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Learning on Distributions
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We want to learn a distribution classification function.... 2



Learning on Distributions
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...based on sample sets. 3



Learning on Distributions

distribution observed sample label
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Contributions

Learning on distributions with nonparametric kernels

Scalable approximate kernel embeddings
— Random Fourier features analysis
— New embeddings for distribution kernels

Flexible distribution kernels
— Deep mean maps in computer vision
— MMD kernel learning for testing

Active pointillistic pattern search



Linear models...
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Kernel I\/Iethods\ |
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...in Hilbert space. .



Kernel Methods

Can use a kernel
on any domain. f(z) = (w, ¢(x))y +b

= ZO&@ yi k(@i z) + b
i=1

Linear models...in Hilbert space. |



Kernels on Distributions

We'll use a kernel on distributions based on a distance p:

K(P,Q) = exp (—%/ﬂ e, @))

The popular Gaussian RBF kernel has this form, with p the
Euclidean distance between vectors.

A valid kernel as long as p is Hilbertian.



Distances on Distributions
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Distances on Distributions
V(P,Q) = [ Hp(e) - glo)] do

q(x)
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Distances on Distributions

Total Variation ™V (P, q) =/%|p(w)—q(:v)|dw
L Lip0) = [ (o) ~ @) do
Hellinger H*(p, q) = /% (\/@— \/@)2 dx
Kullback-Leibler L(pl) = [ plo)log 2 do
Rényi-a Ra(pllq) = ﬁ p(x)%q(x)' ~* da
Jensen-Shannon 18(p, q) = KL (pH%) + $KL (qHZ%)

Maximum Mean Discrepancy

MMDk(P, Q) = Sup EXN]}D f(X) — EYNQ f(Y)
JeEH



Estimators of Distributional Distances

* Fit a parametric model and compute distances.
— Some distances have closed form for some models.

— Model introduces approximation error

= .
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Jebara et al. 2004; Moreno et al. 2004



Estimators of Distributional Distances

* Fit a nonparametric model and compute distances.
* Histograms
* Kernel density estimation
* k-nearest neighbor density estimation
* Basis function projections
Empirical distribution (for MMD)




Algorithm: Learning on Distributions

Given sample sets X; ~ IP;, a distance p, and a b.w. o
1., Estimate p(X;, X;)for all i, j nonparametrically.

2. Assemble into a kernel matrix
I
K;; = exp <_ﬁp(Xian)> -

3.. Runansvm / Gp/ridge regression / ... with K.



Application: Galaxy Cluster Mass

Galaxy clusters are fundamental in the study the universe.
Their properties can tell us a lot about cosmology.

But they’re mostly dark matter; measuring their mass is hard.

logM =14.13

logM — 1 =15.12 logM = 15. 40

Coma cluster, NASA




Application: Galaxy Cluster Mass

Fritz Zwicky (1933): Under reasonable assumptions, the
velocity dispersion has power-law relationship to total
Mass. i p——

Not so great...
 Assumptions violated
 Which galaxies are in cluster?

log mass

logM =14.13 logM = 14. 38 logM =14.63 logM = 14. 88 logM =15.12 logM = 15.40




Application: Galaxy Cluster Mass

Alternative approach: consider each cluster as a distribution
of galaxy features, and regress from these distributions to

total mass.

logM =14.07 logM =14.32 logM =14.57 logM =14.82 logM =15.06 logM =15.31
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Ntampaka, Trac, Sutherland et al., ApJ 2015; Ntampaka, Trac, Sutherland et al., in press at ApJ.




Cluster Mass: Known Membership

15.4 15.4

15.2 15.2

a8 & 14.8

146 14.6

14.4 14.4

14.2 88 14.2 §E5%

g - - power law ..~ kNN-KL with |v| only

14.0 e . 140 °

146 148 150 152 154 146 148 1560 152 154



Cluster Mass: With Interlopers
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Contributions

with nonparametric kernels

Scalable approximate kernel embeddings

— New embeddings for distribution kernels

Flexible distribution kernels
— Deep mean maps in computer vision

— MMD kernel learning for testing

Active pointillistic pattern search



Scalability

These methods need an n x n Gram matrix:

(K (z1,71) K(z1,72) ... K(21,2,)]

K(.CL'27$1) K(SBQ,CL’Q) K(I‘Q,Q?n)
K = . : . :

| K(xzp,z1) K(xn,22) ... K(Tn,Tpn)

The matrix is n?; operations can be as slow as O(n3).

Linear-kernel models usually scale like O(n).



Approximate Embeddings

Traditional kernel methods:
{z:}  {p(z)} CH
(i), p(5))3 = k(ﬂﬁz‘,yj)

f( ) < _I_b_za’l,y’t x’b? _I_b

Appro K(ja ) ~ Z(
D

{z;}  {z(z)} CRP L

Z(xz)TZ(ZE])

flx) =w'z(x) +b




Random Fourier Features

Rahimi and Recht (2007) developed random Fourier
features, a.k.a. “random kitchen sinks”:
T—yY

A —

= (p(x),p(y))n (dimH = oo)

~ z(x)" 2(y) (2 : R* —» RP)



Random Fourier Features

Rahimi and Recht (2007) developed random Fourier
features, a.k.a. “random kitchen sinks”:
— )
k(z,y) =k( A) ~ z(x) 2(y)

Qw) := /E(A) exp (—iw'A) dA

Bochner’s theorem: Q is a (scaled) probability distribution.

Wy ()

. 2 Tainfo T (T T T T
Z(z) = 5 [sm(wl r) cos(w; ) blIl(cuD/QCL‘) cos(wD/Qa:)

s - T T T .

Z(x) = 5 cos(wijxz+b1) ... cos(whr+0bp)| b; ~ Unif(0,2r)

24



Random Fourier Features

1.0 - _
0.8
06l — DVar(5(4))
D Var(s(4))
04
[ k(D)
0.2
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W, ~ ) 1.5 2.0 2.5 3.0
~ 2 [ o T T T T !
Z(z) = ) {Sm(w1 r) cos(wyx) ... Sm(wD/Qaz) Cos(wD/zx)
v 2 T T T :
Z(x) = ) cos(wijxz+b1) ... cos(whr+0bp)| b; ~ Unif(0,2r)

The L_, error is also tighter, in bounds and empirically. *



Contributions

Learning on distributions with nonparametric kernels

Scalable approximate kernel embeddings
— Random Fourier features analysis
— New embeddings for distribution kernels

Flexible distribution kernels
— Deep mean maps in computer vision

— MMD kernel learning for testing

Active pointillistic pattern search
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Mean embeddings of distributions

The mean embedding of a distribution in an RKHS:

=k
up = Euoplo(2)] Remember<90.(513), o(y)) = k(z,
so we can think of o(x) as k(z, -).
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Mean embeddings of distributions

The mean embedding of a distribution in an RKHS:

=k
up = Eyoplo()] Remember@(ﬂ?), p(y)) = k(z,
so we can think of o(x) as k(z, -
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Mean embeddings of distributions

The mean embedding of a distribution in an RKHS:

—E. plo(z Remember (0(2), ¢(y)) = k(z,y),
pp = Eonrlp(z) so we can think of p(x) as k(z, -)

1.0 1.0
0.8 0.8
0.6 = 0.6
§04 T04 N -
A ky ‘\ y
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l N NN

—2 -1 3 -2 -4 0 1 2 3



Mean embeddings of distributions

The mean embedding of a distribution in an RKHS:

— B, _p[o(z Remember (¢(2), ¢(y)) = k(z,y),
i = Fanplplz) so we can think of o(z) as k(z, ).
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Mean embeddings of distributions

The mean embedding of a distribution in an RKHS:

—E. plo(z Remember (p(z), p(y)) = k(z,y),
pp = Eonrlp(z) so we can think of o(z) as k(-, x).
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Maximum Mean Discrepancy (MMD)

The mmD is the distance between mean embeddings:

pp = Expp(X)] M\_M

MMD? (P, Q) = || — pgll3
=iz tie) + (1o, 1) — 2(liniig)

(wps po) = (Ex~ple(X)], Evaqle(Y)])

= Egp [((X), (V)]

=Ex~p [k(X,Y)]
Y~Q i

170) —
Estimator: ({ip, fig) = —— Zk(XZ-,Yj) IM

17 32

2

» ;' /, .
AW /Aj




Embedding MMD
MMD(X,Y) = ||fip — figl|x

HIP’?:LL@ mn Zk XZ’Y B

~ # ZZ(Xz)TZ(YJ) =
= [ 2 =000] [530209)] -
= z2(X)"z2(Y) = =

33



Embedding L,

Oliva, Neiswanger, Poczos, Schneider, Xing (aistats 2014)
gave an embedding for

R r .. .
K(p,q) = exp (—272!\29 — QH%2>

based on projection coefficients onto an orthonormal
basis for L,.



Embedding HDDs

0%(p, q) :/ k(p(z),q(x))dr Homogeneous Density Distances
X

p? can be:
 Jensen-Shannon
 Total Variation

e Squared Hellinger



Algorithm: HDD Embedding

0%(p, q) :/ k(p(z),q(x))dr Homogeneous Density Distances
X

A Approximately embed p into L,
* by embedding x into L, (Fuglede 2005).

p(p,q) ~ |[¥(p) — (@)l L2m
o)
A Approximately embed L, into R™.

[ (p) —¥(@)|lLem ~ [[Alp) — Al@)||gzmiv)
L A

Use random Fourier features to embed K on R™ into RP,
exp (—5220°(p, q)) = 2(A(p)) " 2(A(q))
RBF kernel with p = random Fourier features of A vectors 36



HDD estimator convergence

The embedding is an estimator for the kernel.

For fixed p and g, we have a finite-sample bound on
Pr (|K(p.q) — 2(A(9)T=(A(9))| > ¢)

which behaves as expected:
 Lower for smoother, lower-dimensional densities
 Lower for more samples
* More projection coefficients / samples from u:
* Dbetter approximation, harder integration



Application: Gau55|an Mixtures
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Application: Nuclear Threat Detection
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Small sensors and cluttered environments make lots of
challenges for traditional detection algorithms.



Application: Nuclear Threat Detection
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Application: Scene Classification

Scene-15 dataset (4 485 images) "



Application: Scene Classification

Features from a deep convnet (16 layers):

Local features here for
overlapping patches of
2% 128 input image

,‘"x;’:ﬁ x 256

‘ 28 x 28 x 512 TxTH512

: 4x14x512 .

' (e e 1x1x4096 1x1x 1000

@ convolution+ReLU
[" {1 max pooling

fully connected+RelLU

| softmax

42



Application: Scene Classification

i:HH‘H}

10 25 50
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Using A(p) features



Contributions

Learning on distributions with nonparametric kernels

Scalable approximate kernel embeddings
— Random Fourier features analysis
— New embeddings for distribution kernels

Flexible distribution kernels
— Deep mean maps in computer vision

— MMD kernel learning for testing

Active pointillistic pattern search
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Deep distribution kernel learning

We can put distribution embeddings in a deep network:

L1 f(z1)
T2 f(x2) .
Lm f(iljm) 1. Convolve with frequencies

2. Sine/cosines

3. Global pooling Fixed frequencies

Learn scale
Learn frequencies

Initial results for scene classification: small but consistent
iImprovement.



Contributions

Learning on distributions with nonparametric kernels

Scalable approximate kernel embeddings
— Random Fourier features analysis
— New embeddings for distribution kernels

Flexible distribution kernels
— Deep mean maps in computer vision

— MMD kernel learning for testing

Active pointillistic pattern search
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Two-sample testing

Observed samples: X ~P Y ~Q

Hypothesis test on unobserved distributions: [P 2 Q

Applications:

e Neuroscience: do these areas of the brain behave
differently under different conditions?

 Schema alighment: do these two database columns
mean the same thing?

* Many more...



Two-sample testing

Test with mmD:

Sl
w N
~

X ~P=N(0,1) Y ~ Q = Laplace (O,

Test: reject if m 1\7@2(1?, Q) > ca.

48



Permutation testing

WhenP = Q, MMD is asymptotically gross, so hard to
find a threshold c, that way.

Use a permutation test:

X ={x1,22,...,Tm} Y ={v1,y2,-- -, Ym}
Split randomly to estimate MmmD when P = Q:

co: (1-a)th quantile of mm%xﬂh Y(i))

49



The kernel matters!

Witness function f helps compare samples:
MMD(P, Q) = Ex e f(X) — Ey~q (V)
f(CC) = EXNIP k(:U, X) — EYN@ k(x, Y)

—— 0=0.75;p=0.04

50



The kernel matters!

Witness function f helps compare samples:
MMD(P, Q) = Ex e f(X) — Ey~q (V)
f(CC) = EXNIP k(:l?, X) — EYN@ k‘(x, Y)

— 0=0.75;p=0.04
— 0=2;p=0.43

51



The kernel matters!

Witness function f helps compare samples:
MMD(P, Q) = Ex e f(X) — Ey~q (V)
fﬂﬂZZEXNPk@yX)—Eh@@k@;Y)

— 0=0.75;p=0.04
— 0=2;p=0.43

::::><<i:f c=0.1;p=0.16

52



Choosing a kernel

So we need a way to pick a kernel to do the test.

Before:

S

MMD with fixed k

53



Choosing a kernel

So we need a way to pick a kernel to do the test.

Split data:

Choose a kernel k

Chosen k in MMD test

How to pick k?  Typically: maximize MmD.

But we want the (asymptotically) most powerful test. -



Asymptotic power of MMD

When P £ Q, MMD is asymptotically normal:

A

MMD2 — MMD? p
> N(0,1)  Vm = Varx.pm [MMDZ(X, Y)}
V'V ’

Y ~Q™
and we can analyze the power:

/\2 A
Pry, (mMMD > ca)



MMD t-statistic

p ( m2>A)%1 <I>( Ca MMD2>
T m Coy — —
o Vo Vi

So we can maximize the power by maximizing

2 .
o MMD? g ) MMD?2 &
— P B
V., mn/ V.,

But V_ is O(1/m), so the first term dominates for large
m, and we should be able to get away with maximizing

2
by — MMD ; MMD2
V'V U= "=

Vin



t-statistic estimator

X MMD? Co
TU _
Vi mn/ V.,
5 1

(3) %

Ca is from a permutation test, so the average of a bunch
of MMD estimates



G2

t-statistic estimator

4(m —2) - 2 .
m(m — 1)Cl + m(m — 1)C2
1 1 2
1T Ky xKxx1— ||K 2) _ 1T Ky« 1
m(m — 1)(m — 2) ( XX DXX IKx x|l (m(m —1) XX )
9 . .
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+ : (1TKYYKYY1 - HRYYH2) - 1 1" Kyy1 2
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.
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.
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1
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t-statistic estimator

Can even get gradients of t, and (with some more
effort) 7, to help maximize it.

(automatic differentiation is your friend)



Kernel choice on Blobs

Blobs dataset:

VS

Mixture of NV (uij, [(1) ?D Mixture of N (uij, [

When €=1, P = Q; this picture has £=6.

1
e—1
e+1




Rejection rate

1.0

0.8

0.6

- - best choice

Kernel choice on Blobs

—
—
—
— -

10
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Deep Kernels

Map through layers of a deep network:

convolutional
layers

convolutional
EWES

62



Generative Models

Generative adversarial networks:

* Generator comes up with samples; trained to trick
the adversary.

* Adversary tries to distinguish between generator
sample and true data; trained to beat the generator.

But adversary is really
just a two-sample test.

Kernel learning helps
prevent the generator’s
tricks.

Generated Real
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Active Pointillistic Pattern Search

Search for region patterns
with point observations.

®
L
»

\X'/ v

posterior draws
Ma*, Sutherland®, Garnett, Schneider, AISTATS 2015. (*: equal contribution)

observations
65

terhplate



Active Pointillistic Pattern Search

Watercraft

Android smartphone

66
Ma*, Sutherland®, Garnett, Schneider, AISTATS 2015. (*: equal contribution)



Active Pointillistic Pattern Search

res

_'_

Ma*, Sutherland®, Garnett, Schneider, AISTATS 2015. (*: equal contribution)
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Active Pointillistic Pattern Search
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Take-Home Messages

Think about how you model your data.

Distributions and sets can work pretty well.

— Cosmology, nuclear threat detection, scene classification,
parametric statistical inference, polling, autonomous
sensing...

Random embeddings can help with scalability...

— if you use random Fourier features, use the right one

...and with flexibility
— Plug the MmD embedding into deep learning and go crazy



Things Still to Do

* Deep kernel learning
— Different parameterizations of kernels

* More applications!
— Word and document embeddings

— Kernel-learning two-sample test as adversary in a GAN

e Active learning on distributions



Thanks

Rahul De
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