

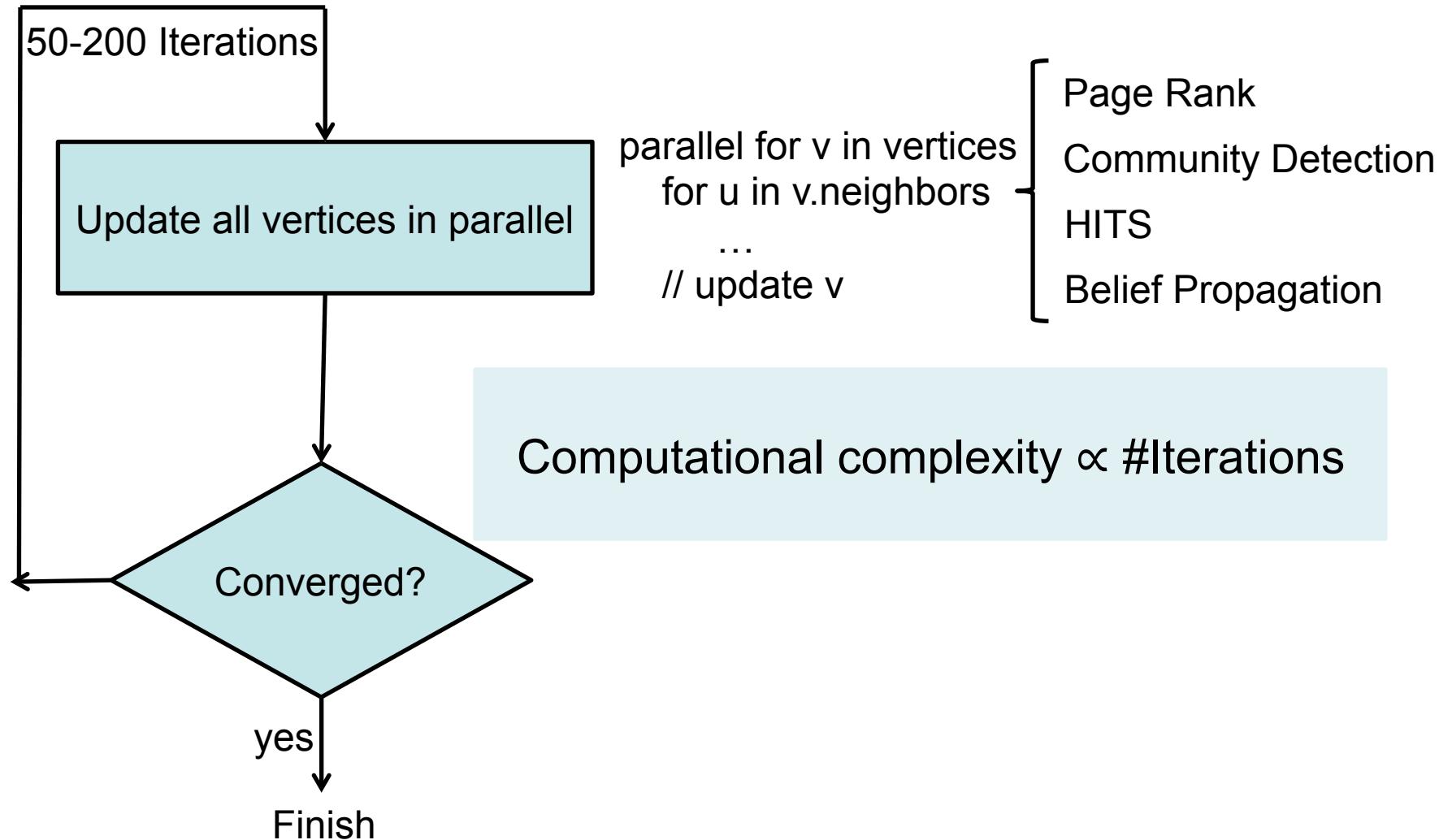
V-Combiner: Speeding-up Iterative Graph Processing on a Shared-memory Platform with Vertex Merging

**Azin Heidarshenas[†], Serif Yesil[†], Dimitrios Skarlatos[†],
Sasa Misailovic[†], Adam Morrison^{*}, Josep Torrellas[†]**

University of Illinois Urbana-Champaign[†]
Tel-Aviv University^{*}

International Conference on Supercomputing (ICS), June 2020

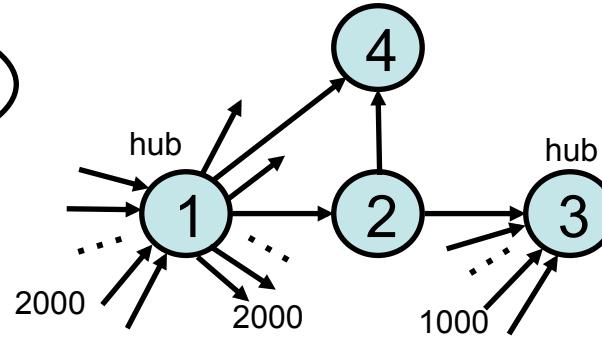
Iterative graph processing



Graph processing can be approximate

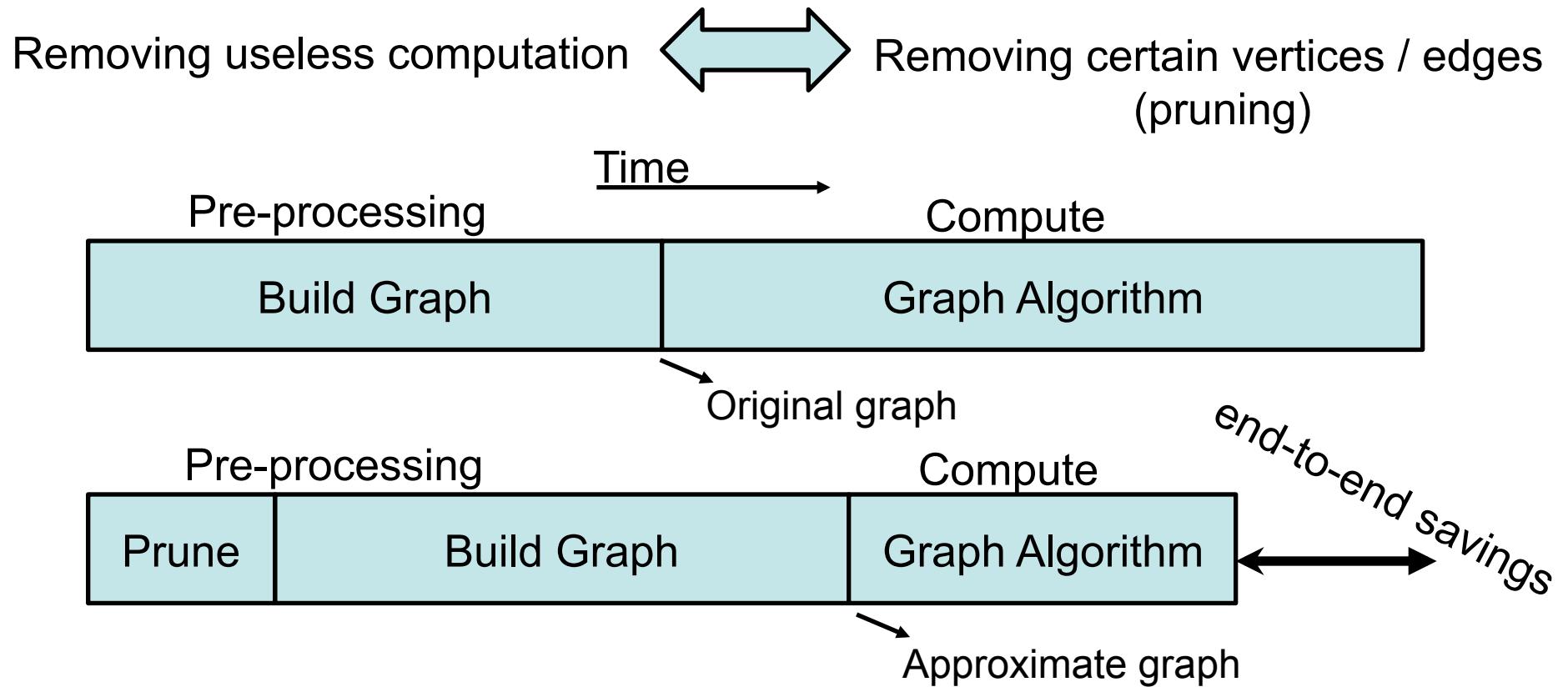
Example: CEO of Company X wants to invest **only** on the most influential customers in their network

Vertex	Page Rank
1	0.0510103
3	0.0255164
4	7.3626e-05
2	5.16674e-05

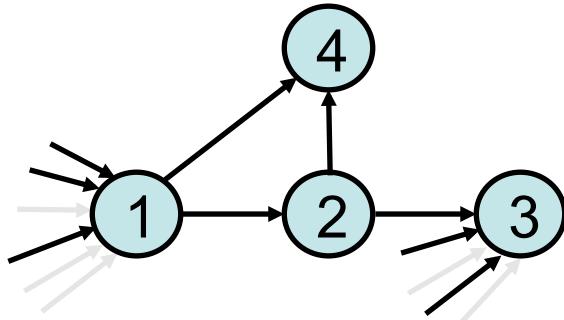


Computing Page Ranks of Vertices 2 and 4 is useless.

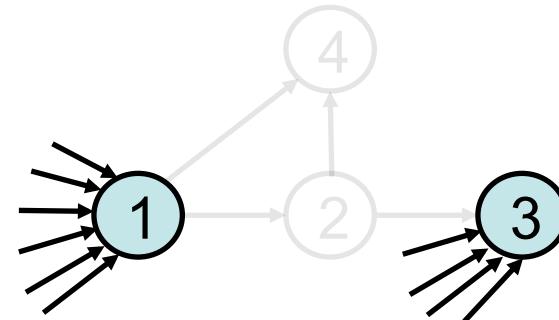
Pruning graphs can be effective



Overview of Sparsification and K-core



Sparsification¹
Prunes **only edges**,
probabilistically from
dense regions



K-core²
Prunes **vertices (along**
with their edges), until the
remaining vertices have a
degree of at least K

[1] Spectral sparsification of graphs: theory and algorithms. *Commun. ACM* 56, 2013

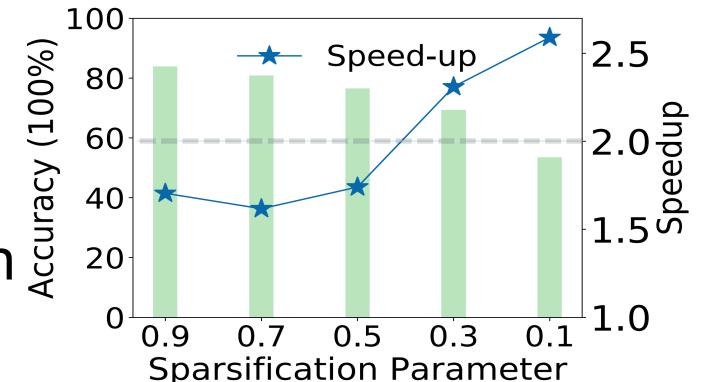
[2] K-core decomposition of large networks on a single PC, *VLDB*, 2015

Limitations of Sparsification and K-core

Desirable speedup $> 2x$

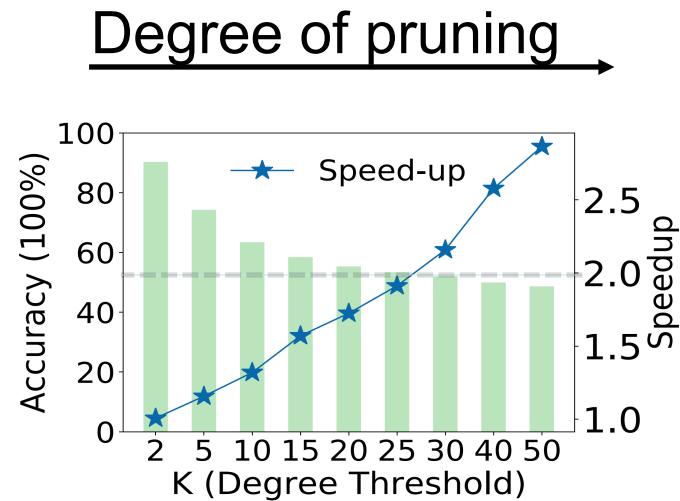
Accuracy is the ratio of vertices found in the top ranking.

At the highest accuracy ($\sim 80\%$), Sparsification achieves 1.6x for Page Rank.

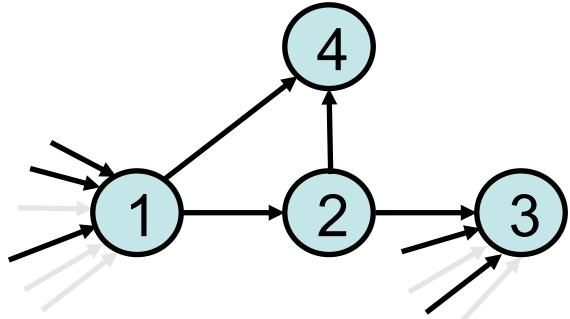


Accuracy is the ratio of vertices with correct communities.

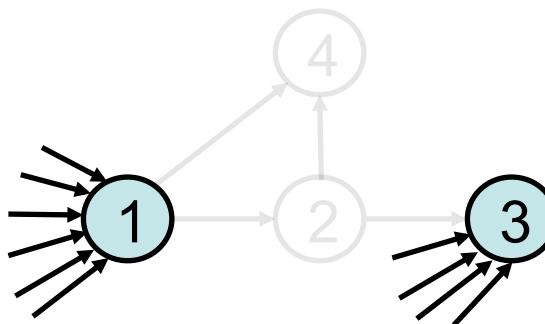
High speedup is achieved only at low Accuracy (<60%) for Community Detection.



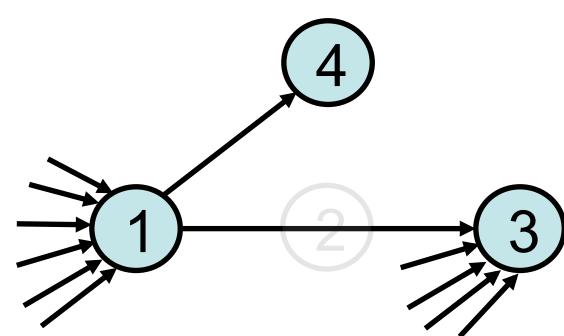
Addressing the Limitations



Sparsification¹
Prunes **only edges**,
probabilistically from
dense regions



K-core²
Prunes **vertices (along**
with their edges), until the
remaining vertices have a
degree of at least K

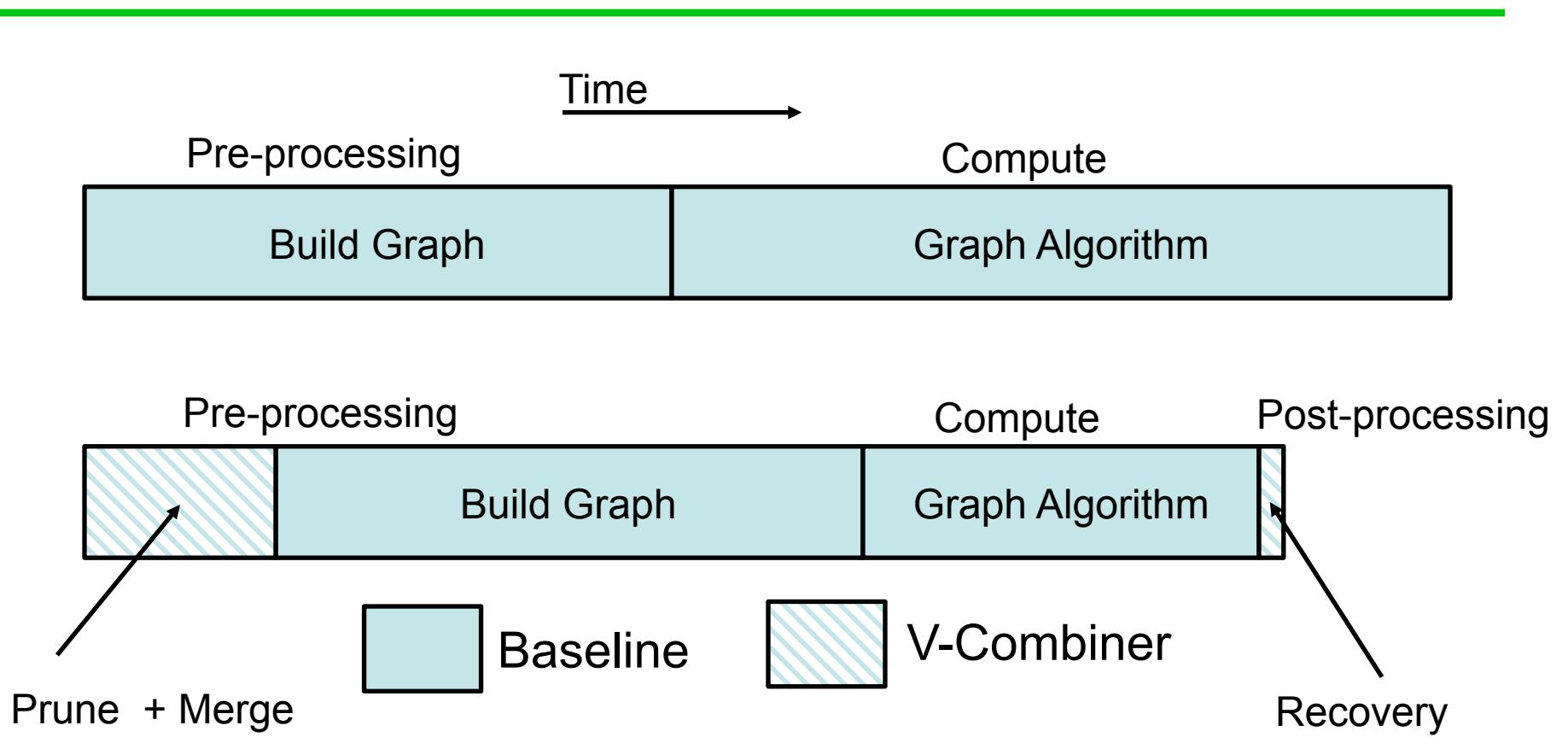


V-Combiner
Prunes **and merges** certain
vertices into hubs (**in the**
direction of information
flow), so that hubs stay
connected to the rest of
the graph

[1] Spectral sparsification of graphs: theory and algorithms. *Commun. ACM* 56, 2013

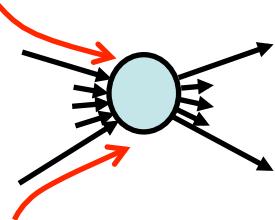
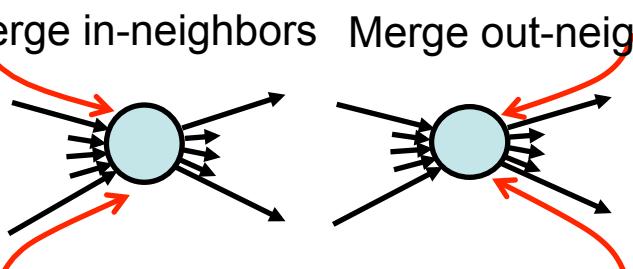
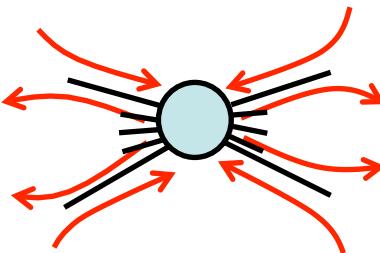
[2] K-core decomposition of large networks on a single PC, *VLDB*, 2015

Overview of V-Combiner



More merging vs. pre-processing time vs. performance savings

Different Vertex Merging Scenarios

Example App.	Edges	Information flow	Merge in-neighbors
Page Rank, Comm. Detection	Directed	One-way	
HITS	Directed	Two-way	
Belief Propagation	Undirected	Two-way	

Classification of Vertices in V-Combiner

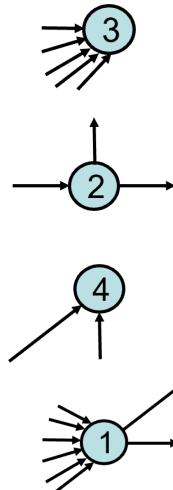
Supernode: Large in-degree (but not too large)

Large in-degree for supernode → More mergings per supernode

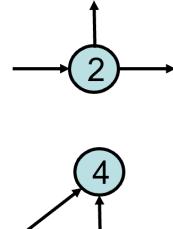
Subnode: Small in- and out-degree, at least one supernode in its out-neighborhood

Small in- and out-degree for subnode → Less distortion after pruning

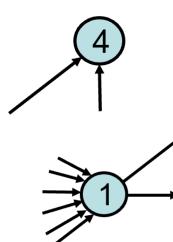
Regular: Neither a supernode nor a subnode



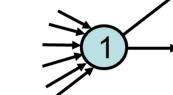
Supernode



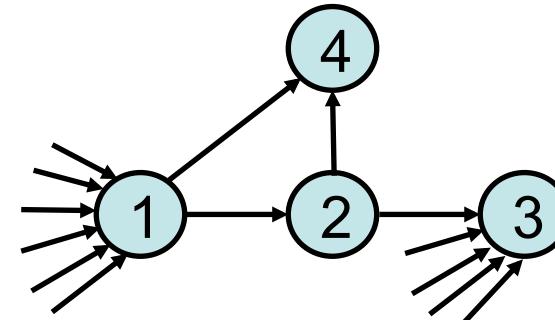
Subnode



Regular



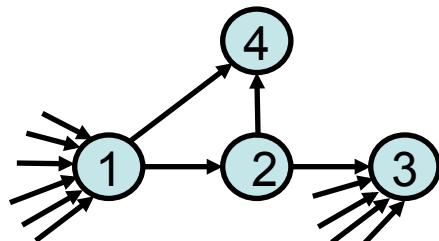
Regular



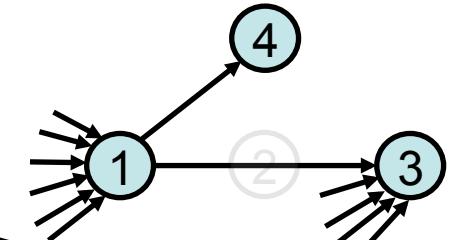
Prune + Merge in V-Combiner

```
for e in edges
//MERGE
if e.dst is a subnode and e.src is NOT a subnode then
    // Increment in-degree of the supernode by one

//PRUNE
if e.src is a subnode and e.dst is NOT a subnode then
    // Decrement in-degree of the e.dst by one
```



Vertex	Old in-degree	New in-degree
1	6	6
2	1	0
3	5	5
4	2	1



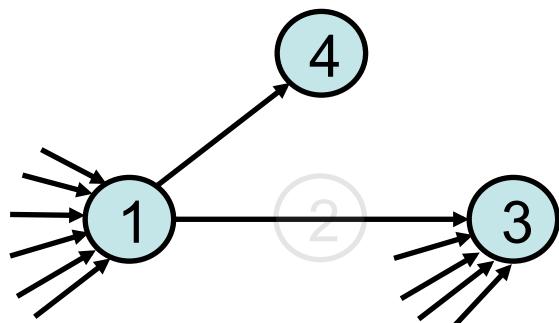
One increment and one decrement cancel out.

Recovery in V-Combiner

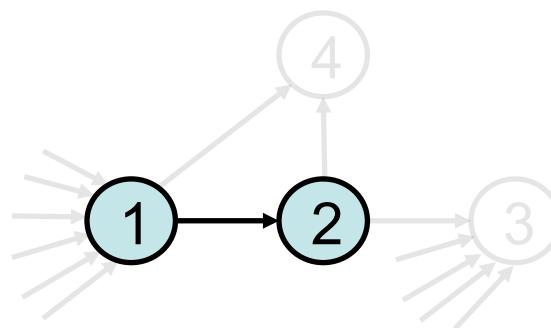
No subnodes in the approximate graph

Recover using the in-neighbors' values and the graph algorithm operator

- More efficient using Delta graph
- As if an extra iteration of the algorithm is run, but only for the subnodes



Approximate graph



Delta graph

For Page Rank: $\text{Pr}[2] = 0.85 \text{Pr}[1] / 2 + 0.15$

Evaluation Setup

End-to-end speedup measured.

44 Intel Xeon cores, no hyper-threading and DVFS

4 graph applications:

- Page Rank (PR)
- Community Detection (CD)
- Hyperlink-Induced Topic Search (HITS)
- Belief Propagation (BP)

5 graph inputs

- Friendster social network (FS)
- Twitter social network (TW)
- Page-Level Domain graph (PLD)
- Arabic domain network (AR)
- Dbpedia network (DB)

Accuracy Metrics

Top-K Accuracy:

The ratio of vertices in the top ranking of the exact result that are also in the top ranking of the approximate result

- Page Rank
- HITS
- Belief Propagation

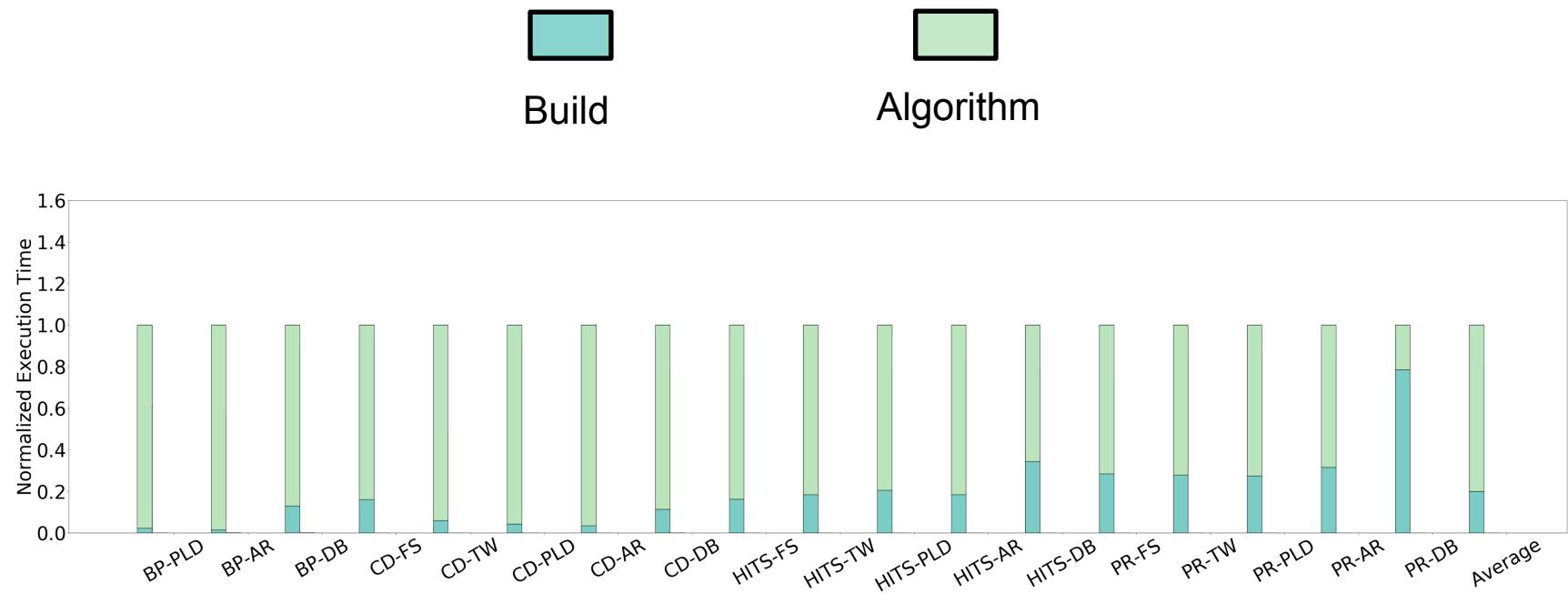
Classification Accuracy:

The ratio of vertices that have been correctly assigned to their communities

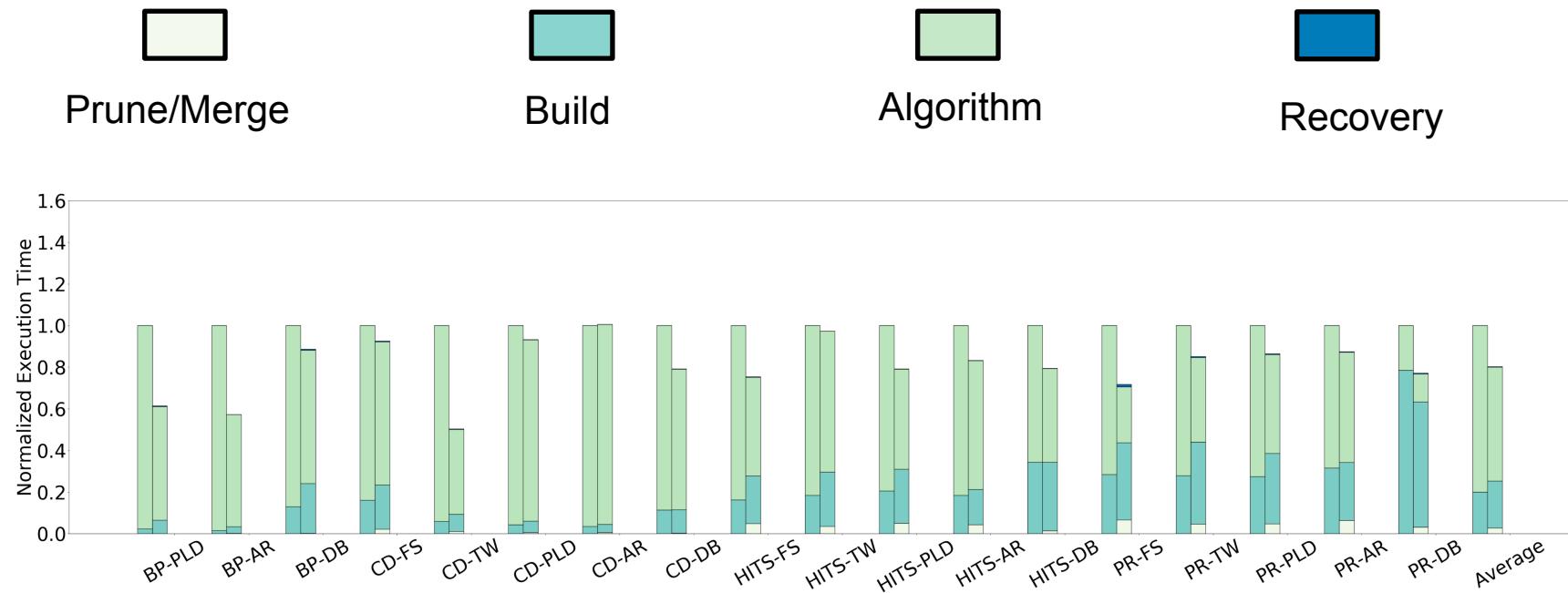
- Community Detection

Accuracy threshold of 90%.

End-to-End Performance

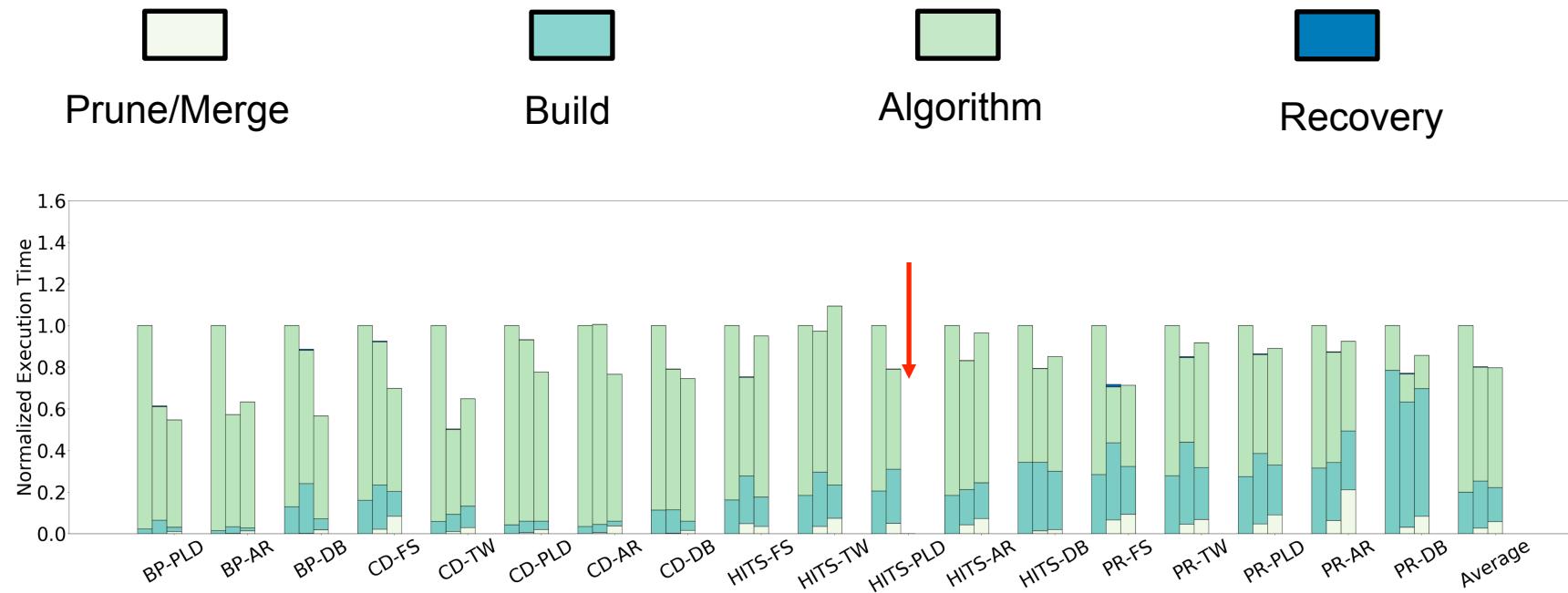


End-to-End Performance: V-Combiner



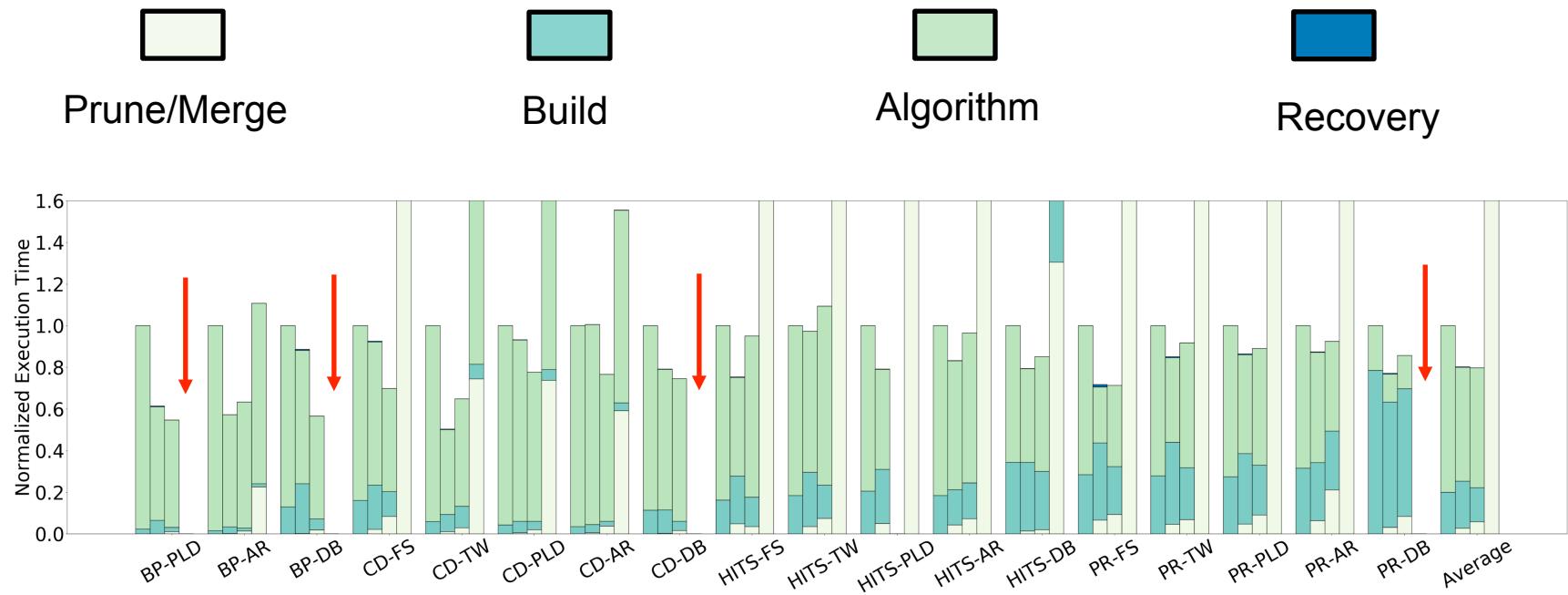
1.25 end-to-end speedup at mean accuracy of 91.8%

End-to-End Performance: Sparsification



Sparsification fails to meet accuracy threshold in 1 benchmark

End-to-End Performance: K-core



K-core fails to meet accuracy threshold in 4 benchmarks

More in the Paper

- Details of other scenarios of the merging
- Choosing the merging parameters
- Algorithm performance and accuracy analysis
- Analysis of connectivity
- Analysis of the average length of the paths
- Analysis of pruning/merging parameters
- ...

Take-away

- Iterative graph processing is computationally expensive and can be approximate.
- V-Combiner is a pruning + merging + recovery technique
- It has the following advantages over the state-of-the-art pruning techniques:
 - Preserving average length of the paths
 - Maintaining connectivity
 - Improving load balancing
 - Modest pre-processing overhead

V-Combiner: Speeding-up Iterative Graph Processing on a Shared-memory Platform with Vertex Merging

**Azin Heidarshenas[†], Serif Yesil[†], Dimitrios Skarlatos[†],
Sasa Misailovic[†], Adam Morrison*, Josep Torrellas[†]**

University of Illinois Urbana-Champaign[†]
Tel-Aviv University*

