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Abstract

The rise in memory demands of emerging datacenter applications
has placed virtual memory translation in the spotlight, exposing it
as a significant performance bottleneck. To address this problem,
this paper introduces Learned Virtual Memory (LVM), a page ta-
ble structure that effectively provides optimal single-access address
translation. LVM is founded on a novel learned index model that
dynamically adapts the address translation procedure based on the
characteristics of an application’s virtual address space. Further-
more, LVM’s learned index requires minimal memory space, does
not impose stringent physical contiguity requirements, enjoys high
cacheability in the MMU, efficiently supports insertions, and relies
on simple fixed-point arithmetic. Finally, LVM supports all features
of virtual memory, including multiple page sizes. We evaluate LVM
with a set of operating system (OS) extensions in Linux, RTL synthe-
sis, and full-system simulations across a wide range of workloads.
LVM reduces the address translation overhead by an average of
44% over radix page tables, while reducing the page walk cache
area required by 1.5X. Overall, LVM achieves a 2-27% speedup in
application execution time and is within 1% of an ideal page table
while reducing the required area of hardware structures.
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1 Introduction

The increase in memory capacity in datacenters, coupled with the
proliferation of memory-intensive applications, has made virtual
memory translation a major performance bottleneck. This overhead
is rooted in the status quo of virtual memory translation—radix
page tables. By design, radix page tables incur substantial overhead
during page walks, requiring up to five sequential memory accesses.

Despite their inherent drawback of having multiple indirections,
the longevity of radix page tables is justified. Organizing page
tables in a tree structure (Figure 1(a)) provides high coverage at
upper levels (e.g., 512GB of coverage at the 2nd level), with coverage
diminishing only closer to the leaf nodes that map actual pages, such
as 2MB at the 4th level. This approach is amenable to caching upper
levels of the tree in the MMU page walk caches because applications
exhibit high locality at coarse address space granularities.

Unfortunately, the meteoric rise in memory capacity has begun
to pierce the veil of cacheability of radix page tables. In response,
over the past decade, processor architectures have spent the last
decade in an arms race to increase TLB capacity and page walk cache
sizes. Despite these efforts, studies at Google and Meta reveal that
roughly 20% of cycles are spent on page walks [38, 95] and this issue
is about to worsen due to several factors: (i) the inherent hardware
limits of TLB scaling which have pushed latencies beyond that of
L2 cache [91], (ii) the advent of terabyte-scale memory capacity
through technologies like CXL [39, 76], and (iii) the increasing
prevalence of memory-intensive applications.

Prior research has extensively studied methods to reduce address
translation overhead [1-3, 8-10, 12-16, 18, 20, 27, 35, 36, 38, 41,
42, 45-47, 49, 59, 62, 64, 66, 67, 69, 74, 77-80, 82, 87, 88, 93-95].
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One line of work has focused on virtual and physical memory
contiguity to form larger translation blocks backing application
datasets [5, 10, 27, 28, 47, 48, 66, 69, 94, 95]. The goal of these works
is to map large, contiguous virtual memory regions to equally large
contiguous physical memory regions and form large translations
such as huge pages or even larger range translations. However, the
limitation of these approaches is their reliance on abundant physical
memory contiguity—a scarce resource in modern datacenters [95].

Another line of research has explored an alternative data struc-
ture to radix page tables based on hashed page tables [22, 37, 40, 43,
77, 80, 83, 93] (Figure 1(b)). Despite early shortcomings, recent work
has shown that hashed page tables are viable [77, 79, 80, 93]. These
designs replace sequential page walks with parallel accesses that
aim to resolve hash collisions. However, state-of-the-art hashed
page table designs [77, 79, 80] do not eliminate the core issue of
multiple memory accesses for an address translation. Instead they
trade sequential accesses for parallel ones, leading to increased
memory traffic and cache pollution.

Recent work in databases has introduced learned indexes [21,
23, 50, 51, 54, 85, 90]. The core idea behind these structures is that
the distribution of input keys can be learned, enabling models to
replace hash functions and reduce collisions. Typically, learned
indexes are organized as a hierarchy of models that incrementally
capture finer-grained details of the key distribution. However, their
effectiveness hinges on the assumption of a regular key distribu-
tion—a condition that is often challenging to satisfy in real-world
database workloads [75].

In this paper, we explore the design of a learned index page table
structure that enables single-access translations. However, building
page tables with existing learned indexes is challenging as they are
plagued by several limitations that make them ill-suited for virtual
memory translation. At a high level, learned indexes have been
designed for database software and fail to meet the requirements of
address translation at the processor front-end. Specifically, existing
learned indexes are hierarchical and can expand significantly in
both width and depth, incurring more sequential indirections than
radix page tables. To achieve high accuracy, these indexes often
grow to tens of megabytes and rely on floating-point arithmetic,
which makes them hard to cache and unsuitable for the page walk
pipeline. Additionally, existing learned indexes require large, con-
tiguous memory allocations—a poor fit for page tables, which must
function within a fragmented physical address space.

Compounding these challenges, most learned index structures
are designed for static datasets and assume one-time construc-
tion. Although recent efforts have explored mechanisms to support
dynamic updates [21, 23, 54, 90], these approaches either incur sig-
nificant retraining overhead or suffer from accuracy degradation,
ultimately resulting in performance inferior to conventional hash
tables. These limitations are misaligned with the requirements of
address translation, which inherently involves dynamic virtual-
to-physical mappings. Moreover, supporting multiple page sizes
further complicates the design, as existing techniques often require
maintaining separate learned indexes per page size, undermining
the efficiency gains of single-access lookups.

In this paper, we holistically address these challenges through a
novel learned index design tailored for virtual memory. We call our
design Learned Virtual Memory (LVM). At a high level, as shown
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in Figure 1(c), LVM replaces the hash functions of the hashed page
table with a learned index. The learned index itself is organized
as a hierarchy of models, each responsible for different parts of
the virtual address space. Intuitively, the learned index learns the
location of page table entries.

We start by validating our hypothesis that virtual address spaces
of applications exhibit significant regularity through an in-depth
study spanning a diverse range of applications, programming lan-
guages, and memory allocation behaviors, including graph analyt-
ics, key-value stores, bioinformatics, databases, datacenter work-
loads, HPC, and real-world production workloads at Meta. Our
analysis reveals that the virtual address spaces of applications are
highly structured, making them well-suited for learned indexes.

To resolve the depth and width challenge of learned indexes,
we introduce a cost model tailored for virtual memory. The cost
model balances prediction accuracy with the cacheability of the
index, accounting for the expected latency of address translation
based on depth, width, and collision rates. The cost model guides
LVM to build a highly optimized learned index based on space-
efficient linear models on a per-process basis. The learned index
of LVM requires minimal memory to provide page table entry
lookup coverage for the complete address space, so it enjoys high
cacheability. Next, to support efficient updates, we leverage the
tendency of applications to expand their virtual address space in a
contiguous manner. Specifically, in LVM, we introduce new scaling
techniques for the linear models that allow new translations to be
added to the learned index while avoiding retraining or rebuilding.
To resolve the physical contiguity requirements, we study Meta’s
production datacenters and identify that while physical memory
contiguity in the range of hundreds of MBs does not exist [95], it
remains abundant in the range of hundreds of KBs, even in highly
fragmented servers. To this end, we design adaptive learned indexes
that can dynamically allocate small leaf page tables based on the
available physical contiguity. Finally, to support multiple page sizes,
we develop a novel encoding scheme that leverages the linearity
of our models. Different page sizes are represented via varying
slopes within the same structure, enabling efficient multi-page-size
support without separate indexing logic.

We evaluate LVM with OS extensions in Linux, RTL synthesis,
and full-system simulations across a wide range of workloads. LVM
reduces the address translation overhead by an average of 44% over
radix page tables, while reducing the page walk cache area required
by 1.5%. Overall, LVM achieves a 2-27% speedup in application exe-
cution time and is within 1% in terms of performance and memory
traffic of an ideal page table that always performs single-access
translations.

2 Background

In this section, we provide background on radix page tables, hashed
page tables, and learned indexes.

2.1 Radix Page Tables

Multi-level radix page tables typically use four to five levels with
4KB leaf pages. Figure 1(a) shows a five-level radix page table. In the
worst case, translation requires pointer-chasing through all levels,
incurring five sequential memory accesses. Modern processors use
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Figure 1: Address translations schemes. LVM avoids both the
long sequential page walks of radix page tables and the high
collision rates and parallel accesses of hashed page tables.

two techniques to reduce translation performance overhead: large
pages (e.g., 2MB) for higher TLB hit rates and shorter walks, and
page walk caches (PWC) to store upper-level entries. While upper
levels in radix page tables offer high early coverage, PWC reach
quickly diminishes—e.g., L4 tables cover only 2MB per entry. As
prior work shows [45], even with more entries, MPKI remains high
due to random access patterns in memory-intensive workloads.

2.2 Hashed Page Tables

Hashed page tables (HPTs) [22, 32, 37, 40, 43, 77, 80, 83, 93] are
an alternative to radix page tables. In HPTs (Figure 1(b)), a hash
function maps VPNs to page table entries, enabling single-access
translation in the absence of collisions. In practice, however, HPTs
face several challenges [8, 93]: hash collisions can degrade perfor-
mance during resolution, early designs lacked dynamic resizing
and support for multiple page sizes, and scattered entries led to
poor cacheability. Although clustering improved cacheability, other
issues remained [93].

Elastic cuckoo page tables (ECPTs) [77, 79, 80] improve on HPTs
using a dynamically resizable d-ary cuckoo hash table [26, 61]
with parallel accesses. However, they still require multiple memory
accesses per translation, trading sequential for parallel lookups. As
shown in Figure 1(b), a 3-way cuckoo table probes three candidate
locations, incurring two unnecessary fetches per translation [77],
increasing memory traffic and cache pollution. Supporting multiple
page sizes adds further overhead, as ECPT must maintain separate
tables per size. While ECPTs outperform radix trees via memory-
level parallelism, they still stress the memory hierarchy.

2.3 Learned Indexes

Recent work in the database community has introduced learned
indexes [51], which can outperform traditional structures like hash
tables. Learned indexes replace the hash function with a hierarchy
of models that approximate the cumulative distribution function
(CDF) of keys, with each model responsible for part of the key space.
They predict the position of the value in the table corresponding
to the key, and on a misprediction, a bounded search is performed
within the model’s min and max error range, leveraging sorted
keys [51]. Several approaches [50, 51] have laid the foundation
for learned indexes. RMI [51] uses a hierarchical structure where
each node holds a simple model, reducing collisions compared to
traditional hash functions [75]. A core challenge is supporting in-
serts: new entries reduce model accuracy and may require slow full
rebuilds. Recent work [21, 23, 54, 90] enables incremental updates,
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Figure 2: Virtual memory gap coverage of gap = 1.

but often reduces accuracy or adds complexity, increasing memory
accesses during lookup.

Key Space Regularity. In practice, the primary requirement for a
learned index to perform effectively is a regular key space. In this
context, a regular key space is characterized by a key distribution
that follows a predictable structure or pattern, e.g., sequential or
evenly spaced. This regularity allows machine learning models to
easily learn the distribution with high prediction accuracy.

3 Learned Indexes for Page Tables

In this section, we explore the feasibility of learned indexes for page
tables.

3.1 Virtual Address Space Regularity

Since learned indexes rely on a regular key space to achieve high
accuracy, we aim to determine if the application’s virtual address
space exhibits a consistent pattern between its keys, i.e., virtual
page numbers (VPNs). To quantify regularity, we define a metric
called the virtual memory gap coverage. Conceptually, a gap = 1
indicates that two virtual pages are sequential, meaning VPNpext —
VPNcurrent = 1. The coverage of gap = 1 represents the proportion
of all mappings in the virtual address space that are sequential. In
other words, it measures how much of the virtual address space
follows this specific pattern of contiguity, providing insight into
the regularity of the virtual address space layout. For example, if
100% of the gaps are equal to 1, it means that all virtual pages are
sequential. As a result, in that scenario, a single linear function can
represent the whole virtual address space.

We use the virtual memory gap coverage to study the virtual
address space of a broad set of representative memory-intensive
applications, including graph analytics, bioinformatics, caching,
HPC, database (MongoDB), web serving (Finagle RPC from Twit-
ter [68] and hhvm from DCPerf [71]), streaming (Apache Kafka
[17]) and four production workloads at Meta (Workload 1-4). They
represent applications that are written in C, C++, PHP and Java,
use file-backed mappings (MongoDB) and anonymous mappings.
We see that across the workloads, a minimum of 78% of gaps are
equal to 1, showing significant regularity in the distribution of vir-
tual address space of applications. Importantly, both benchmarks
and real-world production workloads show similar characteristics,
validating our hypothesis that the virtual address space is highly
regular. To quantify the effects of different userspace allocators, we
further evaluated two broadly used allocators, jemalloc [44] and
tcmalloc [86]. We find that across workloads, the regularity remains
practically the same.

There are several reasons why application virtual address spaces
exhibit regularity. First, userspace allocators aim to minimize holes
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Figure 3: Median percentage of free memory in a Meta’s
datacenter that can be allocated contiguously at various sizes.

in the address space and pack allocations closely together [89].
Furthermore, allocators tend to buffer irregular allocation and free
patterns of applications, hiding potential fragmentation from the
OS that allocates pages for userspace [89]. Such buffering behavior
is further present in virtualized environments where the guest OS
handles the majority of memory allocation and free operations.

In addition, large object allocations, e.g., large arrays, need to
be contiguous due to addressing requirements. Moreover, virtual
address spaces are per-process and are not susceptible to fragmen-
tation unlike the physical address space. Finally, the OS aims to
reduce the space needed for page tables by coalescing mappings
because lower-level page tables are only needed for the mapped
virtual address space. Based on these observations, we believe that
in the future, userspace allocators and the OS can make additional
efforts to further bias the virtual address space towards regularity
if needed, without modifications to other parts of the stack. As we
show in later sections, LVM introduces cost model parameters that
bound the depth and width of the learned index, further relaxing
the regularity requirements of the virtual address space, even under
pathological cases.

3.2 Virtual Memory Challenges

Having established that virtual memory is sufficiently regular to be
a good candidate for learned indexes, we now discuss the require-
ments and challenges of an efficient virtual memory design.
Learned Index Structure and Size. Learned indexes are struc-
tured as hierarchical models that can expand in both width and
depth. As a result, existing learned indexes often involve more
sequential indirections than radix page tables. Additionally, they
tend to be large, frequently reaching sizes in the tens of megabytes.
One potential solution is to design an MMU caching structure large
enough to store these models that is loaded during context switch.
However, this approach is impractical due to the significant chip
area required and the added context switch overhead. Instead, to
effectively use learned indexes for address translation, we need
models that are compact and easily cacheable within the MMU.
Insertions and Dynamic Virtual Address Spaces. Most learned
indexes are typically constructed once over a static dataset. While
recent research attempts to introduce support for updates, these
methods often become prohibitively expensive due to retraining
or a rapid degradation in accuracy. Address translation requires
learned indexes to efficiently adapt to address space changes.
Multiple Page Sizes. Virtual memory supports different page sizes,
such as 4KB, 2MB, and 1GB. The page size determines the page
offset and hence the size of the VPN. Prior solutions in hashed
page tables [77] handle this by maintaining separate tables for each
page size and auxiliary data structures providing page size informa-
tion, leading to additional memory requests. Maintaining separate
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learned indexes for every page size negates the goal of single-access
address translation. Instead, efficient translation requires a single
learned index that operates with variable page sizes without loss
of accuracy or increase in training time.

Compute. Learned indexes rely on floating point operations. Imple-
menting floating point support in the kernel, where page tables are
maintained, would be challenging [24]. In hardware, while building
a floating point page walk pipeline is possible, such an approach
would (i) require a significant amount of resources, (ii) waste energy,
and (iii) add unnecessary overhead to the page walk latency. Impor-
tantly, current MMUs support multiple outstanding page walks to
satisfy the wide processor front-end; replicating such an expensive
pipeline would significantly increase the area overhead. Instead,
a practical page walk pipeline would require a learned index that
relies on highly efficient integer computations.

Physical Memory Fragmentation. Physical memory fragmenta-
tion is a major challenge in datacenters. Recent work [95] showed
obtaining large physically contiguous memory regions is infeasible
in Meta’s production environments. To investigate, we conducted
a large-scale study across tens of thousands of servers in Meta’s
datacenters. Figure 3 shows the percentage of free memory imme-
diately allocatable as a contiguous block. Our findings confirm [95]:
contiguous regions of hundreds of megabytes are practically nonex-
istent. This is a key obstacle for existing learned indexes, which
typically run in software and rely on large contiguous memory
for the table storing values corresponding to keys. Notably, how-
ever, we find that small contiguous regions—on the order of a few
hundred kilobytes—remain widely available, even in fragmented
systems. Practical learned indexes must adapt to the granularity of
available physical memory to allocate their leaf page tables.

4 Learned Virtual Memory Design

The goal of Learned Virtual Memory (LVM) is to build an optimal
page table structure that performs single-access address transla-
tions. To this end, LVM introduces a novel learned index design
tailored to the needs of virtual memory translation.

4.1 Overview

Conceptually, LVM aims to replace the fixed hash functions used
in hashed page tables with a learned index. LVM organizes this
index as a hierarchy of models, where each model is responsible
for a subset of the virtual address space. Intuitively, the learned
index predicts the location of page table entries (PTEs). Figure 4
provides a high-level overview of how LVM learns the structure of
the virtual address space and maps it to page table entries.
Starting with Figure 4(a), each application has its own virtual
address space, containing segments such as text, data, and heap. As
in radix page tables, each mapped virtual page number (VPN) has
a corresponding PTE, which specifies the physical page number
(PPN). In radix page tables, the VPN-to-PTE mapping is performed
through a fixed number of intermediate page tables that are indexed
with a subset of the VPN bits. In hashed page tables, the mapping
is identified by passing the VPN through a fixed hash function.
Intuitively, LVM replaces the fixed hash function with a learned
function based on the underlying structure of the virtual address
space. To showcase this point, we next visualize the mapping of
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Figure 4: LVM learns the distribution of virtual addresses and maps them to page tables.

VPN to PTEs in Figure 4(b). In this figure, the x-axis represents the
sorted VPNs, while the y-axis shows the corresponding physical
addresses of PTEs. The goal of LVM’s learned index is to discover
a set of functions that, given a specific VPN as input x, compute
an output y that accurately predicts the physical address of its
corresponding PTE. This concept is central to how LVM operates—
it learns the distribution of VPNs and stores the PTEs at locations
defined by the learned function.

LVM realizes this idea through a hierarchy of models, as shown
in Figure 4(c), which partitions the virtual address space into smaller
subsets that are described by models in internal and leaf nodes.
Intuitively, internal nodes zoom in on a particular subset of the
address space. They take as input the VPN and output the location of
the child node responsible for an even smaller piece of the address
space. Leaf nodes are responsible for the final mapping to page
table entries and take as input the VPN and output the physical
address of the PTE. Internally, the operation of both internal and
leaf nodes is similar. Specifically, since the virtual address space is
highly regular (Section 3.1), LVM leverages simple linear functions
that effectively describe the distribution of the address space shown
in Figure 4(b). LVM stores PTEs in gapped page tables (GPTs), which
are conceptually small arrays of page table entries. Each GPT can
be allocated at different physical address ranges, and hence, LVM
does not impose strict physical contiguity requirements.

Under LVM, the OS maintains the learned index and the gapped

page tables, and the hardware, on a TLB miss, performs lookups
to locate the PTE. As we will discuss later, LVM aims to optimize
the learned index’s structure—including depth, width, and other
parameters—to improve address translation efficiency.
An Address Translation Example with LVM. Next, we describe
an end-to-end translation example with LVM. Consider a page in
the application’s heap with a VPN = 139, as shown in Figure 4(a).
This VPN is mapped by a PTE that is located in the PA 0x8b. The
PTE maps that page to PPN 0xff.

Figure 4(b) shows the VPN of the application in the x-axis, and
(@D shows VPN 139. Based on the distribution of VPNs shown in the
figure, LVM learns a representation of the mapped pages using the
linear function y = 1-x — 97 as shown in (2). Specifically, to identify
the location of the PTE, we set x as the VPN under translation,
and the output y is the physical location of the gapped page table.
Similarly, the pages in the application’s stack are represented by
another linear function (3 in Figure 4(b)).

Putting everything together, Figure 4(c) illustrates a page walk
for VPN = 139. The walk begins at the root node (@), which spans
the entire virtual address space of the application. The root contains
a linear model y = ax + b that uses the input x = 139 to select one
of its child nodes, as shown in step (®. In this case, the root has a
learned function y = 0.01x — 1 to select between its children nodes.
The round-down result of this function with x = 139 directs us to
Modely, which is responsible for the VPN range [100, 150). At step
(©), the selected model computes y = 1x — 97 for x = 139, returning
the physical address 0x8b. This address corresponds to the location
of the target page table entry (PTE) within the per-leaf-node gapped
page table starting at base address PAGgpro. Next, the relevant PTE
cluster is fetched from memory (step (), and the cluster’s VPN tag
is checked to validate the entry. Finally, the retrieved PTE contains
the physical page number (PPN) = oxff.

4.2 A Learned Index for Virtual Memory

In this section, we describe the learned index structure, the under-
lying gapped page table, and the cost model of LVM.

4.2.1 The Learned Index Structure. LVM introduces a novel learned
index design specialized to serve the needs of address translation.
The purpose of the learned index is to identify the location of the
PTEs. The learned index is organized as a hierarchy of models, each
residing logically within a node. This is because a single model
is ineffective at capturing the complete distribution of the keys.
Figure 4(c) shows the overview of LVM’s learned index structure.
There are two types of nodes: internal nodes subdivide the key space
into finer granularities to be handled by their children, and leaf
nodes predict the position of the value associated with a key in the
table. The children nodes evenly divide the address space of a parent
node. The number of children per node is flexible and depends on
the complexity of the key space. This approach enables a pliable
index that can adapt to the needs of different applications. As we
will discuss in Section 4.2.3, the training process is responsible for
defining the depth and width of the hierarchy.

The learned model is the building block of the index. There is an
inherent relationship between the complexity of the model and the
address space it aims to represent. As we saw in Section 3.1, the
virtual address space of applications is highly regular. Consequently,
LVM opts for a linear function of the form y = ax + b. Hence, each
node only needs to store the slope a and the intercept b. This design
decision offers ease of computation (one multiplication and one
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addition) and provides sufficient accuracy when used in a hierarchy.
Furthermore, it greatly enhances the explainability of the model.

Each model is responsible for approximating the cumulative
distribution function (CDF) of its key space and mapping its key
space to its output range, which is either the number of child nodes
(for an internal node) or the size of the table (for a leaf node).
Essentially, each model outputs range - CDF(x), where x is the key.

LVM uses this learned index design for address translation.
Specifically, the key space is the virtual address space of the ap-
plication. The input key is the virtual page number (VPN) under
translation. The output of the leaf node is used to access the gapped
page table holding the PTE, as shown at the bottom of Figure 4(c).

LVM stores all internal nodes at a particular depth consecutively
in physical memory. Hence, each internal node can be uniquely
identified with an offset, obviating the need to output the physical
addresses of the internal child nodes and significantly reducing
the size of each node. This layout does not impose any meaningful
physical memory contiguity requirements as the learned index
models of LVM are tiny, which we will see in Section 7.
Scalability. Because a single function can describe an arbitrarily
large, virtually contiguous space, the learned index remains effi-
cient even as memory usage grows. In contrast, radix and hashed
page table designs require linearly larger MMU caches. For example,
radix page tables need to populate additional entries in the upper
levels of the radix tree as the memory footprint increases. This leads
to cacheability issues since the hardware page walk caches (PWCs)
must also expand—lest additional sequential memory accesses be
needed to traverse the page tables. In contrast, LVM provides long-
term scalability and cacheability in hardware irrespective of the
memory footprint, effectively future-proofing its design. We empir-
ically demonstrate this property of LVM in Section 7.

4.2.2 Gapped Page Tables. Each leaf node in LVM is associated
with its own page table. The model within the leaf node maps the
VPNs to PTEs. To support insertions after the model is built, the
page table is organized as a gapped array [21], resulting in gapped
page tables (Figure 4(c)). Intuitively, the gapped page table contains
additional empty slots, called gaps, that are unoccupied at build time.
This design allows new keys to be inserted and further reduces
collision rates when combined with LVM’s insertion procedure,
which we discuss in Section 4.3.2.

Relaxing Physical Contiguity Requirements. An important
design decision for the gapped page tables is their size. This is be-
cause gapped page tables, similar to regular page tables in radix or
hashed page tables, are allocated in the physical address space. As
we showed in Figure 3, large blocks of physical contiguity are scarce
in real-world datacenters due to fragmentation. Instead, LVM opti-
mizes the design of the gapped page tables for small allocations that
are ample even in highly fragmented environments and eliminates
the need for a large physically contiguous page table. To this end,
LVM maintains different gapped page tables for each leaf node as
shown in Figure 4(c) with different physical addresses. To achieve
this, during training of a leaf node, the physical address of the base
of the gapped page table is added to the index of the PTE in the
table to yield the final output that the leaf model needs to learn. In
the example in Figure 4, this means adding PAgpry to the index
of the PTE in the GPT, using it as the output the leaf model learns.
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Therefore, leaf nodes in LVM output directly the physical addresses
of PTEs in its private table.

Moreover, this per-leaf-node gapped page table design enables
LVM to dynamically adapt to the physical memory fragmentation
status of the system when a leaf node is created. If there is insuffi-
cient physical contiguity for a large table, additional leaf nodes—and
thus separate gapped page tables—can be created to utilize smaller
physical contiguity as low as the base page size, e.g., 4KB in x86 or
64KB for some ARM systems. In the evaluation, we will demonstrate
the adaptability of LVM and show that this approach performs well
even in highly fragmented environments.

4.2.3 Cost Model. The shape of the learned index is critical for
performance and space efficiency. There are three key parameters
that influence the lookup performance of learned indexes in the
context of virtual memory: (i) the depth of the index, which defines
the number of indirections required to traverse the model, (ii) the
branching factor of the nodes, which influences the width of the
model and affects the translation coverage of each node, and (iii) the
collision rate, which determines the number of accesses required
to locate an entry in the underlying table. Generally, increasing
the depth or branching factor allows individual models to handle
smaller segments of the virtual address space, which decreases
collision rates and enhances lookup performance. However, as the
index becomes wider and deeper, traversal times increase, and the
model’s cacheability deteriorates due to its larger size.

To address this trade-off, LVM introduces a principled cost model
to balance these parameters effectively. The cost model employs
a weighted function associated with a specific number of children
(n) for each node under consideration. This function incorporates
the index depth (d), the size of the index in bytes (s), the collision
rate (cr), and the average number of additional memory accesses
per collision (ma). By optimizing this function, LVM finds an equi-
librium that minimizes overall lookup latency while maintaining
efficient space utilization. Specifically, we define the translation
cost C(n) of a node with n children as:

C(n)=x1-d+xy-s+x3-cr-ma (1)

We discuss the tunable weights x; in Section 5. During execution,
the cost model first computes the number of spline points for the
keys within a particular node [50]. Spline points partition the input
key space into segments where simple linear models can accurately
approximate the key distribution. Essentially, the number of spline
points reflects the complexity of the key distribution within the
node—more spline points indicate greater variability. This number
provides a reasonable estimate for the optimal number of child
nodes needed to model the key space effectively. To reduce compu-
tational overhead, the cost model limits its evaluation to +2 around
the estimated number of spline points, allowing the cost model to
quickly assess a few plausible numbers of child nodes, minimizing
the effort required to find the most cost-effective option.

Although the cost model inherently penalizes increasing the in-
dex depth without significant accuracy gains, LVM further enforces
a hard limit on the depth using a parameter d_limit, which bounds
the number of indirections during a lookup, ensuring efficient tra-
versal. Additionally, LVM imposes a constraint on the worst-case
coverage per byte, aiming to match or improve upon the locality
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provided by a radix page table at the same level. Specifically, if a
node does not offer sufficient coverage relative to its size—that is, it
doesn’t map enough of the address space per byte of index—the cost
model prevents the creation of additional child nodes beneath it.
This strategy emphasizes the cacheability of the index by ensuring
that each node is space-efficient. By bounding the depth and cover-
age of the learned index, these two constraints also protect against
pathological cases when the regularity of the virtual address space
is not maintained. Even in a pathological case, LVM’s learned index
would not grow too deep for hardware page walks nor too large to
have good cacheability.

LVM’s cost model is carefully tailored to the needs of virtual
memory systems. Conceptually, the goal is to create a more efficient
hierarchy than the upper layers of a radix tree. In practice, while a
radix tree has a rigid structure, LVM’s cost model enables a flexible
hierarchy that can adjust its depth and width to increase precision
for specific regions of the address space. The model dynamically
adds depth and width by closely following the regularity of the
address space, incorporating additional nodes only where they are
necessary. As we will demonstrate in Section 7, this cost model
leads to indexes that are minimal in size yet highly efficient.

4.3 Learned Index Operations

In this section, we discuss the main operations of LVM.

4.3.1 |Initialization. The learned index is initialized as follows.
Given a set of keys, LVM creates a root node and begins the training
process. This training invokes a cost model that greedily determines
the optimal number of child nodes at each level. When a new branch
is created, the key space is evenly divided into k segments, assign-
ing each child node responsibility for 1/k of the key space. This
recursive process continues for each child node until the cost model
decides that a leaf node should not have any further subdivisions.
The same procedure is applied when rebuilding the model. In the
context of virtual memory, the operating system initializes the index
upon mapping the first page of a process.

4.3.2  Training of the Learned Index. The goal of training the lin-
ear model in a node is to approximate the cumulative distribution
function (CDF) of the keys as closely as possible with minimal
computational cost. Internal nodes and leaf nodes are trained using
two different methods. For internal nodes of the index, the training
process first determines the number of children the node should
have based on LVM’s cost model. Then, the training continues by
allocating memory space for the child nodes. Next, to derive the
model of the internal node, LVM learns a linear function between
VPNs and indexes of children nodes to evenly divide the parent
node’s key space. Because the relationship between inputs and out-
puts can be perfectly represented by a linear function, heavyweight
algorithms are unnecessary.

Leaf nodes are trained differently through a specialized process.
First, LVM queries the OS allocator for physical contiguity (e.g.,
the next available allocation order in the buddy allocator in Linux).
Then based on the available contiguity, LVM adapts the number
of sibling leaf nodes necessary such that a leaf node covers as
many translations as allowed by physical contiguity. A linear model
for a leaf node is then learned using linear regression over the
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(VPN, position) pairs, where position denotes the index of the VPN
in the sorted list of all VPNs within that node. This model is then
scaled by the gapped array scale factor (ga_scale) to disperse the
existing VPNs across a gapped array, leaving empty slots available
for future insertions. After scaling, a table for the node is allocated
in memory with size determined by multiplying the total number of
VPN at the node by ga_scale, ensuring sufficient space for both
current and future VPNs. The page table entries corresponding to
the VPNs are then inserted into the gapped page table array at the
positions predicted by the scaled model. If a predicted location is
already occupied, an exponential search is conducted to find the
next available slot for insertion.

4.3.3 Bounding Mispredictions. As learned indexes are based on
machine learning models, they can incur rare mispredictions during
a lookup. If the predicted location does not result in a hit, then a
binary search is performed within the error bound that is enforced
during the training of the index [51]. For LVM, this is done by
setting the error bound during linear regression such that an upper
bound Ceyy of the number of additional memory accesses is enforced
to ensure efficient address translation even in the worst case. This
approach sacrifices some space efficiency for tighter error bounds
by creating more child nodes during training. More specifically, if,
at a particular leaf node, the error bound cannot be satisfied, LVM
goes back to its parent node and re-evaluates the cost model with a
sufficiently boosted weight x3 for the computational cost of resolv-
ing a collision that will satisfy the error bound in all its children
nodes. Training then returns to the parent node, and more child
nodes are created to subdivide the key space at a finer granularity,
which simplifies the key space each child node is responsible for
and reduces error.

4.3.4 Supporting Efficient Insertion. Insertions are divided into two
categories based on the new key’s relation to the existing key range:
(i) within-bounds inserts and (ii) out-of-bounds inserts. A within-
bounds insert occurs when the new key falls within the existing
range of keys, while an out-of-bounds insert happens when the
new key lies outside the current key range.
Out of bounds inserts close to the edge. LVM optimizes for
the common case of out of bound inserts that happen close to the
existing edge. This is because applications tend to exhibit locality in
page allocations, so newly added pages tend to expand the virtual
address space in a contiguous manner. LVM introduces two new
novel techniques for learned indexes to avoid costly retraining.
The first technique defines the minimum insertion distance which
allows insertions to be processed in batches. Specifically, LVM al-
ways expands the address space by at least the minimum insertion
distance. The benefits are two-fold. First, this approach absorbs
some non-contiguous insertions that are temporary in nature. Sec-
ond, it allows LVM to amortize the fixed computational cost of
insertions over a larger range of keys, further reducing the soft-
ware management cost. Note that LVM’s approach of allocating a
minimum distance only creates page tables ahead of time, and the
actual physical page allocation only happens later on demand. The
second technique relies on rescaling. Specifically, LVM rescales the
leaf node by expanding the gapped page table associated with the
node without modifying the model and inserting the new keys.
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Figure 5: LVM out of bounds inserts close to the edge.

For example, as shown in Figure 5 (a), suppose a leaf node

(Modely) is responsible for keys 500 — 1000 and has its gapped
page table. During an insertion of a new VPN, 1030, first, LVM
records that the key range of this node is expanded to 500 — 1050,
taking into account a hypothetical minimum insertion distance of
50 (Step @ in Figure 5 (b)). Then, the gapped page table is expanded
by 65 slots (Step ), taking into account ga_scale = 1.3. Finally,
the new key for VPN 1030, along with other keys from 1001 — 1050
are inserted into the expanded part of the gapped page table at
locations predicted by the unchanged model (Step (). Note that
this avoids retraining the model or re-inserting the existing keys of
the node: for existing keys for VPN 500 — 1000, since neither the
model nor the location of their PTEs changed, future page walks
still yield the correct PTEs, similarly, the expanded keys follow the
same model. Overall, these techniques, when combined with the
underlying design of gapped page tables, resolve the adaptability
limitation of prior learned indexes, making them suitable for virtual
memory.
Within bounds inserts and out of bounds inserts away from
the edge. If the key to be inserted falls within the current bounds
of the key range, LVM proceeds as follows. LVM queries the model
and attempts to insert the key into the location indicated by the
model. Due to LVM’s gapped array design, the table usually has
empty slots for insertion. In the common case, the location is empty,
and the new key is inserted successfully. Otherwise, in the unlikely
scenario that the slot is occupied, LVM proceeds with retraining
only the leaf node. In the vast majority of cases, the local retraining
is successful, and the new key finds its place within the table.

Finally, if the key is still not inserted, there are two possible
approaches we can take. These approaches are also the same for
out of bounds inserts away from the edge. One approach is to only
rebuild the parent node and try again. This process can continue
recursively until the key is inserted. The other approach is to sim-
ply rebuild the index. In practice, as we will see in Section 7, the
computational cost of rebuilding the model is quite small. Hence,
due to the rarity of these events, LVM opts for a full rebuild.

4.4 Supporting Multiple Page Sizes

LVM efficiently supports multiple page sizes without requiring sep-
arate learned index structures, thereby overcoming the limitations
of hashed page table designs. It leverages the linearity of the learned
index to seamlessly accommodate multiple page sizes within a sin-
gle index. This is achieved by representing different page sizes as
lines with varying slopes in the cumulative distribution function
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Figure 6: Regular and huge pages as represented by LVM.

(CDF) of the keys. Specifically, smaller pages correspond to steeper
slopes, while larger pages correspond to lower slopes. Intuitively,
larger page sizes result in fewer PTEs within a given VPN range,
leading to lower slopes in the learned index.

Figure 6 shows an example virtual address space distribution
with both a 4KB page and a 2MB page. The 4KB page at VPN 142 has
only one VPN in its range of virtual addresses, which gets mapped
to position 42 in the gapped page tables by the learned index. On
the other hand, the 2MB page spans VPNs [1024, 1536). To support
huge pages, LVM trains the learned index based on the VPN of the
first 4KB sub-page i.e., VPN 1024. During a lookup, the 4KB VPN
is derived from the VA to traverse the index. Note that if a huge
page is mapped, 4KB sub-pages inside it cannot also be mapped.
Therefore, lookups using any addresses inside a huge page will
identify a unique translation entry. In the example of Figure 6, any
queries using VPNs between 1024 and 1536 will be rounded down
to the PTE at position 221, yielding the 2MB translation entry.

To identify the page size, the translation entry in the table uses
two bits to encode the size (supporting the 4KB, 2MB, and 1GB pages
in x86). Importantly, LVM can support any number of page sizes
without modifications or additional structures. This is in contrast to
existing radix page tables that rely on rigid page sizes and hashed
page tables [77] that require separate structures and potentially
additional accesses for each page size. We envision that LVM will
enable a new direction where applications can leverage arbitrary
page sizes without hardware changes, unlocking high performance.
We leave this exploration for future work.

4.5 Fixed-Point Arithmetic for Fast Lookups

State-of-the-art learned indexes rely on floating-point operations,
which violates the requirements discussed in Section 3.2. To ease
the implementation of LVM, we introduce an effective quantization
strategy for learned indexes that represents model parameters in
fixed-point values. Specifically, each value in the model consists of
a 44-bit integer part and a 20-bit fractional part. In this way, each
value of a model requires 8 bytes, and each node takes 16 bytes.

4.6 OS and Hardware Support

At a high level, LVM maintains the same abstraction and mecha-
nisms of virtual memory as in radix and hashed page tables.

4.6.1 Operating System. The OS components of LVM build and
manage per-process learned indexes. They include the cost model
along with logic in the page fault handler and generic page walk
logic for the OS to access and modify translations. In terms of
operations, the OS is responsible for initiating, training, and manip-
ulating the learned index and the translations, while the hardware
performs lookups during address translation. We further discuss
our OS prototype of LVM in Section 5.
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4.6.2 Hardware. The changes of LVM are isolated in the hardware
memory management unit (MMU) as depicted in Figure 7. Only
the two shaded components in the MMU are modified compared to
existing architectures, while other components, such as the L1/L2
TLBs, remain unchanged. The page table walker and the page walk
cache (PWC) of the radix page table are replaced by the LVM Page
Table Walker and the LVM Walk Cache (LWC). Each LVM walker
contains an adder and a multiplier that are used to compute the
output of the model. Upon an L2 TLB miss, the LVM page table
walker starts to translate a virtual address to a physical address. It
performs the LVM page walk by traversing through a hierarchy of
learned models, which are cached by the LVM Walk Cache (LWC).
If a requested model is present in LWC, it is supplied to the page
table walker (Step (D); otherwise, it is fetched from main memory
on demand (Step ). After the page walk reaches the leaf node
in the index, the physical address of the page table entry (PTE) is
computed, and the walker fetches it from the memory hierarchy
(Step ®). Similarly to radix, the PTEs can be cached by the data
caches of the processor, but are not cached in the LWC.

Tag (16 bits)
Figure 8: LVM Page Walk Cache Entry.

The LWC is fully associative and stores the slope and intercept
of individual models of the learned index. Figure 8 shows an LWC
entry in details. This design allows LVM to only cache nodes on
demand instead of fetching the whole learned index. The page table
walker fetches 64-byte cache lines, each containing four individual
models. Each model takes 16 bytes of space (slope and intercept).
The page walker stores the learned index node in an LWC entry
and attaches the level and the offset of the node. Furthermore, each
entry in the LWC stores the address space identifier (ASID). This
approach allows LVM to handle context switches without flushes,
similar to PWCs in radix page tables. As we will see in Section 7,
LVM achieves a 3X area reduction over radix page walk caches
while being more scalable.

The OS exposes information required for the hardware page
walk using d_limit control registers (Section 4). LVM adds these
registers that store the base physical address of the internal nodes at
each level in the index. This is similar to how the x86-64 architecture
stores the base address of the page table in the CR3 register.
Virtualization Support. LVM can support virtualization through
nested page tables, similarly to radix page tables. In this environ-
ment, the hypervisor maintains LVM page tables for each VM to
translate guest physical addresses (GPA) to host physical addresses
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(HPA). Similarly, each guest OS maintains LVM page tables to trans-
late guest virtual addresses (GVA) to guest physical addresses (GPA).
Due to the increased performance cost of nested radix page tables,
we expect LVM to provide even higher performance gains.

5 Implementation

5.1 Parameters Used

LVM uses a set of tunable parameters. We empirically set the values
of the tunable weights in the cost model to be x; = 10, x3 = 5, x3 =
200. We define the depth limit of the index d_limit = 3 to mirror
the maximum number of indirections in a traditional radix page
table (LVM has another fetch for the translation entry, bringing
the max possible memory accesses to 4). We set ga_scale = 1.3 to
effectively leave space for future inserts in the table. Finally, we set
the minimum insertion distance to be 64MB, enough to cover most
inserts in applications and not unduly expand the size of the table.

5.2 LVM Operations in the OS

Software lookup. When the translation entry of an already mapped
page needs to be changed or looked up (e.g., a permission change
or checking the accessed or dirty bits), the OS performs the same
page walk operation as the hardware does to obtain the page table
entry. These operations do not modify the index.

Free. When a page is freed to the OS, LVM follows the same steps
as radix page tables by clearing the PTE in page tables, flushing
the TLB, and releasing the physical page. However, LVM opts to
not change the index and keeps the empty space for the PTE in the
table because, first, the OS prefers to keep the virtual address space
contiguous and plugs in holes in the virtual address space with later
allocations, so the space for the entry will likely be reused in the
future by new allocations. Second, memory usage of applications
typically remains relatively stable near their peak usage after their
initialization phase. For workloads that exhibit a peak memory
usage that is significantly higher than their steady-state memory
usage, the OS can rebuild the index and reclaim unused space.
Insert. LVM maps new pages by inserting into the learned page
table as described in detail in Section 4. Physical frame allocations
are deferred until the first access to a page, as in current OSs.
Kernel Mappings. The Linux kernel has a shared kernel address
space mapped to the virtual address space of all processes. LVM
keeps one learned page table for the kernel address space, reducing
memory consumption and also avoiding repetitively training a
different kernel space learned page table for each new process.
ASLR. Address space layout randomization (ASLR) partitions the
virtual address space into distinct parts that are far apart. The OS
exposes the ASLR base addresses to hardware through registers,
removing ASLR effects during LVM training and management. This
approach is transparent to applications, maintains ASLR’s security,
and simplifies the learned index training process of LVM.

TLB Shootdowns. LVM maintains the same TLB shootdown be-
havior as radix page tables. Specifically, TLB shootdowns take place
only when PTEs are modified, e.g., during OS swapping or page
permission changes. During any LVM-specific operation, such as
retraining, insertions, or rescaling, PTEs are not modified and hence
a TLB shootdown is not required.
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LWC Flushes. On regular insertions or rescaling, which are the
most frequent operations, the LVM learned index is not modified
and hence the LWC does not need to be flushed. On the very rare
occasion when an LVM model node is retrained, it causes the cached
entry in the LWC to become stale. In this case, the OS simply flushes
the entry from the LWC. As we will see in the evaluation (Section
7.3), retraining operations, and thus LWC flushes, are very rare,
with an average of two and at most three occurring during the entire
application runtime, taking place at the program initialization.
Multi-threading LVM naturally supports multi-threaded applica-
tions. At a high level, LVM leverages similar locking mechanisms as
in radix page tables. For updates to the PTEs, the table in which the
PTE resides is locked by the OS so that only one thread can perform
the modification at any given time. This locking requirement is
consistent with PTEs being modified in radix page tables, when
the OS acquires a lock associated with the leaf page table. For re-
training, LVM acquires a lock on the parent node during retraining,
preventing concurrent modifications. This is similar to when radix
page tables allocate or free page tables.

5.3 Linux Prototype

We evaluate LVM with a Linux prototype. Specifically, we modify
Linux kernel 5.15 to stream operations that map and unmap pages to
a userspace agent that implements LVM. As the hardware features
of LVM are simulated, we choose to implement LVM in userspace
through an indirection layer for ease of development. Our prototype
maintains LVM for a particular process, including all the necessary
virtual memory operations, including building and training the
learned index, as well as managing the translation tables, including
allocation and free operations. During simulation, we can configure
our prototype to rely solely on LVM for virtual memory operations,
providing a realistic evaluation of its performance. The prototype
is composed of 4200 lines of C and C++.

6 Evaluation Methodology

6.1 Architectural Simulation

We use SST [72], a detailed cycle-level simulation backend, inte-
grated with a QEMU [11] frontend that runs the Linux kernel and
userspace processes for full-system simulation. SST also incorpo-
rates DRAMSim3 [73] for main memory modeling. We model all
the hardware components of LVM, including page walkers, LWCs,
and flush operations. The architectural parameters are shown in
Table 1. The simulation includes all the computational costs of man-
aging LVM, e.g., training, insertions, and rescaling by relying on
our Linux prototype described in Section 5.3.

6.2 Workloads

We consider a wide range of workloads in our evaluation. They in-
clude six workloads from the graphBIG [60] graph benchmark suite:
Breadth First Search (BFS), Depth First Search (DFS), Connected
Components (CC), Degree Centrality (DC), Page Rank (PR), and
Shortest Path (SSSP). They take a Kronecker graph that produces
a runtime memory footprint of 75GB. GUPS is a random access
benchmark from HPC Challenge [55]. MUMmer (MUMr) is a DNA
sequence alignment program from the BioBench2 [4] bioinformat-
ics suite and has a memory footprint of 20GB. Memcached [25]
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Full-System Simulation Parameters

4-issue out-of-order cores at 2GHz
32KB each, 8-way, 1 cycle RT

1MB, 8-way, 20 cycles RT

2MB per core, 16-way, 56 cycles RT
64 entries, 4-way

32 entries, 4-way

2048 entries, 12-way

2048 entries, 12-way

Core

L1-I and L1-D cache

L2 cache

L3 cache

L1 DTLB/ITLB (4KB pages)
L1 DTLB/ITLB (2MB pages)
L2 TLB (4KB pages)

L2 TLB (2MB pages)

Radix Page Walk Cache 3 levels, 32 entries per level, 2 cycles

LVM Page Walk Cache 16 entries, 2 cycles

Cuckoo Walk Cache PMD: 16 entries. PUD: 2 entries. 2 cycles
Cuckoo Page Tables 3 ways. 16384 entry initial size.

Main Memory 128GB, DDR4 3200MT/s, 8 banks, 4 channels
0s Linux Kernel 5.15

Table 1: Architectural Parameters.

(mem$) is a widely used in-memory key-value store. It has a mem-
ory footprint of 124GB. During simulation, we execute 1 billion
instructions in the region of interest of the benchmarks.

6.3 Configurations and Baselines

We compare LVM with four-level radix page tables and elastic
cuckoo page tables (ECPT) [77], a state-of-the-art hashed page table.
We model both designs in detail, including a page walk cache (PWC)
for radix page tables, and for ECPT, we include the Cuckoo Walk
Cache (CWC) and Cuckoo Walk Tables (CWT) that trim the required
parallel accesses for huge pages. The configuration parameters are
shown in Table 1. Furthermore, to get a better understanding of
the upper bound performance benefits, we compare LVM to an
Ideal page table scheme that always requires only a single memory
access to locate the page table entry to complete a page walk. For
every configuration, we consider two page sizes: (i) 4KB, and (ii)
2MB using Linux’s Transparent Huge Pages (THP).

7 Evaluation

In the evaluation, we first present the end-to-end speedups of
workloads in Section 7.1. We also compare the performance of
LVM to three related work, Midgard [34], ASAP [59] and FPT [64].
Next, to understand the sources of the speedups, we investigate
in Section 7.2 the architectural characteristics of LVM regarding
MMU, caches and the memory hierarchy. Then, we characterize the
learned page table data structures of LVM in Section 7.3 in terms
of size, collision rates, memory fragmentation, memory consump-
tion, etc. Finally, we evaluate the hardware properties of LVM in
Section 7.4 using our implementation and synthesis in RTL and a
commercial PDK and compare its area and power to those of Radix
Page Tables.

7.1 End-to-end Speedups.

In Figure 9, we show the end-to-end performance results. We re-
port speedups relative to the 4KB radix page tables. We see that
LVM provides major performance gains. When using 4KB pages,
LVM achieves a 5%-26% speedup over radix page tables, with an
average speedup of 14%. For THP, LVM achieves a 2%-27% speedup
over radix page tables, with the average speedup being 7%. When
compared to ECPT with 4KB, the state-of-the-art hashed page table
design, LVM achieves up to a 7% speedup, with an average speedup
of 5%. These are significant performance gains. Similarly, LVM out-
performs ECPT by 3% when using huge pages. As we will see next,
ECPT achieves good performance by trading latency for increased
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memory traffic due to parallel accesses. LVM outperforms ECPT
and drastically reduces memory traffic for address translation.

Next, to get a better understanding of the upper bound per-
formance of LVM, we compare it to an ideal design that always
requires only a single memory access for locating the page table
entry. LVM achieves performance within 1% of an ideal page table
design on average. Overall, LVM provides significant speedups over
radix page tables and state-of-the-art hashed page table designs,
providing near-ideal address translation performance.
Multi-tenancy. To evaluate the efficacy of LVM in multi-tenant
environments with stacked workloads, we performed additional
simulations with combinations of our workloads on an 8-core setup,
and every workload runs on its own core. The speedups of LVM
remain the same (within 0.5% difference) across configurations.
Multi-threaded Applications. LVM supports multi-threaded
applications as described in Section 5.2. We simulated the graph
workloads with eight threads. LVM maintains its performance gains
and the results remain similar (within 1% difference) across config-
urations. This is because LVM efficiently uses fine-grained locking
for page table modifications and introduces mechanisms (rescaling
and minimum insertion distance) that make retrains exceedingly
rare (Section 7.3).

7.2 Architectural Characterizations.

MMU Overhead. To understand the performance results, we look
at the MMU overhead relative to radix page tables shown in Fig-
ure 10. We measure the total cycles that memory requests spend in
the MMU, including in the TLB and page table walker. Note that
for the 4KB configurations, we normalize the results to Radix with
4KB pages and the THP configurations to Radix with THP. As we
can see from the results, LVM reduces the MMU overhead by an
average of 39% compared to Radix for 4KB pages and by 29% when
using THP. Furthermore, LVM outperforms ECPT by 3%-10% and
8% on average for 4KB pages and by 1%-11% and 8% on average
under THP. In terms of page walk cycles, LVM achieves a 52% re-
duction when using 4KB pages and 44% reduction when using THP
on average compared to radix. In comparison, ECPT achieves only
a 25% reduction in page walk cycles when using 4KB pages and
20% reduction when using THP. In other words, LVM outperforms
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Figure 11: Page walk traffic relative to radix. Results are nor-
malized separately to Radix 4KB and THP.
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Figure 12: Cache MPKI relative to radix page tables.
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ECPT in terms of page walk cycles by 2x. Overall, LVM achieves
significant MMU overhead reduction over Radix and ECPT.

Page Walk Traffic. Next, we examine the MMU overhead reduc-
tion achieved by LVM through an analysis of page walk traffic.
Figure 11 presents the number of memory requests sent to the
cache hierarchy due to page walks. Results for 4KB configurations
are normalized to Radix with 4KB pages, and THP configurations
are normalized to Radix with THP. LVM drastically reduces mem-
ory traffic associated with page walks. Compared to Radix with
4KB pages, LVM reduces page walk traffic by an average of 43%. For
THP, the reduction is similarly significant at 34%. These reductions
represent substantial improvements in MMU efficiency.

When comparing LVM to the state-of-the-art hashed page table,
ECPT, the benefits are even more pronounced. ECPT, on average,
generates 1.7x and 2.1X more memory accesses for page walks com-
pared to Radix with 4KB and THP configurations, respectively. This
is due to ECPT’s design, which employs multiple parallel requests,
trading off reduced latency for significantly increased bandwidth
usage. In contrast, LVM not only surpasses ECPT in terms of end-
to-end performance but also achieves a substantial reduction in
MMU traffic, with 2.9x and 3.1x fewer memory accesses compared
to ECPT 4KB and THP configurations, respectively.

Finally, while not depicted in Figure 11, LVM requires only 1%
additional page walk-induced memory traffic compared to the ideal
page table design, underscoring its efficiency.

Cache Performance. To quantify the impact of page walk traffic,
we examine the misses per kilo instructions (MPKI) for L2 and
L3 caches shown in Figure 12. The results demonstrate that LVM
achieves high cache efficiency. Specifically, the L2 and L3 MPKI of
LVM is, on average, within 1% of that of radix. In contrast, ECPT
exhibits significantly higher MPKI, with increases of 44% in L2 and
40% in L3. This behavior stems from ECPT’s reliance on parallel
accesses to locate a translation, resulting in additional page table
entries being fetched into the caches. This effect is particularly
pronounced in workloads with large page table entry working sets,
such as GUPS, memcached, and MUMmer, where ECPT leads to on
average 72% and 59% higher MPKI in L2 and L3, respectively. This
is expected: as workload memory footprints grow, ECPT’s larger
PTE working set exceeds the capacity of the caches, causing cache
pollution and contention between data and PTEs. In contrast, LVM
efficiently locates translations with a single page table entry lookup
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in the common case, thereby ensuring low translation latency while
maintaining high cache efficiency.

TLB, PWC and LWC Miss Rates. In the simulation, the L2 TLB
miss rates (57.5%-99.4%) remain nearly identical across different
configurations (Radix, ECPT, and LVM) since they solely affect the
page walk process. Radix PWC suffers medium to high miss rates
(59.7%-99.6%) at the PMD level due to limited coverage, while the
upper levels enjoy high hit rates (96.0%—-99.9%) across all workloads.
Among the workloads, graphs exhibit moderate TLB and PWC
miss rates of about 60% to 70%, whereas MUMmer, memcached
and GUPS exhibit very high TLB and PWC miss rates of over 90%.
Instead, the LWC of LVM enjoys high hit rates of above 99% across
all applications due to the small size of the learned index.
Connecting PTW to L1/L2 cache. We consider an additional
configuration that connects the MMU page table walkers to the L1
cache instead of the L2 cache. On average, LVM outperforms radix
by 11% by connecting to the L1 cache and by 14% when connecting
to the L2. Connecting to the L1 enables faster page walks due to
L1 cache hits for page table entries but it significantly increases
cache pressure since page table entries contend at the L1 cache
with regular data. Specifically, while the MMU overhead reduces in
general, radix benefits a bit more as as its sequential multi-access
page walks can now potentially hit at the L1 cache, which has
lower latency. However, the page walk traffic at the L1 drastically
increases the L1 MPKI by 59% for radix, while LVM performs bet-
ter, increasing L1 MPKI less, by 38%. This is because LVM sends
close to 43% less page walk traffic to the caches as we discussed
earlier (Section 7.1). Overall, LVM significantly outperforms radix
irrespective of configuration.

7.3 Learned Page Table Characterization

Collision Rates. Collisions during page walk occur when multiple
VPNs are predicted by the learned index to reside in the same
location in the page table. To characterize the effectiveness of LVM,
we measure collision rates and compare LVM to a hash table that
has a load factor of 0.6 and uses the state-of-the-art hash function
Blake2 [6]. On average, LVM achieves a minimal collision rate of
0.2% for 4KB and 0.6% for THP. This is a drastic improvement over
regular hash tables, which have a collision rate of 22% for 4KB
and 19% for THP. Notably, several graph workloads enjoy near-
zero collision rates under LVM. Overall, LVM achieves a very low
collision rate by tailoring to applications’ virtual address spaces.

Collision Resolution. When there is a collision during address
translation, LVM searches for the actual location of the translation
entry corresponding to the VPN. As we discussed in Section 4,
LVM bounds the number of memory accesses involved in such a
search by enforcing an upper bound of Cerr = 3 when building the
model. To understand how this upper bound behaves in practice,
we characterize the number of additional memory accesses across
our workloads. We identify that the average number of additional
memory accesses per collision across all workloads is 2.36 memory
accesses. Since LVM has collision rates of only 0.6%, it requires a
single-access 99.4% of the time on average across all workloads.

Index Size | bfs pr cc dc | dfs | sssp | gups | mem$ | MUMr
LVM 4KB 112 112 112 112 112 112 96 112 128
LVM THP 192 192 192 192 112 192 112 112 160

Table 2: Index size of LVM in bytes.
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Index Size, Cacheability, and Scaling. In Table 2, we present
the index size in bytes during the steady state. The results show
that LVM requires a minimal index size of 112 bytes and 162 bytes
on average for 4KB pages and THP, respectively. To determine the
appropriate size for the LVM page walk cache (LWC), we analyze
the steady-state and peak index sizes. The peak index size during
the initial training phase averages 570 bytes, after which it stabilizes
to the steady-state size. Because the peak and steady-state indexes
are small, the LWC can be sized to comfortably accommodate the
entire index. As discussed in the next section, the LWC required by
LVM is 3x smaller than that of radix page tables.

Importantly, the learned index size is not dependent on the mem-

ory footprint. For example, memcached uses six times more memory
than MUMmer but requires a smaller index. To better showcase
this property, we conducted a scaling study based on memcached,
where the working set was scaled from 32 GB, to 64 GB, 128 GB,
and 240 GB. The corresponding steady-state index sizes were all
112 bytes. This contrasts sharply with radix page tables, which re-
quire linearly more entries in the page walk caches as the memory
footprint grows, making LVM a future-proof solution.
LVM Overheads in the OS. The operating system is responsible
for managing LVM for each application throughout its lifetime.
The computational costs are included in the simulation as they
occur, including the initialization of the learned index and ongoing
management during simulation. For 4KB pages, the management
overhead averages 1.17% of the total execution time across all work-
loads, with a peak of 1.91% for dfs. A primary reason for the low
computational cost of LVM is its minimal and lightweight retrain-
ing, and beyond the short window of simulation, the overhead
will be even more diluted. For THP, the percentage of time spent
on management is less than 0.01% for all workloads since the OS
has significantly fewer pages to manage. Overall, the management
overhead of LVM is negligible.

We further use our OS prototype to run applications end-to-end
for their complete runtime, far beyond what is possible in simu-
lation, and measure the frequency and the computational cost of
retrainings. Across workloads, the frequency of retraining is very
low. Retrains occur at most 3 times, and 2 times on average. Im-
portantly, retrains are very fast, less than 1.7ms on average and
with the worst case of 1.9ms. This is because application address
spaces remain largely unchanged after initialization, with expan-
sions handled efficiently without retraining (Section 4.3.4). We
further perform a tail latency study with memcached. Our results
show that LVM computational costs do not affect even the 99th
percentile tail latency.

Memory Consumption. Beyond the space of the page tables en-
tries, every page table structure has additional memory overhead—
radix page tables require space for upper-level page tables, and
hashed page tables require over-provisioning of the hash tables to
sit below an occupancy threshold. We compute the overhead of
memory usage of LVM by calculating the additional space used
in comparison to the absolute minimum required: eight bytes for
every translation entry that maps a physical page. The overhead
of LVM comes from the gapped array organization, which, in the
worst case, uses an additional 1.3 times the space for PTEs than
what is absolutely necessary. For example, LVM uses at most an ad-
ditional 12MB of memory compared to the minimum required page
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table for MUMmer with 20GB of memory footprint, while ECPT
uses an additional 27MB. Note that, as we discussed in Section 4.2.2,
gapped page tables are not required to be physically contiguous.
Memory Fragmentation As we discussed in Section 4, LVM
adapts to the available physical memory contiguity in the system.
To this end, we evaluate a range of memory fragmentation levels.
We first limit the available physical contiguity for LVM allocations
to at most 256 KB, which represents 30% of free memory even in
highly fragmented production datacenters as shown in Figure 3.
Furthermore, we study three even more severe levels of fragmen-
tation with a free memory fragmentation index (FMFI) [31, 52] of
0.8, 0.85, and even 0.9. When physical contiguity is limited, LVM
dynamically adjusts the number of leaf nodes based on the avail-
able contiguity during allocation. Importantly, per-node coverage
of LVM remains high, resulting in high LWC hit rates (above 99%).
In practice, such severe fragmentation is not maintainable as the OS
immediately compacts memory to replenish multi-KB contiguity.
Overall, LVM’s performance remains the same in production en-
vironments and even at more aggressive fragmentation levels due
to its ability to dynamically allocate small non-contiguous gapped
page tables based on the available physical contiguity.

7.4 Hardware Characterization

We implemented the page walker of LVM in RTL and synthesized
it in a commercial 22nm PDK, and used CACTI [7] to generate the
SRAMs of the caching structures. Our results show that a page walk
model calculation and lookup in the LWC can be completed in 2 cy-
cles at 2GHz and a single LVM page walker requires 0.000637mm? of
area. The LWC of LVM requires 0.00364mm? of area and 0.588mW
of leakage power, both lower than Radix PWC. The hardware struc-
tures of LVM achieve 3.0%, 1.5x and 1.9X improvement over radix
in terms of size in bytes, area, and power, respectively.

7.5 Additional Comparison to Prior Work
Beyond ECPT, we further compare LVM to additional prior work.

7.5.1  Comparison to ASAP. ASAP [59], which relies on both virtual
and physical contiguity to allocate leaf page tables in contiguous
physical memory and to prefetch them during page walks. ASAP
performs worse than both ECPT and LVM, with average slowdowns
of 3% and 8%, respectively. This performance degradation is pri-
marily due to the prefetcher introducing additional memory traffic
on top of the standard page walk. Moreover, ASAP requires the
operating system to allocate large contiguous regions of physical
memory—potentially hundreds of megabytes—at VMA creation
time. In practice, such large contiguous allocations are difficult to
guarantee [95].

7.5.2  Comparison to Midgard. Midgard [34] reduces address trans-
lation overheads by creating an intermediate Midgard address space
for data in the cache hierarchy, thus avoiding page walks for cache
hits. However, Midgard still relies on radix page tables to access
main memory. We evaluated an ideal Midgard that does not in-
clude any OS overheads. Midgard achieves, on average, a modest
speedup of 3% compared to Radix, and LVM outperforms Midgard
by 11%. This is because memory-intensive workloads exhibit a high
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L3 MPKI, which requires frequent radix page table walks. To fur-
ther test the scalability of Midgard with larger caches, we further
evaluated a Midgard design with twice the LLC slice size per core,
resulting in 4MB LLC slices. Both LVM and Midgard achieve higher
speedups. However, even with such a large LLC capacity, Midgard
achieves only modest speedups over radix of 5%, and LVM still
outperforms Midgard by 11%. Overall, we believe that Midgard
is orthogonal to LVM as a potential design can rely on Midgard
combined with LVM page tables for maximum benefits.

7.5.3 Comparison to Flattened Page Tables. Flattened Page Ta-
bles [64] (FPT) reduce the number of memory accesses per page
walk by folding adjacent levels of Radix Page Tables, but requires
2MB or 1GB pages for folding to succeed. As we show in Figure 3,
there is a limited supply of 2MB or larger physical contiguity in dat-
acenters, which makes flattening difficult in practice. Furthermore,
since it is unlikely that the high latency caused by memory reclaim
or compaction can be tolerated at page fault time, the success rate
of 2MB or larger physical memory allocations will be even lower.
Instead, LVM does not require such large contiguity. Another draw-
back of FPT is that it constrains the concurrent use of multiple page
sizes, e.g., 4KB, 2MB, and 1GB in the same virtual region, depend-
ing on which levels of the radix page tables are folded. Real-world
applications benefit from multiple page sizes [95].

To demonstrate the difficulty of FPT allocations, we ran a simu-
lation of FPT where both L4+L3 and L2+L1 radix page tables are
flattened using 2MB pages. Our results show that in lightly frag-
mented environments, LVM outperforms FPT by 5% while in highly
fragmented environments, the performance of FPT degrades to
that of radix. The main challenge of FPT is that 2MB page table
allocations compete with 2MB page allocations for application data,
which, as a result, can lead to FPT allocating regular radix page ta-
bles, especially as fragmentation increases. On the other hand, LVM
is responsive to the available memory contiguity (Section 4.2.2),
resulting in single-access page walks even with limited physical
memory contiguity. Finally, LVM flexibly supports all page sizes.

8 Related Work

A large body of work has focused on reducing the computational
cost of address translation [10, 27, 29, 30, 33, 34, 36, 38, 47, 52, 56—
58, 62-67,69,70,77,79-81, 84, 87, 88, 92, 94, 95] through alternative
page table structures, large and coalesced translation entries, and
huge page support in the OS.

Relevant to this work is [56], which leverages machine learning
techniques to improve the allocation of huge pages. Other works
have focused on the application of learned indexes for storage
FTL [81] and persistent memory [19, 53]. The most relevant prior
work to LVM is a short paper [58] that applied a learned index [51]
using neural networks to predict translation locations in radix page
tables. This approach did not support insertions and fell back to
traditional page table walks on mispredictions, effectively function-
ing as a prefetching mechanism. The paper concluded that existing
learned indexes were not suitable for address translation due to
their large model sizes and high computational requirements re-
sulting in 120 cycles to produce a PTE location. While the idea was
forward-looking, we believe the primary pitfall of that work was its
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adherence to radix page tables for backward compatibility with ex-
isting operating systems. It further relied on an off-the-shelf learned
index with heavyweight neural network functions originally de-
signed for databases, which introduced significant implementation
challenges. In contrast, LVM reimagines the end-to-end page table
structure to unlock a highly efficient and practical design.

9 Discussion and Future Work

Learned indexes are a promising new class of data structures that
accelerate indexing operations in software. LVM pioneers the first
practical learned index for hardware, specifically for address trans-
lation. To make learned indexes suitable for fast hardware lookups,
LVM employs cost models that bound index depth and size, intro-
duces efficient mechanisms for key updates, fast lookups, and re-
laxes the need for contiguous memory allocations. These advances
are essential to applying learned indexes in hardware.

Looking ahead, the LVM framework can also benefit other hard-
ware caching structures indexed by virtual addresses, such as TLBs,
branch target buffers (BTBs), and L1 caches. Beyond this, we envi-
sion extending LVM to physically indexed structures like last-level
caches. Such structures often suffer from hash-table-like collisions
that cause conflict misses and reduce hit rates. By leveraging light-
weight machine learning, the LVM framework offers a promising
direction to mitigate these collisions and improve performance. We
leave this exploration to future work.

10 Conclusion

We presented Learned Virtual Memory (LVM), a page table structure
that effectively provides optimal single-access address translation.
LVM relies on a novel learned index model that tailors address trans-
lation to the virtual address space of applications. Our evaluation
shows that LVM performs within 1% of an ideal page table.
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