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Abstract
We present an algorithm that derives actions’ effects and pre-
conditions in partially observable, relational domains. Our
algorithm has two unique features: an expressive relational
language, and an exact tractable computation. An action-
schema language that we present permits learning of precon-
ditions and effects that include implicit objects and unstated
relationships between objects. For example, we can learn that
replacing a blown fuse turns on all the lights whose switch is
set to on. The algorithm maintains and outputs a relational-
logical representation of all possible action-schema models
after a sequence of executed actions and partial observations.
Importantly, our algorithm takes polynomial time in the num-
ber of time steps and predicates. Time dependence on other
domain parameters varies with the action-schema language.
Our experiments show that the relational structure speeds up
both learning and generalization, and outperforms proposi-
tional learning methods. It also allows establishing apriori-
unknown connections between objects (e.g. light bulbs and
their switches), and permits learning conditional effects in re-
alistic and complex situations. Our algorithm takes advan-
tage of a DAG structure that can be updated efficiently and
preserves compactness of representation.

1 Introduction
Agents that operate in unfamiliar domains can act intelli-
gently if they learn the world’s dynamics. Understanding
the world’s dynamics is particularly important in domains
whose complete state is hidden and only partial observations
are available. Example domains are active Web crawlers
(that perform actions on pages), robots that explore build-
ings, and agents in rich virtual worlds.

Learning domain dynamics is difficult in general partially
observable domains. An agent must learn how its actions
affect the world as the world state changes and it is un-
sure about the exact state before or after the action. Cur-
rent methods are successful, but assume full observability
(e.g., learning planning operators (Gil 1994; Wang 1995;
Pasula et al. 2004) and reinforcement learning (Sutton
and Barto 1998)), or do not scale to large domains (re-
inforcement learning in POMDPs (Jaakkola et al. 1994;
Littman 1996; Even-Dar et al. 2005)), or approximate the
problem (Wu et al. 2005).
Copyright c© 2006, American Association for Artificial Intelli-
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In this paper we present a relational-logical approach to
scaling up action learning in deterministic partially observ-
able domains. Focusing on deterministic domains and the
relational approach yields a strong result. The algorithm that
we present learns relational schema representations that are
rich and surpass much of PDDL (Ghallab et al. 1998). Many
of the benefits of the relational approach hold here, includ-
ing faster convergence of learning, faster computation, and
generalization from objects to classes.

Our learning algorithm uses an innovative boolean-circuit
formula representation for possible transition models and
world states (transition belief states). The learning algo-
rithm is given a sequence of executed actions and perceived
observations together with a formula representing the initial
transition belief state. It updates this formula with every ac-
tion and observation in the sequence in an online fashion.
This update makes sure that the new formula represents ex-
actly all the transition relations that are consistent with the
actions and observations. The formula returned at the end
includes all consistent models, which can be retrieved then
with additional processing.

We show that updating such formulas using actions and
observations takes polynomial time, is exact (it includes all
consistent models and only them), and increases the for-
mula size by at most a constant additive (without increas-
ing the number of state variables). We do so by updating
a directed acyclic graph (DAG) representation of the for-
mula. We conclude that the overall exact learning problem is
tractable, when there are no stochastic interferences; it takes
time O(t · pk+1), for t time steps, p predicates, and k the
maximal precondition length. Thus, this is the first tractable
relational learning algorithm for partially observable rela-
tional domains.

These results are useful in deterministic domains that in-
volve many objects, relations, and actions, e.g., Web min-
ing, learning planning operator schemas from partially ob-
served sequences, and exploration agents in virtual domains.
In those domains, our algorithm determines how actions af-
fect the world, and also which objects are affected by ac-
tions on other objects (e.g., associating light bulbs with their
switches). The understanding developed in this work is also
promising for relational structure in real-world partially ob-
served stochastic domains. It might also help enabling rein-
forcement learning research to extend its reach beyond ex-



plicit or very simply structured state spaces.
Related Work Our approach is closest to (Amir 2005).
There, a formula-update approach learns the effects (but not
preconditions) of STRIPS actions in propositional, deter-
ministic partially observable domains. In contrast, our algo-
rithm learns models (preconditions and effects) that include
conditional effects in a very expressive relational language.
Consequently, our representation is significantly smaller,
and the algorithm scales to much larger domains. Finally,
our algorithm can generalize across instances, resulting in
significantly stronger and faster learning results.

Another close approach is (Wu et al. 2005), which learns
action models from plans. There, the output is a single
model, which is built heuristically in a hill-climbing fash-
ion. Consequently, the resulting model is sometimes incon-
sistent with the input. In contrast, our output is exact, and
the formula that we produce accounts for exactly all of the
possible transition models (within the chosen representation
language). Furthermore, our approach accepts observations
and observed action failures.

Another related approach is structure-learning in Dy-
namic Bayes Nets (Friedman et al. 1998). This approach
addresses a more complex problem (stochastic domain), and
applies hill-climbing EM. It is a propositional approach, and
consequently it is limited to small domains. Also, it could
have unbounded errors in discrete deterministic domains.

In recent years, the Relational Paradigm enabled impor-
tant advances (Friedman et al. 1999; Dzeroski and Luc
De Raedt 2001; Pasula et al. 2004; Getoor 2000). This
approach takes advantage of the underlying structure of the
data, in order to be able to generalize and scale up well. We
incorporate those ideas into Logical Learning and present a
relational logical approach.

We present our problem in Section 2, propose several rep-
resentation languages in Section 3, present our algorithm in
Section 4, and evaluate it experimentally in Section 5.

2 A Relational Transition Learning Problem
Consider the example in Figure 1. It presents a three-room
domain. It is a partially observable domain – the agent can
only observe the state of his current room. There are two
switches in the middle room, and light bulbs in the other
rooms; unbeknownst to our agent, the left and right switches
affect the light bulbs in the left and right rooms, respectively.

The agent performs a sequence of actions: switching up
the left switch and entering the left room. After each action,
he gets some (partial) observations. The agent’s goal is to
determine the effects of these actions (to the extent he can),
while also tracking the world. Furthermore, we want our
agent to generalize: once he learns that switching up the
left switch causes it to be up, he should guess that the same
might hold for the other switch.

We define the problem formally as follows.
Definition 2.1 A relational transition system is a tuple
〈Obj,Pred,Act,P,S,A,R〉
• Obj,Pred, and Act are finite sets of objects in the world,

predicate symbols, and action names, respectively. Pred-
icates and actions also have an arity.

GoTo(lRoom)

t=1

t=2

t=3

SwUp(lSw)

Figure 1: An action-observation sequence. The left part presents
the actions and actual states timeline, and the right illustrates some
possible 〈World-State,Transition-Relation〉 pairs at times 1,2,3, re-
spectively. Every row is a transition-relation fragment related to
the action sequence. A star indicates the agent’s location.

• P is a finite set of fluents of the form p(c1, ..., cm), where
p ∈ Pred, c1, .., cm ∈ Obj.

• S ⊆ Pow(P) is the set of world states; a state s ∈ S is the
subset of P containing exactly the fluents true in s.

• A ⊆ {a(c̄) | a ∈ Act, c̄ = (c1, .., cn), ci ∈ Obj, }, ground
instances of Act.

• R ⊆ S ×A× S is the transition relation.
〈s, a(c̄), s′〉 ∈ R means that state s′ is the result of per-

forming action a(c̄) in state s. In our light bulb world,
Obj={lSw, rSw, lBulb, rBulb, lRoom,...}, Act={GoTo(1),

SwUp(1), SwDown(1)}, Pred={On(1), Up(1), At(1)}, P={
On(lBulb), On(rBulb), Up(lSw), Up(rSw), At(lRoom),..}

Our agent cannot observe the state of the world completely,
and he does not know how his actions change it. One way
to determine this is to maintain a set of possible world-states
and transition relations that might govern the world.
Definition 2.2 (transition belief state) Let R be the set of
transition relations on S,A. A transition belief state ρ ⊆
S × R is a set of pairs 〈s,R〉, where s is a state and R a
transition relation.
The agent updates his transition belief state as follows after
he performs actions and receives observations.
Definition 2.3 Simultaneous Learning and Filtering of
Schemas (SLAFS) ρ ⊆ S × R a transition belief state,
a(c̄) ∈ A an action. We assume that observations ō are
logical sentences over P .
1. SLAFS[ε](ρ) = ρ (ε: an empty sequence)
2. SLAFS[a(c̄)](ρ) = {〈s’,R〉 | 〈s,a(c̄),s’〉 ∈ R, 〈s,R〉 ∈ ρ}
3. SLAFS[o](ρ) = {〈s,R〉 ∈ ρ | o is true in s}
4. SLAFS[〈aj(c̄j), oj〉i≤j≤t](ρ) =

SLAFS[〈aj(c̄j), oj〉i<j≤t] (SLAFS[oi](SLAFS[ai(c̄i)](ρ)))

We call step 2 progression with a(c̄) and step 3 filtering with
o. The intuition here is that every pair 〈s′, R〉 transitions to
a new pair 〈s̃, R〉 after an action. If an observation discards
a state s̃, then all pairs involving s̃ are removed from the set.



We conclude that R is not possible when all pairs including
it have been removed. Note that we are interested in deter-
ministic domains, i.e. for every s, a(c̄) there is exactly one
s′; if the action fails, we stay in the same state. An extension
to domains in which there is at most one s′ is easy.

EXAMPLE The right part of Figure 1 illustrates a
(simplified) transition belief state, consisting of three 〈s,R〉
pairs, and the way it is updated. At the beginning, the agent
considers three possibilities: all pairs agree on the initial
state (the light is currently off in the left room), but they sug-
gest different transition relations. Each chain illustrates the
way the state of the world changes according to one of the
relations (with respect to the specific action sequence): The
first pair suggests that both actions do not affect the light, the
second suggests that entering the room turns on the light, and
the third associates the light with flipping the switch. After
performing both actions, the agent observes that the light is
on in the left room. This observation contradicts the first
pair, so we eliminate it from his belief state.

3 Representing Transition Belief States
The naı̈ve approach for representing transition belief states,
enumeration, is intractable for non-trivial domains. We ap-
ply logic to represent transition belief states more compactly
and to make learning tractable; later, we show how to solve
SLAFS as a logical inference problem, while maintaining a
compact representation of our transition belief state.

For humans, the action of opening a door and opening a
book is the same meta-action; in both cases, the object will
be opened. We try to capture this intuition.

Our logical languages represent transition belief states,
using ground relational fluents from P (representing the
state of the world), and action-schemas, which are propo-
sitions that represent the possible transition relations. In-
formally, schemas correspond to if-then rules; together,
they are very similar to actions’ specification in PDDL
(Ghallab et al. 1998). For example, a schema in
our language is causes(SwUp(x),Up(x),TRUE) (switch-
ing up an object causes it to be up, if TRUE). This
schema represents a set of instances– ground transi-
tion rules, e.g. causes(SwUp(lSw),Up(lSw),TRUE) and
causes(SwUp(rSw),Up(rSw),TRUE).
Definition 3.1 (Schemas) A schema is a proposition of the
form causes(a(x1, ..., xn), F,G) (read: a(x̄) causes F if
G). a ∈ Act is an n-ary action name, x̄ are n different
symbols, F (the effect) is a literal and G (the precondition)
is a sentence, both over PPat which we now define. W.l.g., G
is a conjunction of literals; otherwise, we can take its DNF
form and split it to several schemas of this form.

Let Pat be a set of symbols that includes {x1, x2, ...}. PPat
is the set of patterned fluents over Pat:
PPat = {p(y1, ..., ym) | p ∈ Pred, y1, .., ym ∈ Pat}.

In other words, a schema is a transition rule containing
variables. Its instances can be calculated by assigning ob-
jects to these variables; the result is a ground transition rule
causes(a(c̄), F,G) for a ∈ A,F,G over P . That is, every
patterned fluent (Up(x)) becomes a fluent (Up(lSw)) after the
assignment. In order to compute the instances, we may need

to know some relations between objects, e.g. which switch
controls which bulb. The set of possible relations is denoted
by RelatedObjs (see SL-H below).

Definition 3.2 (Transition Rules Semantics) Given a
state s and a ground action a(c̄), the resulting state s′

satisfies every literal F which is the effect of an activated
rule (a rule whose precondition held in s). The rest of the
fluents do not change– in particular, if no precondition held,
the state stays the same. If two rules with contradicting
effects are activated, we say that the action is not possible.

We now present several languages to represent schemas,
starting from our most basic language.
SL0: The Basic Language In this language, Pat =
{x1, x2, ...}. For any schema causes(a(x1, ..., xn), F,G),
F and G include only symbols from x1, ..., xn. An instance
is an assignment of objects to x1, ..., xn. No related objects
are needed (we set RelatedObjs = {TRUE}).
Examples include causes(SwUp(x1),Up(x1),TRUE),
causes(PutOn(x1, x2),On(x1, x2),Has(x1) ∧ Clear(x2))
(you can put a block that you hold on another, clear one).
Any STRIPS domain can be represented in SL0. Note that
SL0 can only describe domains in which every action a(c̄)
can affect only the elements in c̄; the following extensions
are more expressive.
SL-V: Adding Quantified Variables Some domains
permit quantified variables in effects and precondi-
tions; there, an action can affect objects other than
its parameters. For example, causes(sprayColor(x1),
Color(x2, x1),RobotAt(x3) ∧ At(x2, x3)) (spraying color x1

causes everything at the robot’s location to be painted).
Pat is still {x1, x2, ...}, but F,G can include any symbol

from Pat. {x1, ..., xn} are the action’s parameters, c̄ (thus,
they are specified by the action a(c̄)). {xn+1, ...} represent
free variables. Similarly to PDDL, free variables that ap-
pear in the effect part of the schema are considered to be
universally quantified, and those that appear only in the pre-
condition part are considered existentially quantified. In the
previous example, x2 is universally quantified and x3 is ex-
istentially quantified. No related objects are needed.

In a more expressive variant of SL-V, the variables range
only over objects that cannot be described any other way–
that is, they do not range over the action’s parameters, c̄ (and
in richer languages, not over their functions). This allows
us to express defaults and exceptions, as in ”blowing a fuse
turns every light bulb off, except for a special (emergency)
bulb, which is turned on”, or ”moving the rook to (c1, c2)
causes it to attack every square (x, c2) except for (c1, c2)”.
If Pred includes equality, we can use a simpler variant.
SL-H: Adding Hidden Object Functions Pat =
{x1, x2, ...} ∪ {h1, h2, ...}. We write h1 as a short-
hand for h1(x̄). This extension can handle hidden
objects– objects that are affected by an action, although
they do not appear in the action’s parameters. For
example, the rules causes(SwUp(lSw),On(lBulb),TRUE),
causes(SwUp(rSw),On(rBulb),TRUE) are instances of the
schema causes(SwUp(x1),On(h1(x1)),TRUE) (flipping up



switch c1 causes its light bulb, h1(c1), to turn on. Note
that h1 is a function of the action’s parameters, which does
not change over time). SL-H includes related object propo-
sitions, which specify these functions: {hj(d̄) = d′ |
di ∈ Obj, d′ ∈ Obj ∪ ⊥}. ⊥ means ’undefined’. Every
relobjs ∈ RelatedObjs completely specifies those functions.
Other Possible Extensions: Extended Hidden Objects: in
SL-H, the hidden objects depended only on the action’s pa-
rameters. We add to the language new functions, that can
depend on the quantified variables as well. We add their
specifications to RelatedObjs. (example schema: OpenAll
causes all the doors for which we have a key to open)

Invented Predicates: sometimes the representation of
the world does not enable us to learn the transition
model. For example, consider a Block-world with predicates
On(x,y),Has(x); this suffices for describing any world state,
but we cannot learn the precondition of Take(x): it involves
universal quantification, ∀y.¬On(y,x). If we add a predicate
Clear(x), it is easy to express all of the transition rules (in-
cluding those that affect Clear) in our language. This idea is
similar to the ones used in Constructive Induction and Pred-
icate Invention (Muggleton and Buntine 1988).

We can also combine the languages mentioned above. For
example, SL-VH allows both variables and hidden objects.

4 Learning Via Logical Inference
In this section we present a tractable algorithm that solves
SLAFS exactly. The algorithm maintains a formula that rep-
resents the agent’s transition belief state. In order to main-
tain compactness, the formula is represented as a DAG (di-
rected acyclic graph). The algorithm can be applied to any
schema language.

4.1 Update of Possible Transition Models
Algorithm Overview (see Figure 2): We are given ϕ, a
formula over P and a schema language. ϕ represents the
initial belief state (if we know nothing, ϕ =TRUE). For ev-
ery fluent, f , we maintain a formula, explf (intuition: the
explanation of f ’s value). This formula is updated every
time step, s.t. it is true if and only if f currently holds. An-
other formula, kb, stores the knowledge gained so far (by
ϕ, the observations, and the actions that were performed).
We make sure that those formulas do not involve any fluent
(proposition from P ). To do this, we add new propositions
to the language, initf . Those propositions represent the ini-
tial state of each fluent. kb and explf can only involve those
propositions and schema propositions.

At the beginning (steps 1-2 in DAG-SLAFS), we initial-
ize kb and explf according to ϕ, using those new proposi-
tions. Then we iterate: every time step, we progress with
the action and filter with the observation. Procedure DAG-
SLAFS-STEP updates explf according to successor-state
axioms (see below, and in procedure ExplAfterAction), and
adds the assertion that the action was possible (procedure

1If the language does not involve related objects, assume Re-
latedObjs={TRUE}.

2Implementation depends on the schema language used.

PROCEDURE DAG-SLAFS(〈ai(c̄i), oi〉0<i<≤t, ϕ)
input: an action-observation sequence and a formula over P
1: for f ∈ P do explf = a new proposition initf
2: kb = replace every occurrence of f ∈ P by initf in ϕ

{Lines 1-2: Preprocessing of ϕ }
3: for i=1...t do
4: DAG-SLAFS-STEP(ai(c̄i), oi) { Process Sequence }
5: return

V
f∈P (f ↔ explf ) ∧ kb ∧ base

PROCEDURE DAG-SLAFS-STEP(a(c̄), o)
input: a(c̄) an action, o an observation
1: for f ∈ P do
2: kb = kb ∧ PossibleAct(f,a(c̄))
3: expl′f = ExplAfterAction(f,a(c̄))
4: ReplaceFluents(expl′f )

5: ReplaceFluents(kb)
6: for f ∈ P do explf = expl′f { 1-6: Progress with action }
7: kb = kb ∧ o
8: ReplaceFluents(kb) { 7-8: Filter with observation }

PROCEDURE PossibleAct(f,a(c̄))
input: f ∈ P , a(c̄) an action
1: ψ = TRUE
2: for relobjs ∈ RelatedObjs 1 do
3: Compute all schema-instance pairs with effect f ,

{(sch+,inst+)}, and those with effect ¬f , {(sch-,inst-)},
regarding action a(c̄) and relobjs. 2

4: ψ = ψ ∧ relobjs→
¬[(
W

sch+ ∧ prec(inst+)) ∧ (
W

sch- ∧ prec(inst-))]
{ the action is possible if relobjs is true }

5: return ψ
PROCEDURE ExplAfterAction(f,a(c̄))
input: f ∈ P , a(c̄) an action
1: ψ = TRUE
2: for relobjs ∈ RelatedObjs do
3: Compute all schema-instance pairs with effect f ,

{(sch+,inst+)}, and those with effect ¬f , {(sch-,inst-)},
regarding action a(c̄) and relobjs.

4: ψ = ψ ∧ relobjs→
[
W

sch+ ∧ prec(inst+)] ∨ [f ∧ ¬(
W

sch- ∧ prec(inst-))]
{ f ’s value after the action if relobjs is true }

5: return ψ
PROCEDURE ReplaceFluents(ψ)
input: ψ a formula
1: for f ∈ P do replace f by a pointer to explf in ψ

Figure 2: DAG-SLAFS

PossibleAct) to kb. Both updates insert fluents into our for-
mulas; we use ReplaceFluents to replace the fluents for their
(equivalent) explanations. This is done using pointers to the
relevant node, so there is no need to copy the whole formula.

DAG-SLAFS-STEP also adds the observation to kb, and
uses ReplaceFluents to eliminate fluents.

After every iteration, the updated ϕ is kb ∧ ∧f∈P (f ↔
explf ). At the end, we return it conjoined with base, which
is a formula that each transition relation must satisfy; we use
it to ensure that we return only legal relations.
base := baserelobjs∧



∧
a,F,G ¬(causes(a, F,G) ∧ causes(a,¬F,G))∧
a,F,G→G′ [causes(a, F,G′)→ causes(a, F,G) ]

and baserelobjs is a formula that the related objects must sat-
isfy. It depends on the schema language used.

(EXAMPLE– BUILDING THE DAG:) In Figure 3 we see
how explOn(lBulb) is updated after the first action, SwUp(lSw).
The DAG in Figure 3 is the formula expl’On(lBulb) (after up-
date). The node labeled ”expl” is the root of the DAG before
the update. The bottom nodes (the leaves) are the propo-
sitions: This is a simplified example, so we only show two
relobjs nodes– (p1,p2), and two schemas– tr1,tr2. tr1 claims
that switching up an object x causes its hidden object, h(x)
to become on. tr2 claims that it turns off everything that is
currently on. p1,p2 relate the left switch with the left and
right light bulbs, respectively.
The→ nodes (second layer) correspond to different cases of
relobjs. The ∨ node is the explanation of On(lBulb) in case
p1 holds. Its left branch describes the case that the action
caused the fluent to hold– tr1 is true, and its preconditions
hold; the right branch deals with the case that On(lBulb) held
before the action, and the action did not change it (that is,
either tr2 is false, or its precondition does not hold). The
formula in Figure 3 can be simplified, but this is an opti-
mization that is not needed for our algorithm.

∧

→ →

∨

p1

¬

p2tr1 tr2T F

∧∧
∧

.....

.....

.....

h(lSw)=
lBu

h(lSw)=
rBu

init
On(lBu)

SwUp(x)
causes

¬On(y)
 if On(y)

SwUp(x)
causes
On(h(x))

 if T

expl'

expl

Figure 3: a (simplified) update of On(lBulb) after the first action,
SwUp(lSw)

UPDATING THE FORMULAS– A CLOSER LOOK: Given
relobjs, a ground action a(c̄) and a fluent f , we want to up-
date explf and kb. To do this, we first identify the instances
that can affect fluent f , and the schemas they correspond to.

Denote by (sch+,inst+) a schema-instance pair that can
cause f . inst+ is a transition rule with effect f , which is
an instance of schema sch+. In other words– if the schema
is true in our domain, and the precondition of the instance
(prec(inst)) holds, f will hold after the action. Similarly,
(sch-,inst-) is a pair that can cause ¬f . We need relobjs and
a(c̄) to match schemas and instances.

Fluent f is true after the action if either (1) a schema sch+
is true and the precondition of its instance holds, or (2) f
holds, and for every schema sch- that is true, no precondition
holds. kb asserts that the action was possible; it cannot be
the case that there are two schema-instance pairs, such that

their effects are f and ¬f , and both preconditions hold.
We assume that the sequence consists of possible actions;

if the agent has a way to know whether the action was pos-
sible, we do not need this assumption.
Theorem 4.1 DAG-SLAFS is correct. For any formula ϕ
and a sequence of actions and observations
{〈s,R〉 that satisfy DAG-SLAFS(〈ai(c̄i), oi〉0<i<≤t, ϕ)} =

SLAFS[〈ai(c̄i), oi〉0<i<≤t]({〈s,R〉 that satisfy ϕ}).
PROOF OVERVIEW we define an effect model for action

a(c̄) at time t, Teff(a(c̄), t), which is a logical formula con-
sisting of Situation-Calculus-like axioms (Reiter 2001). It
describes the ways in which performing the action at time
t affects the world. We then show that SLAFS[a(c̄)](ϕ) is
equivalent so consequence finding in a restricted language
of ϕ∧ Teff(a(c̄), t). Consequence finding can be done by re-
solving all fluents that are not in the language; we show that
DAG-SLAFS calculates exactly those consequences.

COMPLEXITY In order to keep the representation
compact and the algorithm tractable, we implement the algo-
rithm to maintain a DAG instead of a flat formula. This way,
when ReplaceFluents replaces f by explf , we only need to
update a pointer, rather than copying the expression again.
This allows us to recursively share subformulas.
Let ϕ0 be the initial belief state, |Obs| the total length of
the observations (if observations are always conjunctions of
literals, we can omit it), t is the length of the sequence.
The maximal precondition length, k, is at most min{k′ |
preconditions are k’-DNF}. Let pairs be the maximal num-
ber of schema-instance pairs for an action a(c̄). Let ra, rp be
the maximal arities of actions and predicates, respectively.
Theorem 4.2 With the DAG implementation, DAG-SLAFS’s
time and space (formula size) complexities are O(|ϕ0| +
|Obs| + t · k · pairs) We can maintain an NNF-DAG (no
negation nodes) with the same complexity.

If we allow preprocessing (allocating space for the leafs):
In SL0, pairs = (2|Pred| · rarp)k+1. In SL-H with f func-
tions, pairs = |RelatedObjs|(2|Pred| · (ra + f)rp)k+1. In
SL-V without existential quantifiers, |P |rp · (2|Pred| · (ra +
rp)

rp)k+1, and with them- |P |(k+1)rp · (2|Pred| · (ra + (k+
1)rp)

rp)k+1. If we add invented predicates, we increase
|Pred| accordingly.

Since ra, rp and k are usually small, this is tractable.
Interestingly, SL0 (and some cases of SL-H) allow run-
time that does not depend on the domain size (requiring
a slightly different implementation). Importantly, SL0 in-
cludes STRIPS.
If there are no preconditions (always executable actions), we
can maintain a flat formula with the same complexity.

Note: The inference on the resulting DAG is difficult
(SAT with |P | variables). The related problem of tempo-
ral projection is coNP-hard when the initial state is not fully
known.
Using the model Our algorithm computes a solution to
SLAFS as a logical formula; we can use a SAT solver in
order to answer queries about the world state and the tran-
sition model. If the formula is represented as a DAG, we
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Figure 4: Left: Time and space for several Block-Worlds (numbers represent |P |). As can be seen, the time and space do not depend on the
size of the domain. Slight time differences are due to a hash table. Right: Inference time on DAG-SLAFS’ output, for several simple queries.

use an algorithm which adapts DPLL for DAGs (we have
created such an implementation– see Section 5). Note that
the number of variables in the formula is independent of the
length of the sequence. Therefore, we can use DPLL-DAG
and SAT solvers for very long sequences. We can also use
bias (McCarthy 1986) to find minimal models. Preferential
bias is well studied and fits easily with logical formula.

5 Experimental Results
We implemented and tested DAG-SLAFS for SL0 and for
a variant of SL-V; we also implemented a version for the
case of always-executable actions, which returns a flat for-
mula. In addition, we implemented a DPLL SAT-search al-
gorithm for DAGs. It finds satisfying assignments for the
algorithm’s output. We tested the SLAFS algorithms on
randomly generated partially observable action sequences,
including STRIPS domains (Block-Worlds, Chess, Driver-
log), and ADL, PDDL domains (Briefcase, Bomb-In-Toilet,
Safe, Grid) of various size, ranging from tens to thousands
of propositional fluents.

Figures 4, 6 present some of our results. We measured
the time, space, knowledge rate (percentage of schemas that
were learned, out of all the schemas currently in the knowl-
edge base), and learning rate (percentage of schemas that
were learned, out of all of the schemas that could have been
learned from the given sequence). A schema is learned, if
all models assign the same truth value to it.

As expected, the algorithm takes linear time and space in
the sequence length, and does not depend on the domain’s
size (Figure 4 ). Importantly, simple SAT queries return rela-
tively fast, especially regarding schemas which were contra-
dicted by the sequence. Naturally, more complicated queries
take longer time.

Decreasing the number of observations also resulted in
long inference time: in the Bomb-In-Toilet domain, we gen-
erated several action-observation sequences, with different
degrees of observability (from full observability to 10% of
the fluents). Then, we then chose 40 transition rules at
random, and checked how many of them were learned for
each sequence. Not surprisingly, both learning and inference
were faster when the number of observations was higher. If
there are no observations we can still eliminate some mod-
els, since we know that the actions were possible.

Another important point is that, most of the schemas that
can be learned are learned very quickly, even for larger
domains. In most domains, more than 98% of schemas were
learned after 200 steps (Figure 6). This is mainly because
the number of action schemas does not depend on the size
of the domain, e.g. all Block-Worlds have exactly the same
number of schemas. Compare this with the decreasing
knowledge rate in the propositional approach of (Amir
2005). The latter does not generalize across instances, and
the number of encountered (propositional) transition rules
grows faster than those that are learned.

(dunk ?bomb ?toilet) causes (NOT (armed
?bomb)) if (NOT (clogged ?toilet))
(dunk ?bomb ?toilet) causes (clogged
?toilet) if (TRUE)
(dunk ?bomb ?toilet) causes (toilet
?toilet) if (TRUE)
(flush ?toilet) causes (not (clogged
?toilet)) if (TRUE)
-----------------
(dunk ?bomb ?toilet) causes (NOT (armed
?bomb)) if (AND (bomb ?bomb) (toilet
?toilet) (NOT (clogged ?toilet)))
(dunk ?bomb ?toilet) causes (clogged
?toilet) if (TRUE)
(flush ?toilet) causes (not (clogged
?toilet)) if (toilet ?toilet)

Figure 5: Possible Models of the Bomb-Toilet World (Top:
after 5 steps. Bottom: after 20 steps)

In another comparison, we ran sequences from (Wu et al.
2005), and each one took our algorithm a fraction of a sec-
ond to process. We also cross-validated our output and the
output of (Wu et al. 2005) with a known model. We found
that several outputs of (Wu et al. 2005) were inconsistent
with the action-observation sequence, while the true model
was consistent with our final transition belief state.

Note that their algorithm returns one (approximate)
model, whereas our algorithm return a formula that repre-
sents all consistent models. Figure 5 shows two models of
Bomb-In-Toilet world. Those models were found by run-
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Figure 6: Block Worlds. Left: SLAFS learning rate. Right: SLAF (Amir 2005) and SLAFS knowledge and learning rates.

ning our DPLL algorithm on the resulting DAG after 5 and
20 steps, respectively, and returning the first satisfying as-
signment. The second model (20 steps) is more refined than
the first one, and is quite close to the real model.
Trying a schema language that is too weak for the model (for
example, trying SL0 for the Briefcase World) resulted in no
models, eventually.

6 Conclusions
We presented an approach for learning action schemas in
partially observable domains. The contributions of our work
are a formalization of the problem, the schema languages,
and the tractable algorithm. Our results compare favorably
with previous work, and we expect to apply and specialize
them to agents in text-based adventure games, active Web
crawling agents, and extensions of semantic Web services.

Significantly, our approach is a natural bridge between
machine learning and logical knowledge representation. It
shows how learning can be seen as logical reasoning in com-
monsense domains of interest to the KR community. It fur-
ther shows how restrictions on one’s knowledge represen-
tation language gives rise to efficient learning algorithms
into that language. Its use of logical inference techniques
(especially resolution theorem proving served in proving
correctness of our theorems) and knowledge representation
techniques makes it applicable to populating commonsense
knowledge bases automatically.

6.1 Criticism and Future Directions
Firstly, our work is not robust to noise (because of its logical
nature). This limits its potential utility. Naı̈ve ways to handle
noise will affect the efficiency of the inference.

Several other topics need to be addressed: How does ob-
servability affect learning? How does the choice of schema
language affect it? Also, a more detailed analysis of conver-
gence to the correct underlying model is needed.
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