1)(m-2)}\left(\mathbf{1}^{\top} \tilde{K}_{X X} \tilde{K}_{X X} \mathbf{1}-\left\|\tilde{K}_{X X}\right\|_{F}^{2}\right)-\left(\frac{1}{m(m-1)} \mathbf{1}^{\top} \tilde{K}_{X X} \mathbf{1}\right)^{2}
$$

$$
-\frac{2}{m^{2}(m-1)} \mathbf{1}^{\top} \tilde{K}_{X X} K_{X Y} \mathbf{1}+\frac{2}{m^{3}(m-1)} \mathbf{1}^{\top} \tilde{K}_{X X} \mathbf{1 1}^{\top} K_{X Y} \mathbf{1}
$$

$$
+\frac{1}{m(m-1)(m-2)}\left(\mathbf{1}^{\top} \tilde{K}_{Y Y} \tilde{K}_{Y Y} \mathbf{1}-\left\|\tilde{K}_{Y Y}\right\|_{F}^{2}\right)-\left(\frac{1}{m(m-1)} \mathbf{1}^{\top} \tilde{K}_{Y Y} \mathbf{1}\right)^{2}
$$

$$
-\frac{2}{m^{2}(m-1)} \mathbf{1}^{\top} \tilde{K}_{Y Y} K_{X Y}^{\top} \mathbf{1}+\frac{2}{m^{3}(m-1)} \mathbf{1}^{\top} \tilde{K}_{Y Y} \mathbf{1 1}^{\top} K_{X Y} \mathbf{1}
$$

$$
+\frac{1}{m^{2}(m-1)}\left(\mathbf{1}^{\top} K_{X Y}^{\top} K_{X Y} \mathbf{1}-\left\|K_{X Y}\right\|_{F}^{2}\right)-2\left(\frac{1}{m^{2}} \mathbf{1}^{\top} K_{X Y} \mathbf{1}\right)^{2}
$$

$$
+\frac{1}{m^{2}(m-1)}\left(\mathbf{1}^{\top} K_{X Y} K_{X Y}^{T} \mathbf{1}-\left\|K_{X Y}\right\|_{F}^{2}\right)
$$

$$
\hat{\zeta}_{2}=\frac{1}{m(m-1)}\left\|\tilde{K}_{X X}+\tilde{K}_{Y Y}-\tilde{K}_{X Y}-\tilde{K}_{X Y}^{\top}\right\|_{F}^{2}
$$

t-statistic estimator

Can even get gradients of t_{U} and (with some more effort) τ_{U}, to help maximize it.
(automatic differentiation is your friend)

Kernel choice on Blobs

Blobs dataset:

Mixture of $\mathcal{N}\left(\mu_{i j},\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right)$

Mixture of $\mathcal{N}\left(\mu_{i j},\left[\begin{array}{cc}1 & \frac{\varepsilon-1}{\varepsilon+1} \\ \frac{\varepsilon-1}{\varepsilon+1} & 1\end{array}\right]\right)$
When $\varepsilon=1, P=Q$; this picture has $\varepsilon=6$.

Kernel choice on Blobs

Deep Kernels

Map through layers of a deep network:

Generative Models

Generative adversarial networks:

- Generator comes up with samples; trained to trick the adversary.
- Adversary tries to distinguish between generator sample and true data; trained to beat the generator.

But adversary is really just a two-sample test.

Kernel learning helps prevent the generator's tricks.

Contributions

- Learning on distributions with nonparametric kernels
- Scalable approximate kernel embeddings
- Random Fourier features analysis
- New embeddings for distribution kernels
- Flexible distribution kernels
- Deep mean maps in computer vision
- MMD kernel learning for testing
- Active pointillistic pattern search

Active Pointillistic Pattern Search

Search for region patterns with point observations.

Ma*, Sutherland*, Garnett, Schneider, AISTATS 2015. (*: equal contribution)

Active Pointillistic Pattern Search

Ma*, Sutherland*, Garnett, Schneider, AISTATS 2015. (*: equal contribution)

Active Pointillistic Pattern Search

Active Pointillistic Pattern Search

Ma*, Sutherland*, Garnett, Schneider, AISTATS 2015. (*: equal contribution)

Take-Home Messages

- Think about how you model your data.
- Distributions and sets can work pretty well.
- Cosmology, nuclear threat detection, scene classification, parametric statistical inference, polling, autonomous sensing...
- Random embeddings can help with scalability...
- if you use random Fourier features, use the right one
- ...and with flexibility
- Plug the MMD embedding into deep learning and go crazy

Things Still to Do

- Deep kernel learning
- Different parameterizations of kernels
- More applications!
- Word and document embeddings
- Kernel-learning two-sample test as adversary in a GAN
- Active learning on distributions

Thanks!

Contributions

- Learning on distributions with nonparametric kernels
- Scalable approximate kernel embeddings
- Random Fourier features analysis
- New embeddings for distribution kernels
- Flexible distribution kernels
- Deep mean maps in computer vision
- MMD kernel learning for testing
- Active pointillistic pattern search

