(© 2007 by Dafna Shahaf. All rights reserved.

LOGICAL FILTERING AND LEARNING IN PARTIALLY OBSERVABLE WORLDS

BY
DAFNA SHAHAF

B.Sc., Tel-Aviv University, 2005

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2007

Urbana, Illinois

Abstract

Agents often need to act intelligently under uncertainty. Two main sources of uncertainty are partial observability and
unknown world dynamics: in partially observable domains, agents do not know the complete state of the world (for
example, they can only observe their immediate surroundings). In partially known worlds, the agents do not know
how their actions affect the world.

We present algorithms for tracking the state of the world and learning its dynamics. Our algorithms derive actions’
effects and preconditions in partially observable, relational domains. They have two unique features: an expressive
relational language, and an exact tractable computation. An action-schema language that we present permits learning
of preconditions and effects that include implicit objects and unstated relationships between objects. For example, we
can learn that replacing a blown fuse turns on all the lights whose switch is set to on.

The algorithms maintain and output a relational-logical representation of all possible action-schema models after a
sequence of executed actions and partial observations. Importantly, our algorithms take polynomial time in the number
of time steps and predicates. Time dependence on other domain parameters varies with the action-schema language.

Our tractability result is interesting because it contrasts sharply with intractability results for structured stochastic
domains. The key to this advance lies in using logical circuits to represent belief states; this structure can be up-
dated efficiently and preserves compactness of representation. We also report on a reasoning algorithm (answering
propositional questions) for our circuits, which can handle questions about past time steps (smoothing).

We evaluate our algorithms extensively on popular AI domains. Our experiments show that the circuit structure
is indeed more compact than the previous representations. Moreover, the relational structure speeds up both learning

and generalization, and outperforms propositional learning methods, sometimes by orders of magnitude.

il

To my parents, for their absolute confidence in me.

-g_c_rc_ﬁ

e BBE SO0 WOURS
H"'}'; O TR NDED (AN

Hopelul parents

©FarWorks, Inc.

v

Acknowledgments

Many people have been a part of my graduate education, as friends, teachers, and colleagues. I would like to take the
opportunity and thank them all.

First and foremost, I would like to thank my thesis advisor, Eyal Amir, who has been nothing short of amazing. 1
appreciate his many useful comments on this work, but even more so, I appreciate his friendship, his support (and his
confidence that I should not go to New Mexico). I know of no advisor as dedicated and committed to his students.

A special thanks goes to my boyfriend, Rodrigo de Salvo Braz, who made life so much more enjoyable. I thank
him for everything he has done for me, especially snow fights, crunches and endless nitpicking. Trust me, it is a rare
combination.

I have been very fortunate to gain many friendships at Urbana. I especially wish to thank Yoav Sharon, for making
me smile in Kickapoo; Yaniv Eytani, for perspective; Deepak Ramachandran, for tirelessly trying to bridge culture
gaps; Alok Baikadi, for Amish farms and giant George; Arie Ratinov, for flashlight stories; and my research group,
for many fruitful discussions and one axe.

I also wish to thank all my friends in Israel, who miraculously managed to keep in touch with me. Special thanks
to Eyal Ron and Tal Galili; I miss you, you know.

I have received support from many other people, both in UIUC and in Israel. In particular, I wish to thank Sariel
Har-Peled, Dan Roth, Steve LaValle, Nachum Dershowitz, Gal Kaminka, and Shay Bushinsky, for words of
wisdom any time I needed them (even in India).

Last, but not least, I thank my family for being behind me. This thesis is dedicated to you.

[It would be a long list to mention all the other friends I am indebted to. I gratefully thank all of them. If your name

was not listed, rest assured that my gratitude is not less than for those listed above.]

For financial support, I thank the Department of Computer Science and the Siebel Scholars Foundation. This work
was supported by a Defense Advanced Research Projects Agency (DARPA) grant HR0011-05-1-0040, a DAF Air
Force Research Laboratory Award FA8750-04-2-0222 (DARPA REAL program), and the National Science Founda-
tion CAREER award grant IIS 05-46663.

Table of Contents

Listof Tables o o v i i it i i it e e i i i e e ettt ettt viii
Listof Figures v i i i i i i i i i i i e e it ettt et oot oot o s e oo snseeneas ix
Listof Abbreviations i i i i i it i ittt i e e e e e X
Listof Symbols o i i it e xi
Chapter 1 Introduction ¢ it i i ittt vttt ot oo tonseseeenososeenos 1
1.1 HowtoRead this Thesis 3
Chapter 2 Logical Filtering 0 i i i i ittt i i e e ettt e e e 5
2.1 Introduction e e 5
2.1.1 Related Work L 5

2.2 Logical Filtering o e e e e 7

23 CircuitFiltering oL 9
2.3.1 Representation e 9

232 C-Filter o o e e 10

2.3.3 Query Answering with a Belief-State Formula 13

24 Extended Example e e 14

2.5 Analysisand Complexity e e e e 17
2.5.1 COITECINESS . .« « v v v v v i e e e e e e e e e e e e e e e e e 17

2.5.2 C-Filter Complexity o e e e e 20

2.5.3 Projection e e e e 20

2.5.4 Representation Complexity e 21

2.5.5 The Non-DeterministicCase i 22

2.6 Experimental Evaluation 23

2.7 ConcluSiOnS e 24
Chapter 3 Learning in Partially Observable Worlds 26
3.1 Introduction e e e e e e e 26
3.1.1 RelatedWork 26

3.2 A Transition Learning Problem 28
3.2.1 Extended SLAF Example e 30

3.3 Learning Transition Models with Logical Circuits 31
33.1 Representation e e e 32

332 Circuit Representation e 33

3.3.3 Meta-Algorithm Overview o e 34

3.4 Transition Relation Languages e e e 37
34.1 STRIPS . . . o e 37

342 Ground e e e e 39

343 Relational L 41

vi

344 Logical Languages for the Relational Case 41

345 Extended Example e 45

3.5 AnalysiS e e e e 46
3.5.1 Correctness and complexity 46

3.6 Experimental Evaluation 48

377 ConCluSions o v vt e e 52
Chapter4 Applications i i i i i i i ittt ittt ittt ettt 53
4.1 Conformant Planning L 53
4.1.1 Analysiso 57

4.1.2 EXtensions e e e e 57

4.1.3 Optimizations v v it e e e e e e e e e e e e e 58

4.1.4 Preliminary Experimental Results 60

4.1.5 Conclusions e 60

4.2 Formal Verification e 61
421 QUETIES o e e e e 61

422 EXPEriMents v v v vt it e e e e e e e e e e e e e e e e 64

423 Conclusions and Future Work Lo 66

Chapter 5 Conclusions o i it i it ittt ittt ettt oo oo oo oesoseensss 67
Referenceso o i i i i i it ittt et i i e e e et e e e e e e e e e e 68
L 72

vii

List of Tables

4.1 Comparison: Conformant Planners

viii

List of Figures

2.1
2.2
23
24
2.5
2.6
2.7
2.8
29

3.1
32
33
34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13

4.1
4.2
43
4.4
4.5
4.6
4.7

Filtering example: aconveyorbelt 8
A belief-state update example e 9
C-Filter Algorithm e 11
Updating the belief-state circuit L 12
Updating the belief-state circuit: extended example 16
NNF-C-Filter Algorithm e e e e e e e 21
Experimental evaluation of Filtering: time and comparison 23
Experimental evaluation of Filtering: overview of Al-Planning domains 23
Experimental evaluation of Filtering: time to findamodel 24
Learning example: arobot in a service elevatoro 28
A transition belief-state update exampleo Lo 30
Circuit example: initial transition belief-state 33
Meta-C-SLAF Algorithm e 35
Updating the transition belief-state circuit: elevatorexample 36
C-SLAFS Algorithm e e e e 43
Circuit example with schemas and related objects 46
Experimental evaluation of C-SLAF : learningrate 48
Experimental evaluation of C-SLAF e 49
Experimental evaluation of C-SLAF : a model of the Safe World 49
Experimental evaluation: C-SLAFS e e 51
Experimental evaluation of C-SLAFS : Possiblemodels 51
Experimental evaluation: learning rates, SLAF vS. SLAFS . . . o v v v v i i i e e 52
Conformant Planning case: acorridor 53
Forward-Search Algorithm e 54
Conformant Planning: a belief-state circuit update example 56
Experimental evaluation of Conformant Planning: comparison of space and time for SAT 59
C-Filter-BMC Algorithm e 63
Empirical evaluation: BMC e e 64
Experimental evaluation of BMC e 65

iX

List of Abbreviations

SLAF Simultaneous Learning and Filtering
CNF Conjunctive Normal Form

DNF Disjunctive Normal Form

NNF Negation Normal Form

DBN Dynamic Bayesian Network

BDD Binary Decision Diagram

CP Conformant Planning

BMC Bounded Model Checking

LTL Linear Temporal Logic

CTL Computation Tree Logic

List of Symbols

& =2 N

P
D

ActDesc
Obj
Pred
Act

1

G

A setof propositional fluents oL 7
Asetof worldstates L 7
Asetofactions 7
Transition function L 8
Beliefstate e 8
Belief-state formula 9
Domain description 9
Longest description of anaction 20
Asetofobjects e 41
Asetof predicate symbols. L e e 41
Asetofactionnames e e e e e e 41
In Conformant Planning: Initial states 53
In Conformant Planning: Goal states, 53

X1

Chapter 1

Introduction

Soon her eye fell on a little glass box that was lying under the table: she opened it, and found in it a very

small cake, on which the words “EAT ME” were beautifully marked in currants. “Well, I'll eat it,” said
Alice, “and if it makes me grow larger, I can reach the key; and if it makes me grow smaller, I can creep
under the door: so either way I'll get into the garden, and I don’t care which happens!”

Lewis Carroll, Alice’s Adventures in Wonderland

Reasoning about dynamic systems is fundamental to many applications in Artificial Intelligence (AI). Much work
in Planning, Verification, and Learning applies system models whose state changes over time. Applications use these
dynamic-system models to diagnose past observations, predict future behavior, and make decisions. Example domains
are active Web crawlers (that perform actions on pages), robots that explore buildings, and agents in rich virtual worlds.

In this thesis we are interested in fundamental tasks and structures in partially observable domains. In those
domains the initial state of the system is not known and the state is not observed fully. We investigate and present
theoretical results and algorithms for two reasoning tasks that are fundamental in such domains: Filtering (tracking

the state of the world) and Learning (of domain dynamics).

Filtering Filtering is the task of finding the set of states possible (belief state) after a sequence of observations and
actions, starting from an initial belief state. Agents that operate in partially observable domains can act intelligently if
they can detect possible current states of the world, on the basis of the past.

Logical Filtering in large deterministic domains is important and difficult. Planning, monitoring, diagnosis, and
others in partially observable deterministic domains estimate the belief state (e.g., (Biere et al., 1999; Cimatti and
Roveri, 2000; Bertoli et al., 2001a; Petrick and Bacchus, 2004)) as part of performing other computations. This
estimation is difficult because the number of states in a belief state is exponential in the number of propositional
features defining the domain.

Several approaches were developed that represent belief states compactly in logic (e.g., BDDs (Bryant, 1992), Log-
ical Filter, and database progression (Winslett, 1990; Lin and Reiter, 1997)) and update this representation. However,

none of them guarantees compact representation, even for simple domains. (Amir and Russell, 2003), for instance,

guarantees compactness and tractability only for sequences of STRIPS actions whose preconditions are known to hold.
Most importantly, the straightforward approach to Logical Filtering (deciding if a clause should be in the belief state
representation of time ¢ + 1, based on the belief state of time t) was shown to be coNP-complete (Liberatore, 1997b).

In this thesis we show that solving the update problem in its entirety is easier (done in poly-time) than creating the
new belief state piecemeal. We present C-Filter— the first exact, tractable Logical Filtering algorithm that can handle
any deterministic domain. Importantly, both time (to compute a belief state) and space (to represent it) do not depend
on the domain size. Furthermore, the number of variables in the resulting formula is at most n, the number of state
features (compare this with n - ¢, the number of variables used in Bounded Model Checking (Clarke et al., 2001)).

We extend C-Filter to NNF Circuits (no internal negation nodes), and show that similar space and time bounds
hold for this more restricted representation. We further show how to reason with an output circuit, including smooth-
ing (queries about the past). Our results are also useful from the perspective of representation-space complexity;
they sidestep previous negative results about belief-state representation (Section 2.5.4) and intractability results for
stochastic domains.

The key to our advance lies in using logical circuits to represent belief states instead of traditional formulas. We
show that updating a logical circuit formula amounts to adding a few internal connectives to the original formula. We
take advantage of determinism: a feature is true after an action iff the action made it true or it was already true and the
action did not change that. Interestingly, our empirical examination suggests that other graphical representations (e.g.,
BDDs) do not maintain compact representation with such updates.

C-Filter applies to many problems that require belief-state update, such as Bounded Model Checking and planning
with partial observability. The attractive nature of this approach is that we can apply standard planning techniques

without fear of reaching belief states that are too large to represent.

Learning Filtering assumes a known environment. That is, the agents know the action model that governs the world.
In unknown, partially observable domains the problem becomes a lot more challenging: not only do the agents need
to keep track of the state of the world, but also to learn the dynamics of the world.

Learning domain dynamics is difficult in general partially observable domains. An agent must learn how its actions
affect the world as the world state changes and it is unsure about the exact state before or after the action. Moreover,
since the immediate effects cannot be observed, actions’ effects tend to mix with each other.

Current methods are successful, but assume full observability (e.g., learning planning operators (Gil, 1994; Wang,
1995; Pasula et al., 2004) and reinforcement learning (Sutton and Barto, 1998)), or do not scale to large domains
(reinforcement learning in POMDPs (Jaakkola et al., 1994; Littman, 1996; Even-Dar et al., 2005)), or approximate

the problem (Wu et al., 2005).

In this thesis we present a relational-logical approach to scaling up action learning in deterministic partially ob-
servable domains. Focusing on deterministic domains and the relational approach yields a strong result. The algorithm
that we present learns relational schema representations that are rich and surpass much of PDDL (Ghallab et al., 1998).
Many of the benefits of the relational approach hold here, including faster convergence of learning, faster computation,
and generalization from objects to classes.

Like our Filtering algorithm, our learning algorithm uses a boolean-circuit formula representation for possible
transition models and world states (transition belief states). The learning algorithm is given a sequence of executed
actions and perceived observations together with a formula representing the initial transition belief state. It updates
this formula with every action and observation in the sequence in an online fashion. This update makes sure that the
new formula represents exactly all the transition relations that are consistent with the actions and observations. The
formula returned at the end includes all consistent models, which can be retrieved then with additional processing.

We show that updating such formulas using actions and observations takes polynomial time, is exact (it includes
all consistent models and only them), and increases the formula size by at most a constant additive (without increasing
the number of state variables). We do so by updating a directed acyclic graph (DAG) representation of the formula.
We conclude that the overall exact learning problem is tractable, when there are no stochastic interferences; it takes
time O(t - p**1), for ¢ time steps, p predicates, and k the maximal precondition length. Thus, this is the first tractable
relational learning algorithm for partially observable relational domains.

These results are useful in deterministic domains that involve many objects, relations, and actions, e.g., Web
mining, learning planning operator schemas from partially observed sequences, and exploration agents in virtual
domains. In those domains, our algorithm determines how actions affect the world, and also which objects are affected
by actions on other objects (e.g., associating light bulbs with their switches). The understanding developed in this
work is also promising for relational structure in real-world partially observed stochastic domains. It might also help

enabling reinforcement learning research to extend its reach beyond explicit or very simply structured state spaces.

1.1 How to Read this Thesis

The sections in this paper are mostly self contained. A reader that is only interested in applying some of the algorithms
can go safely to their respective section.

The rest of this work is organized as follows. Chapter 2 presents the Filtering problem (tracking the state of
the world) formally, our logical language and circuit representation (Section 2.3.1). It also presents an algorithm,
C-Filter , for updating belief-states as circuits (Section 2.3.2). It also discusses query answering with circuits and the

non-deterministic case.

Chapter 3 extends the problem to unknown domains. It presents SLAF (Simultaneous Learning and Filtering), and
an efficient meta-algorithm that uses our circuit representation. To turn the meta-algorithm into an algorithm family,
we present several logical languages to represent transition relations; we pay special attention to the relational case
(Section 3.4.3).

We describe two applications in Chapter 4: Conformant Planning and Bounded Model Checking. Each chapter

includes analysis, empirical evaluation and conclusions. Chapter 5 concludes the whole thesis.

Chapter 2

Logical Filtering

2.1 Introduction

Much work in Al applies system models whose state changes over time (e.g. Planning and Verification). Applications
use these dynamic-system models to diagnose past observations, predict future behavior, and make decisions. Those
applications must consider multiple possible states when the initial state of the system is not known, and when the state
is not observed fully at every time step. One fundamental reasoning task in such domains is Logical Filtering (Amir
and Russell, 2003). It is the task of finding the set of states possible (belief state) after a sequence of observations and
actions, starting from an initial belief state. Filtering allows us to answer queries about the current state: could we
have reached a bad state? Are we necessarily in a goal state?

Logical Filtering in large deterministic domains is important and difficult. The main computational difficulties
with Filtering are 1) the time needed to update the belief state, and 2) the space required to represent it. These depend
on the nature of the transition model, which describes how the environment evolves over time, the observation model,
which describes the way in which the environment generates observations, and the family of representations used to
denote belief states.

In this chapter we show that solving the update problem in its entirety is easier (done in poly-time) than creating
the new belief state piecemeal. We present C-Filter — the first exact, tractable Logical Filtering algorithm that can
handle any deterministic domain. Importantly, both time (to compute a belief state) and space (to represent it) do not
depend on the domain size. Furthermore, the number of variables in the resulting formula is at most n, the number of

state features (compare this with n - ¢, the number of variables used in Bounded Model Checking (Clarke et al., 2001)).

2.1.1 Related Work

This chapter is based on (Shahaf and Amir, 2007).
Research related to filtering in logical contexts is divided into logical reasoning methods for dynamic systems and
logical representation languages.

(Amir and Russell, 2003) is the closest to our approach. This paper presents classes of logical languages for which

Filtering remains compact.

(Kumar and Russell, 2006) showed efficient filtering indefinitely for actions whose effects are representable as
connected row-convex constraints (CRC).

Early on, it was pointed out that logical filtering is easy for deterministic systems with a known initial state
(Fikes et al., 1972; Lin and Reiter, 1997). Filtering in nondeterministic domains is more difficult. In particular, the
related problem of temporal projection is coNP-hard when the initial state is not fully known, or when actions have
nondeterministic effects (Eiter and Gottlob, 1992; Nebel and Backstrom, 1992; Liberatore, 1997b; Amir, 2002; Baral
et al., 2000).

Thus, computational approaches to logical filtering enumerate states, apply standard logical reasoning, or modify
logical formulae that represent states. We survey these approaches now.

The simplest approaches enumerate the world states possible in every belief state and update each of those states
separately, together generating the updated belief state (Kaelbling et al., 1998; Ferraris and Giunchiglia, 2000; Cimatti
and Roveri, 2000; Bertoli et al., 2001b). This has the benefit of simplicity, but it is impractical when there are too
many possible worlds, e.g., when the domain includes more than a few dozens of fluents and there are more than 24°
possible states.

The second set of approaches list the sequence of actions and observations (Reiter, 2001; Sandewall, 1994; Lifs-
chitz, 2000) and prove queries on the updated belief state (e.g., by SAT solving (Selman et al., 1992; Moskewicz et al.,
2001)). These have the benefit that they can be used for complex systems (Clarke et al., 2001), but they are impractical
when the number of time steps is too long (e.g., more than 100 actions).

The third set of approaches is closest ours, namely, updating logical formulae. These approaches update a belief
state representation as a propositional (or other) formula. They do so backward in time by regression (from query
about time ¢ to a different query about time 0) (Reiter, 1991; Reiter, 2001), or progress a belief-state formula from
time O to time ¢ (Fagin et al., 1983; Val and Shoham, 1994; Val, 1992; Liberatore, 1997a; Lin and Reiter, 1995; Lin
and Reiter, 1997).

Results on regression for deterministic systems show that a step of regression is doable in polynomial time (e.g.,
(Reiter, 2001)), but multiple steps take exponential time and space due to the growth in formula size with every
regression step.

Progression is done with Ordered Binary Decision Diagrams (OBDDs) (Bryant, 1992; Cimatti et al., 2002a) most
times. These approaches are impractical in general because the formula sizes involved explode with the number
of action steps. Furthermore, they are hard to compute in general (e.g, for OBDDs the update time is sometimes
exponential in the number of state variables), and little success was reported on finding tractable classes or better

representations.

Further approaches approximate the belief state representation (Son and Baral, 2001; Williams and Nayak, 1996;
Doucet et al., 2000; Bertsekas and Tsitsiklis, 1996; Kearns et al., 2000). These approaches are natural directions of
research, and bounding or quantifying the approximation is the main difficulty with them. Without such quantification
these approaches may yield unacceptable mistakes in applications. Another difficulty with current approaches is the
demand for an approximation that fits the given problem (if one exists).

Filtering probabilistic systems (e.g., (Doucet et al., 2000)) is the problem of determining the posterior distribution
over the current state, given all the evidence to date. Logical filtering is the corresponding problem in logical systems.
Probabilistic filtering is more difficult, and has received much attention in control theory in the past 50 years, as
described above.

Logic-based languages for representing actions and change focus on expressivity and natural specification. Exam-
ples include Action Languages (Giunchiglia and Lifschitz, 1998; Son and Baral, 2001)), Situation Calculus (McCarthy
and Hayes, 1969; Reiter, 2001) and others (Miller and Shanahan, 1999; Thielscher, 1998; Sandewall, 1994).

In this respect, our work assumes a specification in a simple propositional language similar to (Winslett, 1990). Our
choice of this language is motivated by its proximity to propositional logic (thus, easy to analyze). It is not restrictive
in principle because specifications in other languages can be translated into ours. Nonetheless, our tractability results
describe restrictions to this language, and these restrictions would likely reflect differently in other languages.

This chapter is structured as follows: we present the problem of Logical Filtering formally in Section 2.2. We
proceed to describe our representation and algorithm in Section 2.3 and give an extended example of our method. We

evaluate our algorithm analytically (Section 2.5) and experimentally (Section 2.6). Finally, we conclude.

2.2 Logical Filtering

We proceed to describe the problem of Logical Filtering (tracking the state of the world), hereby referred to as Fil-
tering. Imagine an assembly robot that can put items together in order to construct some machine. The parts are
randomly oriented, and they must be brought to goal orientations for assembly. At the beginning, the parts are located
on a conveyor belt. Each part drifts until it hits a fence perpendicular to the belt, and then rotates so one of its edges is
aligned against the fence (see Figure 2.1). A sensor measures that edge, providing partial information about the part’s
orientation (partial, because the part can have some edges of equal length, and the sensor might be noisy). The robot
can then rotate a part (by a certain, discrete amount) and place it back on the belt, or pick it up and try assembling it.

We now define the problem formally (borrowed from (Amir, 2005)).

Definition 2.2.1 (Deterministic Transition System) A transition system is a tuple (P, S, A, R). P is a finite set of

propositional fluents, S C Pow(P) is the set of world states. A state contains exactly the fluents that are true in it. A

is a finite set of actions, and R: S x A — S is the transition function.
Executing action a in state s results in state R(s,a). R may be partial. In our example,

P = { OnBeli(partl), PartOfAssembly(partl), Touch(partl-el), Touch(partl-e2), ... },
A = { PickUp(partl), Assemble(partl), Rotate(part1,90), ... }

In the sequel we assume an implicit transition system.

Figure 2.1: A conveyor belt: the triangle drifts down, hits the fence and rotates. The edge touching the fence is then
measured.

Our robot tries to keep track of the state of the world, but it cannot observe it completely. One possible solution
is to maintain a belief state— a set of possible world states. Every pC S is a belief state. The robot updates its belief

state as the result of performing actions and receiving observations. We now define the semantics of Filtering.

Definition 2.2.2 (Filtering Semantics (Amir and Russell, 2003)) p C S, the states that the robot considers possi-
ble, a; € A. We assume that observations o; are logical sentences over P.
1. Filter[e](p) = p (e: an empty sequence)
2. Filter[a](p) = {s' | ¢ = R(s,a), s € p}
3. Filter[o](p) = {s € p | o is true in s}
4. Filter[{aj, 05)i<;j<i](p) =
Filter[(a;, 0;)i<j<i] (Filter[o;](Filter[ai](p)))

We call step 2 progression with a and step 3 filtering with o.

Every state s in p becomes ' = R(s,a) after performing action a. After receiving an observation, we eliminate
every state that is not consistent with it.

Figure 2.2 illustrates a belief-state update. Imagine that the robot has an isosceles right triangle (edges of size
1,1,\/5), and one of the 1-edges is currently touching the fence. There are two possible orientations ((a) and (b), left
part). After rotating the triangle 90 degrees, each possible state is updated (middle part). If the world state was (a), we
should see a 1-edge again. Otherwise, we expect to see the v/2-edge. After observing a 1-edge (right part), the robot

eliminates (b) from his belief state, leaving him only with (a). That is, the robot knows the orientation of the triangle.

(a) @ 7 (a)
s |
l— — a
(b)) ~ 1
N
Action: Observation:
Rotate(90) Length=1

Figure 2.2: A belief-state update with a 1,1,3/2 triangle. Left: Possible initial states. Middle: Progressing with
Rotate(90)- rotating the triangle by 90° and putting it on the belt again. Right: After observing length=1, state (b) is
eliminated.

2.3 Circuit Filtering

Filtering is a hard problem: there are 22" belief states, so naive methods (such as enumeration) are intractable for
large domains. Following (Amir and Russell, 2003), we represent belief states in logic. Their solution provides the
foundations for our research, but it guarantees an exact and compact representation only for a few classes of models
(e.g. restricted action models, belief-states in a canonical form). We use logical circuits (not flat formulas) in order
to extend their results to all deterministic domains. In this section we describe our representation and explain how to

update it with an action-observation sequence, and how to reason with the result.

2.3.1 Representation

A belief-state p can be represented as a logical formula over some P’ D P: a state s is in p iff it satisfies ¢ (s A

is satisfiable). We call @ a belief-state formula. We represent our belief state formulas as circuits.

Definition 2.3.1 (Logical Circuits) Logical Circuits are directed acyclic graphs. The leaves represent variables, and
the internal nodes are assigned a logical connective. Each node represents a formula— the one that we get by applying

the connective to the node’s children.

We allow the connectives A, V, —. = nodes should have exactly one child, while A,V can have many. In Corollary
2.5.6 we explain how to avoid internal — nodes (for NNF).

We use logic to represent R, too: a domain description D is a finite set of effect rules of the form “a causes F' if
G”, for a an action, F' and G propositional formulas over P. W.l.g., F' is a conjunction of literals. The semantics of

these rules is as follows: after performing « in state s, iterate through its rules. If the rule’s precondition G holds in

s, its effect F will hold in R(s, a). If this leads to a contradiction, a is not possible to execute. The rest of the fluents
stay the same; if no preconditions hold, the state does not change (we can also make action failure lead to a sink state).
Consider the triangle in Figure 2.2. If the triangle is on the belt, action a = Rotate(90) will rotate it, so the touching

edge will change: el to e2, e2 to 3, e3 to el. a’s effect rules are:

“a causes Touch(e2) N\ —Touch(el) if OnBelt() N\ Touch(el)”
“a causes Touch(e3) N\ —Touch(e2) if OnBelt() \ Touch(e2)”
“a causes Touch(el) N\ —Touch(e3) if OnBelt() N\ Touch(e3)”

2.3.2 C-Filter

We described how domains and belief-states are represented; we can now present our Circuit-Filtering algorithm,

C-Filter .

Algorithm Overview

C-Filter is presented in Figure 2.3 and demonstrated in Section 2.4. It receives an action-observation sequence, an
initial belief state formula, ¢, over P, and a domain description D. It outputs the filtered belief state as a logical
circuit.

The algorithm maintains a circuit data structure, and pointers to some of its nodes. A pointer is a variable that
holds the address of some node; a pointer to a node represents the formula which is rooted in that node (and they
will be used interchangeably). We maintain pointers to the following formulas: (1) A formula cb (constraint base) —
the knowledge obtained so far from the sequence (receiving observations and knowing that actions were possible to
execute constrains our belief state). (2) For every fluent f€ P, a formula expl; this formula explains why f should be
true now (in Figure 2.4, the node marked e(7Tchl) is the explanation formula of Touch(el) at time ¢, and the root node
is the explanation at time ¢ + 1).

We keep the number of variables in our representation small (|P|) by allowing those formulas to involve only
fluents of time 0. In a way, this is similar to regression: expl, expresses the value of fluent f as a function of the
initial world state, and cb gives the constraints on the initial state.

The belief state is always cb A A fe p(f < expl;). In other words, a possible model should satisfy cb, and each
fluent f can be replaced with the formula expl .

In the preprocessing phase, we extract data from the domain description (Procedure C-Filter , line 1). We then
create a node for each fluent, and initialize the expl ¥ pointers to them. We also create a circuit for the initial belief-

state, ¢ (using the expl; nodes), and set the cb pointer to it (lines 2-3). Then we iterate through the sequence, update

! Cause(a,f) represents the conditions for a to cause f, extracted from the domain description (See (*))

10

PROCEDURE C-Filter({a;, 0;)o<i<t,®, D)
{a; actions, o; observations, ¢ an initial belief state over P,
D domain description}
[Preprocess D, ¢]

1: ProcessDomain(D, (a;)o<i<t)
: for f € P do expl, := anew proposition fo
cb := TimeO(p)

[SSIN]

Process sequence

4: fori=1totdo

5: ProgressAction(a;)

6 FilterObservation(o;)

7: return cb A N\, p(f < exply)

PROCEDURE ProgressAction(a)
{a an action}

Update cb: a executed, thus was possible.
Get f’s next-value explanation:
a caused f, or f held and a did not cause — f
1: for f € Effects(a) do
2: cb := cb N\ Time0O(Poss(a,f))
3: expl’; := TimeO(NextVal(a,f))
4: for f € Effects(a) do expl; := expl’;

PROCEDURE FilterObservation (o)
{0 an observation over P}

1: ¢b := cb N\ Time0(0)

PROCEDURE Time0(1))
{1 aformula}
Return an equivalent circuit over time 0]
I: for f € P in 4 do replace f with the node pointed by expl
2: return 1

PROCEDURE ProcessDomain (D, (ai)o<i<t)
{D a domain description, a; actions}
[Extract "Next Value” and "Possible” Formulas |
1: for f € P,a € (a;) do
2: NextVal(a,f) := Cause(a,f) V (f A ~Cause(a,~f)) "
3: Poss(a,f) := —(Cause(a,f) N Cause(a,—f))
4 (optional: Simplify Formulas)

Figure 2.3: C-Filter Algorithm

the circuit and the pointers with every time step (lines 4-6, see below), and finally return the updated belief state.

A Closer Look

The circuit is constructed as follows. In the preprocessing stage, we extract some useful formulas from the domain

description. Let Effects(a) be the set of fluents that action a might affect. For each f in this set, we need to know how

a can affect f. Let Cause(a,f) be a formula describing when a causes f to be true. It is simply the precondition of

the rule of a causing f to hold (if there are several, take the disjunction; if there are none, set it to FALSE). That is, if

s = Cause(a,f) and a is possible to execute, f will hold after it. Cause(a,—f) is defined similarly.

For example, take a = Rotate(90) (Section 2.3.1). Then

11

Effects(a)={Touch(el), Touch(e2), Touch(e3)}

Cause(a,Touch(el)) = OnBelt() \ Touch(e3)
Cause(a,— Touch(el)) = OnBelt() N\ Touch(el) (*)

Procedure ProgressDomain then constructs the formula NextVal(a,f), which evaluates to TRUE iff f holds after a
(given the previous state). Intuitively, either a caused it to hold, or it already held and a did not affect it. Similarly, the
formula Poss(a,f) states that a was possible to execute regarding f, i.e. did not cause it to be true and false at the same
time.

After preprocessing, we iterate through the sequence. Procedure ProgressAction uses those formulas to update the
belief state: First, it constructs a circuit asserting the action was possible (corresponding to the Poss formula) and adds
it to ¢b (line 2). Then, it builds a circuit for the NextVal formula. Procedure 7ime0 ensures the circuit uses only time-0
fluents. When we construct a new Poss or NextVal circuit, its leafs represent fluents of the previous time step; Time0
replaces them by their equivalent explanation nodes. Our circuit implementation is crucial for the efficiency of this
replacement. Instead of copying the whole formula, we only need to update edges in the graph (using the pointers).
This way, we can share formulas recursively, and maintain compactness.

After all the new circuits were built, the explanation pointers are updated (line 4); the new explanation is the root
of the corresponding NextVal circuit, built earlier (line 3; see also Section 2.5.1). Then we deal with the observation

(Procedure FilterObservation): similarly, we use Time0 to get a time-0 formula, and simply add it to cb.

[e(Tch1) || e(/TaQ) [[e(Tch3)][e(onB) |
I Aa X4

Figure 2.4: Updating the explanation of Touch(el) after Rotate(90)

Example: Figure 2.4 shows an update of the explanation of Touch(el) after the action Rotate(90). Rectangles
(on the bottom nodes) represent the explanation pointers of time ¢ (before the action). The circuit in the image is the
NextVal formula, after Procedure Time0 replaced its fluents by the corresponding explanation nodes.

The V node is the root of the graph representing state of Touch(el) after the action: the right branch describes the
case that the action caused it to hold, and the left branch is the case that it held, and the action did not falsify it. In the
next iteration, the pointer of Touch(el) will point at this node.

Note the re-use of some time-¢ explanation nodes; they are internal nodes, possibly representing large subformulas.

12

2.3.3 Query Answering with a Belief-State Formula

C-Filter returns an updated belief state ¢f, represented as a logical circuit. We are interested in satisfiability queries
(! A1) satisfiable) and entailment queries (! = 1), or ! A —1) unsatisfiable). In the following, we construct a circuit

corresponding to the query and run inference on it.

Query Circuits

Let 1) be an arbitrary propositional query formula; we want to check whether ¢ A1 is satisfiable. Very similarly to an
observation, we add ¥ to cb, and replace the fluents for their explanations. The new cb is our query circuit. Queries
are usually about time ¢, but the circuit structure allows more interesting queries, in particular smoothing— queries
that refer to the past (e.g., did f change its value in the last 5 steps? Could the initial value of g be TRUE?). Note
that every fluent in every time step has a corresponding node. If we keep track of those nodes, we can replace fluents
from any time step by their explanations. If the queries are given in advance, this does not change the complexity.
Otherwise, finding a past-explanation node might take O(log t) time. Note that the same mechanism (tracking previous

explanations) has many interesting applications, such as filtering in non-Markovian domains.

Using the model: Satisfiability for Circuits

Our algorithm computes a solution to Filter as a logical formula; we can now use a SAT solver in order to answer
queries about the world state. Most current SAT solvers require CNF encoding, so we may consider conversion to
CNE. Conversion by flattening down the circuit is often exponential in the circuit size, thus impractical. Assigning
a variable to each internal node will not result in a blow-up, but it suffers from several drawbacks: for instance, the
number of variables is no longer fixed, but grows with k. Also, the structural information of the circuit is lost. We
explain those in detail and describe the approach that we take.

First we consider the number of variables in the formula. SAT is exponential in this number, so adding variables
should be handled with care. Maintain the size of the state space by preventing the DPLL search from branching on
any internal-node variable was shown to be non-robust and to entail a reduction in the power of the proof system it
implements (Jarvisalo et al., 2004).

Furthermore, several works show that structural information can be used to improve performance of SAT solvers
significantly. For example, the Lsat solver (Ostrowski et al., 2002) and NoClause (Thiffault et al., 2004a) extracts and
exploit extensive structural information, solving a number of important benchmarks easily.

Finally, every clausal DPLL search procedure is inherently limited by the power of resolution. Circuit DPLL
solvers, on the other hand, can employ complex gates and special purpose propagators, that in certain cases can

circumvent resolution limitations. Since our problem is already encoded in a rich non-clausal structure, it seems that

13

Circuit SAT solvers could show a great promise in our case.

We implemented our own circuit SAT solver, C-DPLL . It is a generalization of DPLL: every iteration, an unin-
stantiated variable f is chosen, and set to TRUE. The truth value is then propagated as far as possible, resulting in a
smaller circuit (for example, if f had an OR parent, it will be set to TRUE as well). Then, C-DPLL is called recur-
sively. If no satisfying assignment was found, it backtracks and tries f=FALSE. If no assignment is found again, return
UNSAT. C-DPLL takes O(|E| - 2') time and O(|E|) space for a circuit with | E| edges and I leaves. In addition, we
use off-the-shelf circuit SAT solvers, such as NoClause (Thiffault et al., 2004b).

Note that the number of variables in the formula is independent of the length of the sequence. Therefore, we can
use SAT solvers for very long sequences. We can also use bias (McCarthy, 1986) to find minimal models. Preferential

bias is well studied and fits easily with logical formula.

2.4 Extended Example

We now give a detailed example of the whole process. Interestingly, this example demonstrates how logical circuits can
represent compactly a belief state that one cannot represent compactly using CNF formulas over the same variables.
Our domain includes fluents {p, ..., pn, 0dd}. The following sequence of actions makes the fluent odd equal to
p1 B p2 P ...pn, the parity of the other fluents. Our actions ay, ..., a,—1 are defined such that a; sets odd := p; & po,
and any other a; sets odd := odd ® p;;. Formally:
“ap causes odd if (p1 A —p2) V (—p1 A p2)”
“ay causes —odd if —[(p1 A —p2) V (—p1 A p2)]”
“a; causes odd if (odd N\ —p;11) V (—odd N pi+1)”
“a; causes —odd if =[(odd N\ —p;1+1) V (modd A p;i+1)]”
Applying the sequence ay, ..., a,—1 sets odd = p; & ...p,. We now show how our algorithm maintains the belief

state throughout the sequence.

Preprocessing the Domain:

In this phase we extract the Poss and NextVal formulas. We examine the action specifications: the only fluent which is

affected is odd. a; is executable when it does not cause both odd, —odd.

Cause(ay,0dd) = (p1 A —p2) V (—p1 A p2)
Cause(ay,—odd) = —[(p1 N —p2) V (=p1 A p2)]

Poss(ay,0dd) = —[Cause(ay,0dd) \ Cause(ay,—odd))

14

It is easy to see that both cannot hold simultaneously, and the formula can be simplified to TRUE: indeed, a;
is always executable. Similarly, all of our actions are always possible to execute, so the Poss formulas are all equal
TRUE.

Now, the NextVal formulas. After executing a, odd will be set to Cause(ay,0dd) V [odd N\ —=Cause(ay,—odd))|.

This is equivalent to Cause(ay,0dd). In other words, odd will be set to p; @ po. Similarly, after action a; odd will
be set to p;+1 B odd. Note, simplifying the formulas is not mandatory; the representation will be compact without it,

too.

Executing the Actions:

Imagine that we receive the (arbitrary) sequence ay, as, ..., Gn—1,0dd N\ —p,, (performing n actions and receiving an
observation). Figure 2.5 describes how the algorithm updates the belief-state with this sequence. At time 0 (2.5a) we
create a node for every fluent, and another for TRUE. The nodes represent the value of the fluent at time 0. We set
a pointer (the rectangles) for each formula that we want to maintain: the formula for cb (constraints) is set to TRUE
because we do not have any initial knowledge. The explanation formula of each fluent is set to the corresponding
node.

We then execute ay, arriving at time 1 (2.5b). No constraint was added to cb, since the action is always executable.
No explanation formula of p; changed, since a; does not affect them. The only thing that changed is the state of odd:
its new explanation is p; @ p2. We construct the graph for this formula, and update the explanation pointer to its root
node.

NOTE: the image shows xor gates just for the sake of clarity. In fact, each of them should be replaced by five gates, as
depicted in 2.5b.

Executing as is similar (time 2, 2.5¢). We construct the graph for odd’s new value, odd ® ps. Note that we
substitute the fluents in this formula (odd, p3) by their explanations in time 1, i.e. the pointers of the previous time
step.

We execute as, ..., a,—1, and then observe odd A —p,, (2.5d. This is just an example observation; alternatively, you
can think of it as querying whether it is possible that odd A —p,, holds now). First, we process the actions and update
the explanation of odd. Then we add odd N —p,, to our constraints, creating a new cb circuit and updating the pointer.

Finally, we return the circuit in 2.5d, along with the pointers. This is our updated belief state.

Answering Queries:

In 2.5e we show an example of truth-value propagation: if we assume that at time O p;=TRUE and the rest are set

to FALSE, those values are propagated up and result in chb=TRUE. That is, this assignment is consistent with our

15

N\
[e(odd)] [e(p1) |[e(p2) |[e(P3)] = = =[e(pn) |[cb |

oddo plo p20 p3o pno TRUE
(a) At time t=0: initial belief state ¢ = TRUE

e(odd

O
Ie(p1) |Le(P2) [[e(P3)] * * =[e(en) [b |
oddo p1o p20 p3o pno TRUE

(b) Time t=1: after performing a1

e(odd) [e(odd)]
for t=1

10
O

LN\
QI e(p1) |l e(2) [e(p3) | * * *[e(pn) |[cb]
oddo p1o p20 p3o pno TRUE

(c) Time t=2: after performing a1, a2

e(odd) for t=(n-2) e(aﬂd)

e(odd)
for t=2 -

]

y— O
O

Ole(m)ll e(p2) |[e(p3) | = = =[&
oddo p1o p20 p3o pno TRUE

(d) Time t=(n-1): after performing a1, .., an—1 and observing (odd A —py,)

O@

oddo o

@O

P20 p3o pno TRUE

Figure 2.5: (e) Propagating truth-values

16

sequence.

2.5 Analysis and Complexity

2.5.1 Correctness
Theorem 2.5.1 C-Filter is correct. For any formula ¢ and a sequence of actions and observations (a;, 0;)o<i<t

{ s €S that satisfy C-Filter ({a;, 0;)o<i<t, 9)} =

Filter[(a;, 0;)o<i<t|({s € S that satisfy p}).

Recall that a state s satisfies formula ¢ if s A ¢ is satisfiable (Section 2.3.1). s is used as a formula and as a state.
PROOF SKETCH We present an effect model, and show how to update a belief-state (flat) formula with this
model. We show that the Filtering definition in Section 2.2 can be reduced to consequence finding (in a restricted

language) with this formula. Then, we show that C-Filter computes exactly those consequences.

Definition 2.5.2 Effect Model:

For an action a, define the effect model of a at time t to be:

Teﬁr(a,t) = Q¢ —
Njep Poss(a, ;1) A (fes1 < NextVal(a, f,t))
Poss(a, f,t) = ~(Cause(a,f); N Cause(a,~f):)

NextVal(a, f,t) = Cause(a,f), V (ft N ~Cause(a,—f),)

a asserts that action a occurred at time ¢, and f;; means that f after performing a. v, is the result of adding a
subscript ; to every fluent in formula) (see Section 2.3.2 for definition of Cause(a,f)). The effect model corresponds
to effect axioms and explanation closure axioms from Situation Calculus (Reiter, 1991). If the robot can recognize an
impossible action, we can drop the assumption that actions are possible, and adopt a slightly different effect model.

Recall that Fifter[](-) was defined over a set of states. We now define its analogue L-Filter, which handles belief-

state logical formulas.

Definition 2.5.3 (L-Filter) Let ¢ a belief-state formula.
e L-Filter[a](p) = Cnlt+1 (o A ay A Top(a,t))

o L-Filter[o](p) = ¢ No

where Cn' (1)) are the consequences of 1) in vocabulary L. L;1 = (L(¢:) U Piy1) \ P , for P, = {f; | f € P} and

L(y) the language of ¢y; i.e., Ly11 does not allow fluents with subscript ¢.

17

Lemma 2.5.4 The result of applying L-Filter|a] for a € A is a formula representing exactly the set of states Filter|a).

More formally, let ¢ be a belief state formula.

Filter[a]({s € S| s satisfies ¢}) =
{s € S| s satisfies L-Filter[a](y) }

PROOF SKETCH:

We show that the two sets of world states have the same elements. We show first that the left-hand side of the
equality is contained in the right-hand side.

Take s’ € Filter[a]({s € S | s satisfies ¢}). We show that s satisfies L-Filter|a](¢). From the Filtering definition
there is s € S such that s € {s € S | s satisfies ¢} and R(s,a) = s’. In other words, there is s € S such that s
satisfies ¢ and R(s,a) = §'.

To prove that s’ satisfies L-Filtera(¢) we need to show that p; A a; A T,4(a, t) together with the truth assignment
s’ to time ¢ + 1 is satisfiable. We show that the truth assignment s to time ¢ satisfies this formula together with
the truth assignment s’ to time ¢ + 1 and a; = TRUE. It is not satisfying this formula only if one of the conjuncts
Poss(a, f,t) N (fi41 < NextVal(a, f,t)) or ¢ is falsified. This cannot be the case for ¢ by our choice of s.

Assume by contradiction that this is the case for some conjunct. If it is the case that ~Poss(a, f,t), then
(Cause(a,f); N\ Cause(a,—f);). In other words, s satisfies Cause(a,f) and Cause(a,—f). According to our domain-
description semantics, R(s, a) should satisfy f and —f. This cannot be the case, since we only address executable
actions.

If it is the case that — ;11 A NextVal(a, f,t)), then = fi1 A Cause(a,f), V (fr AN —~Cause(a,—f),). That is, s satisfies
Cause(a,f), or it satisfies f and —Cause(a,—f). According to our domain-description semantics, s’ has to satisfy f.
Therefore, this cannot be the case as well.

Thus, there is no such conjunct and the truth assignment s, s’ satisfies this formula. From the definition of
L-Filter|a](p) and Craig’s interpolation theorem for propositional logic we get that s satisfies L-Filter[a] ().

For the opposite direction (showing the right-hand side is contained in the left-hand side), take s’ € S that sat-
isfies L-Filter[a](¢). We show that s’ € Filter[a]({s € S | s satisfies ¢}). From Craig’s interpolation theorem for
propositional logic we get that there is a truth assignment s for P such that the truth assignment s, s’ for times ¢, ¢ + 1,
respectively, together satisfy ¢, A a, A Tpp(a, t) (otherwise, there is no such truth assignment, and L-Filter[a](y) is not
satisfiable; in particular, s’ does not satisfy it). In a manner similar to the first part of this proof (observing the way R
is defined) we can show that R(s, a) = s’ and the second part is done. W

That is, both definitions are equivalent. As a result, we can compute Filter using a consequence finder in a restricted

language. However, this does not guarantee tractability. Instead of using a consequence-finder, we show that C-Filter

18

computes exactly those consequences.
Let ¢ := ¢ A az A Top(a,t). According to our definition, L-Filter{a](¢) = Cn%*+1(1)). We now observe that

consequence finding is easy if we keep ¢, in the following form:

ot =cb A N\pep(fe = exply)

[s.t. cb and expl; do not involve any fluent of time ¢]

We now show how to compute the consequences of such formulas. Furthermore, we show that the resulting
formula maintains this form, so we only need to check the form of the initial belief-state. Luckily, this is not a
problem; every initial belief-state can be converted to this form (in linear time) using new proposition symbols.

Let ¢ be a formula in this form. v states that (f; < expl f) for every f; € P,: we construct an equivalent formula,
Y’, by replacing every f; € P, in Tyg(a, t) with the formula expl ;.

Notation: ¢ := ¢y Aar A Top(a,t)[exply/ fi].
U=y = Ol () = Ol (y)

Therefore, we can find the consequences of 1)’ instead. Note that consequence finding in L; 1 is the same as using

the Resolution algorithm to resolve fluents of P;. We use this to compute Cn%¢+1 (z)):
Crbs (1) = b A N jep (Poss(a,t, f)lexply /gi]) A
Njep(fe+1 < NextVal(a,t, f)lexply/g:])

Let

b’ :=cb A \gep(Poss(a,t, f)lexpl,/g:])

expl’; := NextVal(a, t, Flexpl,/g:].

The last formula can be re-written as

b A N\jep(frer = exply)

Now note that C-Filter maintains the belief-state formula exactly in that easy-to-compute form, namely cb A
A fe p(ft — expl f) , ¢b and expl; involve only special propositions, representing time-0 (to avoid confusion, you
might think of the new propositions in line 2 as f;,;;, not fo).

Also, ¢b’, expl'f are exactly the constraint-base and explanation formulas after C-Filter ’s ProgressAction. That is,

C-Filter correctly progresses the belief-state with actions. The proof for handling observations is similar. H

19

2.5.2 C-Filter Complexity

Let ¢ be the initial belief state, ¢ the length of the action-observation sequence, and |Obs| the total length of the

observations in the sequence. Let ActDesc be the longest description of an action a € A (preconditions + effects).

Theorem 2.5.5 Allowing preprocessing of O(|P|) time and space (or; alternatively, using a hash table), C-Filter takes

time O(|@°| + |Obs| + t - ActDesc) . Its output is a circuit of the same size.

If there are no preconditions, we can maintain a flat formula instead. If the observations are always conjunctions of
literals, we can drop |Obs| from the space complexity. In this case, we can move the pointers to the TRUE and FALSE

nodes, resulting in shorter paths in the graph. Note that this does not depend on the domain size,

P|. ActDesc is
usually small- especially if the actions in the domain affect a small number of fluents, and have simple preconditions.

PROOF SKETCH: Initializing cb takes O(|¢"|) time. Handling each action adds at most O(ActDesc) nodes and
edges to the graph, and takes the same time: in the worst case, assuming no simplifications were done, we need to
construct a graph for each of the action’s Causes formulas. Finally, each time we receive an observation o we add at

most O(]o|) nodes and edges, resulting in total O(|Obs|).
Corollary 2.5.6 We can maintain an NNF-Circuit (no negation nodes) with the same complexity.

PROOF SKETCH The circuit’s leaves represent literals (instead of propositions). We maintain explanation
formulas for them. Since (f < exply) = (=f < —expl;), we can define expl_; := —expl;. We take the NNF-form
of every formula we use (observations, explanations, etc.), and replace every literal by its explanation. Converting to
NNF takes time linear in the formula’s size; therefore, time and space complexities will not change (modulo a small
constant). |

The NNF algorithm is very similar to C-Filter . The main differences appear in Figure 2.6: formulas are converted

to NNF form, there are pointers to positive and negative literals, and Time0 takes care of both cases.

2.5.3 Projection

Projection is the problem of checking that a property holds after ¢ action steps of an action system, starting from a
belief state. Generalizations allow additional observations.

Our results from previous sections show that projection is doable by applying C-Filter (generating the belief state
at time ¢, ¢, adding the query and running our C-DPLL solver).

Let m be maximal length of a single observation plus ActDesc. Usually m = O(1). Since ¢! includes O(n)
variables, and has overall size O(n + mt), checking if a variable assignment is a model of ¢ takes time O(n + mt).

Thus, testing satisfiability is NP-Complete in n, instead of n 4+ mt (the size of the formula) or n - ¢ (the number of

20

PROCEDURE NNF-C-Filter({a;, 0:)o<i<t, ¢, D)
{a; actions, o; observations, ¢ an initial belief state over P,
D domain description}
[Preprocess D, ¢]

1: ProcessDomain(D, (a;)o<i<t)
2: for f € Pdo
3: expl; := a new proposition fo
4 expl_; :=—fo
5: ¢b := TimeO(NNF(p))
[Process sequence

6: fori=1totdo

7: ProgressAction(a;)

8 FilterObservation(o;)

9: return ch A N\ p(f < exply)

PROCEDURE FilterObservation (o)
{0 an observation over P}

1: ¢b := cb N TimeO(NNF(0))
PROCEDURE Time0(1))

{1 a formula}
[Return an equivalent circuit over time 0

1: for f € Pin do

2: replace — f with the node pointed by expl_ ;
3: replace f with the node pointed by expl,
4: return ¢

PROCEDURE ProcessDomain (D, (a;)o<i<t)
{D a domain description, a; actions}
l Extract “Next Value” and “Possible” Formulas l
1: for f € P,a € (a;) do
2: NextVal(a,f) := NNF(Cause(a,f) V (f N\ ~Cause(a,—f)))
3: Poss(a,f) := NNF(—(Cause(a,f) \ Cause(a,—f)))

Figure 2.6: NNF-C-Filter Algorithm

propositional variables that appear in an unrolling of the system over ¢ steps; used in Bounded Model Checking). We
need to guess n variable assignments, and then apply a linear algorithm to check it. The following result refines earlier

complexity results.

Theorem 2.5.7 (Projection) Let D be a domain with deterministic actions. The problem of answering whether all
the states in Filter[r](v) satisfy Q, for belief state formula ¢, sequence of actions w and query Q, is coNP-complete

in the number of state variables, n. We assume m, p, ActDesc and Q) are polynomial in n.

2.5.4 Representation Complexity

Our results have implications for the theory of representation-space complexity. A simple combinatorial argument
shows that there are belief states of n fluents that cannot be described using logical circuit of size 0(2"), i.e., strictly
smaller than some linear function of 2”. Nevertheless, our results for C-Filter show that those belief states that are

reachable within a polynomial number of actions from an initial belief state are of size linear in ¢ and the input size

21

(initial belief state size, and longest action description).

Also, (Amir and Russell, 2003) showed that for every general-purpose representation of belief states there is
a (possibly nondeterministic) domain, an initial belief state, and a sequence of actions after which our belief state
representation is exponential in the initial belief state size. Our results show that this does not hold for deterministic

systems.

2.5.5 The Non-Deterministic Case

C-Filter handles deterministic domains only. However, many real-life environments are inherently non-deterministic.

We now present two ways to handle this:

Converting into Deterministic Domains

Consider flipping a coin; given enough relevant parameters (weight, height, velocity, angle) we could predict the
coin’s outcome. Similarly, we can treat each non-deterministic action as a deterministic one which depends on a set
of parameters unknown to us. More formally, the action of coin-flipping will have this effect model:
Alip, — [ExactlyOneCase
(case; — headsii1) N (casea — —heads; 1))

Where ExactlyOneCase is the logical formula specifying that exactly one of caseq, cases holds. Of course, we
could use a binary encoding, so for n cases we would have log n case variables.
The main problem with this method is that the number of propositions grows linearly with time; each non-deterministic

action adds new case variables to the formula.

Different Sorts of Circuits

We can maintain circuits for some special cases of non-deterministic domains. For example, note that even non-
deterministic actions might have a deterministic inverse. For example, if a robotic arm placed a block randomly on
the table, we always know the previous state: the block was held by the arm. That is, we look for transition relations
in which for every pair s, a there is at most one s such that R({s, a, s}).

Using similar methods, we devise PrevVal formulas (state ¢ as a function of state i+/). We build the circuit
“upside-down”, starting from G and moving back towards I. The leaves represent the final state (no other leaves are
added).

Another case we can handle is if (in addition to the deterministic actions) we have actions of the kind “a causes
pV qif r”. We further assume that r never appears in a non-deterministic effect. In this case, we can maintain a circuit

belief-state in time polynomial in | P| and ¢.

22

C-Filter: Total Time Filtering Time: Comparison C-Filter (89)
21 1 —A— C-Filter (239)
18 1 S 1000000 C-Filter (2651)
ri orlds: —_ —=—BDD (89)
-5 R ©100000
§ 246 - 10762 Fluents g = BDD (181)
:12 é 10000 —=—BDD (239)
Eo o 1000 4 O Unroll (89)
[6 E 100 s - ©—Unroll (239)
| > u -i
3 = 10 9A&~ @ —o—Filter (89)
e Block Worlds: E . {}- < Filter (239)
0 ; T 89 - 10301 FI. ‘ ‘ ‘ ‘
0 200,000 400,000 0 5000 10000 15000 20000 25000
Sequence Length Sequence Length

Figure 2.7: Left: Filtering time (sec) for C-Filter, applied to Block-World and Grid domains of different sizes. The time
is linear, and does not depend on the domain size (slight differences in the graph are due to hash-table implementation).
Right: Comparison of Filtering time (msec) for several methods (numbers represent domain size). Note that this is
log-scale.

General idea: maintain explanation formulas, but instead of f < expl; we maintain [— expl, for every literal [,

and [y A ly — exply ,, for every pair of literals.

l2

2.6 Experimental Evaluation

Our Filtering algorithm was implemented in C++. Our implementation could also handle parametrized domain de-
scriptions, such as STRIPS. We tested it on Al-Planning domains (Figure 2.8 lists several) of various sizes and obser-
vation models. We generated long action-observation sequences with a random sequence generator (implemented in
Lisp), and ran inference on the results using our own C-DPLL and NoClause ((Thiffault et al., 2004b)). circuit SAT

solver.

Blocks: 108/124 Ferry: 163/17 Grid: 251/53
Gripper: 110/6 Hanoi: 259/16 Logistics: 176/16
Movie: 47/13 Tsp: 98/15

Figure 2.8: Overview of C-Filter experiments: Al-Planning domains (2000+ fluents, 10000 steps). Results presented
as Filtering time/Model finding time (both in msec).

Figures 2.7, 2.8, 2.9 present some of the results. Figure 2.7 (left) shows that C-Filter is linear in the sequence
length; note that time depends on the domain but not on the domain size. In both Block-World and Grid-World,
filtering time almost does not change, even when the number of fluents grows 100 times larger (slight difference in the
graph is due to hash-table implementation, instead of an array; the circuit size does not depend on this implementation
and was the same).

The right part of Figure 2.7 shows a comparison to other filtering methods. We compared our algorithm to (1) Filter

(Amir and Russell, 2003) (in Lisp), (2) Filtering by unrolling the system over ¢ steps (using | P|¢ propositions), (3)

23

+ 2651 Fl(100bs)| Finding a Model (SAT)

900> 2651 FI (3 obs)
80014 239 FI (10 obs)
7001 A 239 FI (3 obs)
600711 89 FI (10 obs)
igg” W 89 FI (3 obs)
300 /
200 | R

100+

Total Time (msec)

0 T T T T T
0 10000 20000 30000 40000 50000 60000
Sequence Length

Figure 2.9: Total time for finding a model (msec), for Block-Worlds of different size and number of observations per
step.

BDD-based Filtering, based on the BuDDy package (Lind-Nielsen, 1999). C-Filter outperformed them all, sometimes
by orders of magnitude; note that the graph is log-scale.

Comparison Analysis: BDD sizes depend highly on variable ordering. Even for some very simple circuits, the
representation can have either linear or exponential size depending on the order (finding an optimal ordering is known
to be NP-complete). The long processing time at the beginning is due to heuristic methods that try to achieve a good
ordering; after a while, a good ordering was reached, making processing faster. Even with those heuristics, we could
not process large (> 300) domains. Filter and Unroll were also slower, and could not process long sequences or large
domains (also, Filter can handle only a limited class of domains). Unroll suffers from the frame problem, i.e. needs
to explicitly state the fluents that do not change (f; < f;y1), and therefore depends on the domain size. C-Filter ,
however, managed to handle large domains (hundreds of thousands of fluents), taking a few milliseconds per step.

Figure 2.9 shows the time to find a model for the resulting circuits using a modified version of NoClause. Signif-
icantly, reasoning time grows only linearly with ¢. This allows practical logical filtering over temporal sequences of
unbounded length. Note that the more observations an agent gets, the more constrained his belief state is. Therefore,

it takes longer to find a satisfying model (also, the formula is larger).

2.7 Conclusions

A straightforward approach to filtering is to create all the prime implicates (or all consequences) at time ¢ + 1 from the
belief state representation of time ¢. Previous work (e.g. (Liberatore, 1997b)) showed that deciding if a clause belongs
to the new belief state is coNP-complete, even for deterministic domains. This discouraged further research on the
problem.

Nevertheless, in this work we presented an exact and tractable filtering algorithm for all deterministic domains.
Our result is surprising because it shows that creating a representation of all of the consequences at time ¢ + 1 is easier

(poly-time) than creating the new belief state piecemeal.

24

Several approaches were developed in the past to represent belief states in logic (e.g., BDDs, (Amir and Russell,
2003)), but none of them guaranteed compactness. The key to our advance was our logical circuits representation. We
also showed how to maintain NNF-Circuits.

The results obtained here have implications in many important Al-related fields. We expect our algorithms to

apply to planning, monitoring and controlling, and perhaps stochastic filtering. We plan to explore these directions in

the future.

25

Chapter 3

Learning in Partially Observable Worlds

3.1 Introduction

In the previous chapter we discussed agents that track the state of the world in a known environment. That is, the
agents knew the possible outcomes of their actions, although they could not always observe them. However, the
problem becomes a lot more challenging if we relax this assumption.

We now switch our attention to agents that operate in unfamiliar domains. Such agents can act intelligently if they
learn the world’s dynamics. Understanding the world’s dynamics is particularly important in domains whose complete
state is hidden and only partial observations are available. Example domains are active Web crawlers (that perform
actions on pages), robots that explore buildings, and agents in rich virtual worlds.

Learning domain dynamics is difficult in general partially observable domains. An agent must learn how its actions
affect the world as the world state changes and it is unsure about the exact state before or after the action.

In this chapter we present a logical approach to scaling up action learning in deterministic partially observable do-
mains. We give special attention to the relational case; focusing on deterministic domains and the relational approach
yields a strong result. The algorithm that we present learns relational schema representations that are rich and surpass
much of PDDL (Ghallab et al., 1998). Many of the benefits of the relational approach hold here, including faster
convergence of learning, faster computation, and generalization from objects to classes.

We show that the update step takes polynomial time, is exact (it includes all consistent models and only them),
and increases the formula size by at most a constant additive (without increasing the number of state variables). We
do so by updating a circuit (directed acyclic graph) representation of the formula. We conclude that the overall exact
learning problem is tractable, when there are no stochastic interferences; it takes time O(t - p**1), for ¢ time steps,
p predicates, and k the maximal precondition length. Thus, this is the first tractable relational learning algorithm for

partially observable relational domains.

3.1.1 Related Work

This chapter is based on (Shahaf et al., 2006) and (Shahaf and Amir, 2006).

26

A number of previous approaches to learning action models automatically have been studied in addition to afore-
mentioned work (Amir, 2005). Approaches such as (Wang, 1995; Gil, 1994; Pasula et al., 2004) are successful for
fully observable domains, but do not handle partial observability. In partially observable domains, the state of the
world is not fully known, so assigning effects and preconditions to actions becomes more complicated.

Our approach is closest to (Amir, 2005). There, a formula-update approach learns the effects (but not precon-
ditions) of STRIPS actions in propositional, deterministic partially observable domains. In contrast, our algorithm
learns models (preconditions and effects) that include conditional effects in a very expressive relational language.
Consequently, our representation is significantly smaller, and the algorithm scales to much larger domains. Finally,
our algorithm can generalize across instances, resulting in significantly stronger and faster learning results.

One previous approach in addition to (Amir, 2005) that handles partial observability is (Qiang Yang and Jiang,
2005). In this approach, example plan traces are encoded as a weighted maximum satisfiability problem, from which a
candidate STRIPS action model is extracted. A data-mining style algorithm is used in order to examine only a subset
of the data given to the learner, so the approach is approximate by nature.

Hidden Markov Models can be used to estimate a stochastic transition model from observations. However, the
more complex nature of the problem prevents scaling up to large domains. These approaches represent the state
transition matrix explicitly, and can only handle relatively small state spaces. Likewise, structure learning approaches
for Dynamic Bayesian Networks are limited to small domains (e.g., 10 features (Ghahramani and Jordan, 1997; Boyen
et al., 1999)) or apply multiple levels of approximation. Importantly, DBN based approaches have unbounded error in
deterministic settings. In contrast, we take advantage of the determinism in our domain, and can handle significantly
larger domains containing over 1000 features (i.e., approximately 2190 states).

Another related approach is structure-learning in Dynamic Bayes Nets (Friedman et al., 1998). This approach ad-
dresses a more complex problem (stochastic domain), and applies hill-climbing EM. It is a propositional approach, and
consequently it is limited to small domains. Also, it could have unbounded errors in discrete deterministic domains.

In recent years, the Relational Paradigm enabled important advances (Friedman et al., 1999; Dzeroski and Luc
De Raedt, 2001; Pasula et al., 2004; Getoor, 2000). This approach takes advantage of the underlying structure of the
data, in order to be able to generalize and scale up well. We incorporate those ideas into Logical Learning and present
a relational logical approach.

This chapter is structured as follows: we introduce the learning problem in Section 3.2, explain the intuition
behind our representation and give a meta-algorithm in Section 3.3. We present several languages (and their corre-
sponding algorithms) in Section 3.4. We give special attention to the relational model. We proceed to analysis (Section

3.5) and experiments (Section 3.6), and then conclude.

27

3.2 A Transition Learning Problem

We now illustrate the combined problem of learning the transition model and tracking the world with an example.
Consider a robot operating a service elevator (Figure 3.1). The robot can load and unload boxes, and make the

elevator go up and down.

| O00QO00 |

Figure 3.1: Learning example: a robot in a service elevator

The robot’s knowledge of the world is incomplete, both because it can only observe the immediate surroundings
of the elevator and because it lacks knowledge about the world’s dynamics. That is, it is unsure about the current state
of the world and about the way actions change it.

The robot is given some initial knowledge, and then it performs a sequence of actions and receives partial obser-
vations. Its goal is to determine the effects of his actions (to the extent he can, theoretically), while also tracking the
world.

We now repeat the definition of a transition system (Definition 2.2.1).

Definition 3.2.1 A transition system is a tuple (P,S,A,R)
o P is a finite set of fluents.
e S C Pow(P) is the set of world states; a state s € S is the subset of P containing exactly the fluents true in s.
e A is a finite set of actions.
e RC S x A x S isthe transition relation.

28

(s,a,s’) € R means that state s’ is the result of performing action « in state s. When we refer to deterministic
transition relations we sometimes use the function notation, R(s,a) = s'.

In a two-floor elevator world (Figure 3.2), P includes fluents such as (elevator-floorl), (box-at floorl), (box-at
floor2), (box-at elevator).

The actions A depend on the domain description. Taking the elevator up can be represented as GoUp(), GoUp(to),
or (in the case of STRIPS) GoUp(from,to).

As noted before, the robot cannot observe the state of the world completely and it does not know how his actions
change it. In the previous chapter the robot handled state uncertainty by maintaining a belief-state — a set of world
states he considered possible. Similarly, the robot that operates in an unknown environment can maintain a transition

belief state: a set of possible (world state, transition relation) pairs that might govern the world.

Definition 3.2.2 A transition belief state Let R be the set of all possible transition relations on S, A. Every p C SXR

is a transition belief state.

We sometimes refer to it as “belief state” (when the meaning is clear from the context), to strengthen the connection
to the previous chapter.

Informally, a transition belief state p is the set of pairs (s, R) that the agent considers possible. The agent updates
his belief state as he performs actions and receives observations. We now define semantics for Simultaneous Learning

and Filtering, or S£LAF .

Definition 3.2.3 (Simultaneous Learning and Filtering) p C S x R a transition belief state, a; are actions. We

assume that observations o; are logical sentences over P.
1. SLAF[€](p) = p (e: an empty sequence)
2. scaFlal(p) = {(s', R) | {s,a,5') € R, (s,) € p}
3. sLafol(p) = {(s,R) € p| oistruein s}

4. SLAF [(a;,05)i<;<t)(p) =
SLAF [(aj,05)i<j<t] (SLAF[0i](SLAF [ai](p)))
We call step 2 progression with a and step 3 filtering with o. In short, we maintain a set of pairs that we consider
possible; the intuition behind this definition is that every pair (s’, R) becomes a new pair (3, R) as the result of an

action. If an observation discards a state 3, then all pairs involving § are removed from the set. We conclude that R is

not possible when all pairs including it have been removed.

29

Time0 s1 s2

Initial
Knowledge

R1, R2, R3 R1, R2, R3
Action:

GoUp Eg R3 Ry R2

Time1

Observe: s1 s3, _s4 / _Sy
-Floor1 /

BoxAtFI2

-BoxInElv /= =
R2 R1, R3 R1 R2

Action:
LoadBox R1 R3

Time2 s5. s6. /

Observe:
BoxInElv [l Ll é

-BoxAtFI2

R1 R3

Figure 3.2: A transition belief-state update example: on the left — time line, including actions and observations. On the

right — the corresponding transition belief-state. Under each state s appear the transition relations R such that (s, R)
in the belief-state.

3.2.1 Extended SLAF Example

We now show a complete learning problem scenario. Consider the two-floor service elevator world in Figure 3.2; the
elevator robot is trying to learn the dynamics of the world.

For the clarity of this example, we consider a very simple initial belief-state. Assume that the elevator is on the
first floor and the robot can observe its surrounding: it knows the elevator is in the 15¢ floor, is currently empty, and
there is no box near it. There may or may not be a box in the 2" floor (actually there is, but the robot cannot tell).

The two world-states the robot considers possible are depicted in the topmost part of the Figure 3.2 (s1, s2). In

addition to the uncertainty about the initial world state, the robot considers three transition relations possible:

e R1 — the correct transition relation: GoUp (GoDown) takes the elevator to the second (first) floor, LoadBox and

UnloadBox try to move the box between the elevator and the current floor.

e RR2 —same as R1, but GoUp does not take the elevator to the second floor.

30

e R3—same as R1, but GoUp and LoadBox also cause a box to appear on the second floor.

In other words, the robot has six possible (s, R) pairs in its initial belief state. This is shown in the top part of
Figure 3.2: the two states (s1, s2) are depicted, and the possible transition relations that correspond to each state
appear underneath it.

The robot than performs a short action-sequence (GoUp, LoadBox), receiving observations after each action. The
timeline and the observations appear on the left of Figure 3.2. We now show how the robot’s belief state progresses
with this sequence.

After performing the first action, GoUp, each of the (s, R) pairs progresses into (s’, R), such that s is the result
of performing GoUp in s if R is the true transition relation. For example, (s1, R1) changes into (s3, R1): R1 predicts
the next state will be the same as s1 but with the elevator in the second floor (that is, s3).

The complete transition is shown in Figure 3.2:

e If R1 is true, we end up in state s3 or s4: the elevator is in the second floor, but we still do not know if there is

a box there.
o If R2 is true, the initial state does not change: RR2 states that GoUp keeps the elevator in the first floor.

e If R3 is true, then both initial states progress into the same state (s3): the elevator is in the second floor and

there is a box near it. This is because R3 assumes going up created a box in the second floor.

At this stage, the robot’s belief state contains five elements. The robot now receives an observation: the elevator
is in the second floor, and there is a box outside. This immediately allows it to delete from its belief state every (s, R)
pair such that s is not consistent with the observation: in this case, it deletes (s1, R2), (s2, R2) and (s4, R1).

Note that after this elimination, there are no longer pairs that include R2. That is, R2 is no longer a possible
transition relation. The robot currently knows his exact state, s3, but it still needs to choose between R1 and R3.
After picking up the box, the picture becomes clearer: R1 predicts no box on the second floor, while R3 disagrees.

Observing no box leaves the robot with only one pair in its belief-state. Thus, learning is complete.

3.3 Learning Transition Models with Logical Circuits

Similar to the Filtering problem, enumerating transition belief states is clearly intractable. In this section we present
an algorithm for updating transition belief states. This algorithm builds on the results of (Amir, 2005); it uses a
representation of logical circuits which guarantees compactness and exact computation, thus extending those previous

results.

31

This chapter presents several logical representations suited for transition learning problems, described in detail in
Section 3.4. However, in this section we explain our method independently from the language we choose. In other

words, this section describes our meta-algorithm.

3.3.1 Representation

We use logical languages to represent transition belief states. Those languages are composed of two different types of

propositions:

1. Fluents, P (representing the state of the world). They can be purely propositional, or (as in later sections) they

can also be ground instances of relational fluents.
2. Action propositions, L, which are propositions that represent the possible transition relations.

The exact nature of the action propositions depends on the transition relations that we want to be able to represent.
The idea is that any transition relation R € R can be fully described by some assignment to those propositions. For
example, those propositions could correspond to if-then rules:

“UnloadBox causes (box-at floorl) if (elevator-floorl) N(box-at elevator)”

Or if-then schemas:

“GoToFloor(X) causes (elevator-at X) if TRUE”
Alternatively, they can respond to a part of an if-then rule, e.g.

“(elevator-floor1) appears in the effect of GoToFloor(floorl)””.

We discuss these in detail in the following sections. After choosing a vocabulary L U P, we can use logical formulas

to encode belief states.

A belief state formula ¢ over L U P is equivalent to the belief-state
{(s,R) | s A R A o satisfiable }

s and R are expressed as logical formulas over some > O L U P. In the rest of the thesis logical formulas and

set-theoretic notions of belief states will be used interchangeably.

Example

Refer back to the elevator example of 3.2. In this example
P = {(elevator-floorl), (box-at floorl), (box-at floor2), (box-at elevator)}.
To represent R1, R2 and R3 we use the vocabulary

L = {“GoUp causes —(elevator-floorl)”, “GoUp causes (box-at floor2)”, “LoadBox causes (box-at floor2)”}.

32

The idea is that those proposition describe the effects of actions that are R1, R2 and R3 disagree on (GoUp causes
the elevator to be in the second floor, and so on). R1, R2 and R3 differ in the assignments to those propositions: R1
assigns true only to the first one, R2 assigns false to all, and R3 assigns true to all. This will be used in the next section

to construct the belief-state representation.

3.3.2 Circuit Representation

The previous section explained the intuition of the logical languages that we use. However, instead of flat formulas,
we use a logical circuit representation for transition belief-states. A very similar representation is used in the previous

chapter for Filtering belief-states (Section 2.3); here we only reiterate the main concepts.

N\
[floor1][b-in |[b-fl1 |[b-fl2 |
~——" ~—" ~——" ~——"

floor1 b-n b-fl1 b2 TRUE YP> Up-> Load->
oot " -floor1 b-fl2 b-fl2

Figure 3.3: Circuit example: initial transition belief-state for the elevator robot. The leaves on the left are fluents of
time 0, and on the right — transition propositions

Circuits are directed acyclic graphs: leaves correspond to variables (P of time 0 and L), and internal nodes are
assigned logical connectives (such as A, V,—). An internal node is interpreted as the formula rooted in this node —
the application of the connective to the child nodes. In addition to the circuit, we maintain pointers to several special
nodes:

1. An explanation formula for every fluent f € P, expl, representing its value as a function of the leaves. Note

that, unlike the previous chapter, the value is a function of the initial state and the transition relation.

2. A formula cb, or constraint base, representing the constraints on the values of the leaves.

Belief-states as Circuits

A circuit corresponds to belief-state p in the following way: each assignment to the leaves that satisfies the constraints,

cb, corresponds to a state (s, R) € p. R is determined by the assignment to the leaves of L, and s is determined by the

33

explanation formulas: f € s iff expl is True for this assignment. Assignments that do not satisfy cb do not correspond
to any state in p.

Refer the initial belief-state circuit in Figure 3.3. This is a representation of the elevator robot’s initial belief state.
Nodes are circles, and pointers are depicted as rectangles.

Recall the previous section for the interpretation of the nodes on the right: the rightmost node, for example,
corresponds to “LoadBox causes (box-at floor2)”.

cb asserts that the robot is in the first floor, and there is no box in the elevator or outside it. ¢b also states that R1,
R2 or R3 are true. We also keep a node to represent TRUE, although any tautology would do. This is a simple example,
as the explanation pointers are all assigned to leaves. As we explain later, they can represent complex formulas.

The intuition behind this representation is that the circuit encodes the way the belief-state changes through a
sequence of actions. The leaves represent the state of the world before the sequence, and the pointers represent the
state after the sequence (as a function of the initial state). For this reason, the leaves in Figure 3.3 are annotated with

fluent-name.

3.3.3 Meta-Algorithm Overview

Meta-C-SLAF is presented in Figure 3.4 and demonstrated in Figure 3.5. It receives an action-observation sequence,
(ai, 0i)0<i<t, an initial belief state formula, ¢, over P U L, a domain description D. It outputs the filtered belief state
as a logical circuit.

D includes the semantics of L, that is the description of actions in A as formulas over L, P. An action has a
precondition and a list of conditional effects. Every deterministic domain can be represented like this (including, for
example, STRIPS and PDDL). The precondition has to hold before executing the action, and the conditional effects
occur iff their condition holds.

The algorithm starts by processing the domain description; it extracts next-state and possible formulas. Poss(a) is
the precondition of action a, and NextVal(a,f) is the value of fluent f after action « as a function of the world before it
(intuitively, the formula “a caused f or f already held and a did not change it”). Note that we only calculate this for
fluents that might have been affected by a; the circuit structure obviates the need for specifying that other fluents do
not change (Frame axioms).

The algorithm also extracts that base formula, which encodes restrictions on transition models (for example, an
action cannot have contradicting effects).

In our example, action GoUp is always possible to execute, and it affects the fluents (elevator-floorl), (box-at

floor2). 1t causes (elevator-floorl) to be true iff it was true before the action, and “GoUp causes —(elevator-floorl)”

I Cause(a,f) represents the conditions for a to cause f, extracted from the domain description (See (*))

34

PROCEDURE Meta-C-SLAF ({a;, 0;)o<i<t, ¥, D, L)
{a; actions, o; observations, ¢ an initial belief state over P,
D domain description, L transition-relation language description}
[Preprocess D, ¢

1: ProcessDomain(D, L, (a;)o<i<t)
: for f € P do expl, := anew proposition fo
cb :=base N\ TimeO(yp)

Process sequence

W

4: fori=1totdo

5: ProgressAction(a;)

6 FilterObservation(o;)

7: return ch A /\fep(f — exply)

PROCEDURE ProgressAction(a)
{a an action}

Update cb: a executed, thus was possible.
Get f’s next-value explanation:
a caused f, or f held and a did not cause — f
1: ¢b:=cb N\ TimeO(Poss(a))
2: for f € Effects(a) do
3: expl’; := TimeO(NextVal(a.f))
4: for f € Effects(a) do expl; := expl’;

PROCEDURE FilterObservation(o)
{0 an observation over P}

1: ¢b :=cb N\ Time0(0)
PROCEDURE Time0(1))

{1 a formula}
[Return an equivalent circuit over time 0]

1: for f € P in v do replace f with the node pointed by expl ¥
2: return v

PROCEDURE ProcessDomain(D, L, (a;)o<i<t)
{D a domain description, L transition-relation language description, a; actions}
l Extract "Next Value” and "Possible” Formulas l

1: for a € {a;) do

2: Compute the formula Poss(a)
3: Compute the set Effects(a)
4
5

for f € Effects(a) do Compute the formula NextVal(a,f)
Compute the formula base — possible transition relations

Figure 3.4: Meta-C-SLAF Algorithm

is false. It causes (box-at floor2) to be true iff it was true before or “GoUp causes (box-at floor2)” is true. In other

words,

NextVal(GoUp,(elevator-floorl)) =

(elevator-floorl) A—*“GoUp causes —(elevator-floorl)”
NextVal(GoUp,(box-at floor2)) =

(box-at floor2) V “GoUp causes (box-at floor2)”
Poss(GoUp) = TRUE

35

2\ 2\ 2\ 2\
MfoorT] Tban b oAy | Q O O Q

floorl b-in b-fl1 b-fi2 TRUE UYP-> Up-> Load->
-floor1 b-fl2 b-fl2

At time t=0: initial belief state. This is the same as Figure 3.3

2\ 2\
Chin bt o] O () O O

: Up-> Up-> Load->
floor1 b- b-fli b-fl2 TRUE
oor " -floor1 b-fl2 b-fl2

At time t=1: after taking the elevator up

2\
Chan bAoAy | O O O O

i Up-> Up-> Load->
floor1 b-in b-fl1 b-fl2 TRUE
-floor1 b-fl2 b-fl2

Figure 3.5: At time t=1, after observing the elevator’s surroundings

The update step is illustrated in Figure 3.5 for the elevator example of Figure 3.2. Figure 3.5a shows the initial

belief-state. This is the same circuit shown in Figure 3.3, but for clarity we do not show the cb formula explicitly this

time (this formula is represented by the cloud).

Again, the circuit contains a node for each proposition in L and fluent f € P, and the pointer e(f) is set to it.
The pointer is shown as a rectangle. 3.5b shows how we progress with the first action, GoUp. The action is always

applicable (the Poss formula is TRUE), so cb does not change. The only fluents that can be affected by this action are

36

(elevator-floorl), (box-at floor2). We progress each one of them, by building the NextVal formulas (see Equation 4.1).
After building the formulas that explain the current state of those fluents, we assign the corresponding pointers to the
root of those formulas.

3.5¢ goes one step further, and filters with the observation: —(elevator-floorl)\(box-at floor2) \—(box-at elevator).
To do this, we construct that formula, using the nodes pointed by the pointers whenever we need a fluent. The resulting
circuit is then added to cb.

Note that we update the only possibly-affected fluents (no Frame axioms). Also, when we refer to fluents of the
previous time step we use the internal node constructed in the 3.5b; this allows recursive sharing of subformulas,

resulting in compactness.

3.4 Transition Relation Languages

To make this meta-algorithm into a real algorithm, we need to specify some more details. Most importantly, we
should specify the language we use to describe transition relations and its semantics. In this section we discuss some

alternative languages, their expressiveness and complexity.

3.4.1 STRIPS

We start with the STRIPS language. This language was introduced by Fikes and Nilsson (Fikes et al., 1981), and has

since shaped most the work in Planning.

Expressivity

In STRIPS, each action has a precondition and an effect, both of them conjunctions of literals. The precondition needs
to be true to apply the operator, and the effects are the way the world changes from its previous state.

For example, in our elevator domain the action (up floorI floor2) might look like:

(:action up
:parameters (floorl floor2)
:precondition (and (lift-at floorl) (above floorl floor2))

ceffect (and (lift-at floor2) (not (lift—-at floorl))))

Note that if we use the parameterized notation (action(objectl, object2, ...)), the action affects only objects that
were specified as parameters. For example, the action of taking the elevator up has to include not only the destination
floor but also the current floor; otherwise, it would be impossible to state that taking the elevator up causes the elevator

to stop being in the floor it was in.

37

Logical Representation

In order to represent STRIPS actions, we use a simple propositional vocabulary. Define action propositions

99 G tEIT3 93 G

Ly =J,cai “acauses f”, “a causes —f”, “a keeps f”, “f precondition of a”, “~ f precondition of a” }

for every f € P. Let the vocabulary for the formulas representing transition belief states be defined as L = P U
U fep L. Intuitively: “a causes f”, “a causes —f” is true if and only if action a in the transition relation causes f
(= f) to hold after a is executed. “a keeps f” is true if and only if action a does not affect fluent f. “f precondition
of a” (“— f precondition of a”) is true if and only if f (—f) is in the precondition of a.

For example, in our elevator domain we would like to learn that

“(up floorl floor2) causes (lift-at floor2)”,

“(up floorl floor2) causes —(lift-at floorl)”,

“(lift-at floor1) precondition of (up floorl floor2)”,

“(above floorl floor2) precondition of (up floorl floor2)”

“(up floorl floor2) keeps (box-at floor2)”.

Transition Rule Semantics and the STRIPS-C-SLAF Algorithm

In order to learn transition rules, we should first give our new propositions semantics. We consider several cases: the
first, and most common, assumes that the sequence contains only successful actions. In other words, it assumes that if

an action with precondition G and effect F' has executed, then G held before it and F' after it. More formally,

Definition 3.4.1 (Transition Rules Semantics: Successful Actions) Given s € S,a € A and R, a transition relation

represented as a set of transition rules, we define s', the result of performing action a in state s:

1. For every literal f, if “a causes f” € R then s’ = f.

2. If “akeeps f” then s = [& §' = f.

In addition, we assume the actions were successful: For every literal g, if “g precondition of a” € R,then s = g.

Given the semantics, we can now turn the meta-algorithm from Section 3.3.3 into a real algorithm, STRIPS-C-SLAF
. To do this, we only need to show how to calculate the next-state, possible and base formulas.

NextVal(a,f) = [“a causes f”V (“a keeps [A = A f)]

[the value of f after a]

Poss(a) = /\fep(—"‘f precondition of a” V f) A (—“~f precondition of a” V — f)

[the precondition of action a]

38

Also, let the formula base encode the axioms that inconsistent models are not possible. That is, models in which
“f precondition of a” and “—f precondition of a” both hold, or models where it is not the case that exactly one of {

tLINT3 LLINT3

“a causes [, “a causes —f”, “a keeps f” } holds are disallowed.

We plug these formulas into Meta-C-SLAF . This specifies our first learning algorithm, STRIPS-C-SLAF .

34.2 Ground
Expressivity

STRIPS is a very useful language, but it is not very expressive. It does not allow conditional effects, or preconditions
that are not conjunctions. For example, flipping a switch cannot be modeled in STRIPS as one action; instead, we
should use switchUp, switchDown. In this section we present another language, which can represent any deterministic
transition relation.

For example, flipping the switch might look like:

(:action flip
:parameters (switchl)
reffect (and (when (up switchl) (not (up switchl)))

(when (not (up switchl)) (up switchl)))

Logical Representation

We define a vocabulary of action propositions which can be used to represent transition relations as propositional
formulas. Let F be the set of literals of P. Let L = {“a causes F if G”}, where a € A, F € F a literal, G a

conjunction of literals (a term). We call “a causes F' if G” a transition rule, G its precondition and F its effect. “a

causes F' if G” means ”if G holds, executing a causes F' to hold”.
Claim 3.4.2 Any deterministic transition relation can be described by a finite set of such propositions.

Any deterministic transition relation can be described by a finite set of propositions “a causes F” if G’ where F’
and G’ are any formulas (for example, by letting G’ be a complete world specification, and F’ the effect of executing a
in this world). Note that “a causes F” if G1 V (G2” can be replaced by “a causes F’ if G1”,“a causes F” if G2”. That
is, if G’ is some formula, we can take its DNF form and split to rules with term preconditions. F” can be converted
to DNF too: it must be a term, since the domain is deterministic. Note that “a causes F'1 A F2 if G” is equivalent
to “a causes F'1 if G”,“a causes F'2 if G”. Again we can split the rule into several rules with a literal as their effect,

resulting in the form descried above.

39

For example, using this language we would like to learn that “(up floorl floor2) causes (lift-at floor2) if (lift-at
floorl) N —(lift-at floor2)” , “(up floorl floor2) causes —(lift-at floorl) if (lift-at floorl) N\ —(lift-at floor2)”.

Imagine the elevator has an on-off switch, and the action (switch) flips it up and down. This is a conditional action,
which cannot be represented in STRIPS. It is easily represented as

“(switch) causes (on elevator) if —(on elevator)”

“(switch) causes —(on elevator) if (on elevator)”.

Transition Rule Semantics and the C-SLAF Algorithm

We can again assume successful actions. The definition is very similar to the successful STRIPS semantics (Definition

3.4.1).

Definition 3.4.3 (Transition Rules Semantics: Successful Actions) Given s € S,a € A and R, a transition relation
represented as a set of transition rules, we define s', the result of performing action a in state s: if “a causes F if G” €

R, then s |= G and s’ |= F. The rest of the literals do not change.

However, we can assume different semantics. For the sake of the example, we now present a different semantics,
and show how it affects the algorithm. We relax the assumption of successful actions. Instead, we assume that all
actions were executed, but if the precondition did not hold nothing changed (we can also make action failure lead to a

sink state of some sort).

Definition 3.4.4 (Transition Rules Semantics: Conditional Effect) Given s € S,a € A and R, a transition relation
represented as a set of transition rules, we define s', the result of performing action a in state s: if “a causes F if G” €
Rand s | G, then s’ |= F. The rest of the literals do not change. If there such s', we say that action a is possible in

S.

With this semantics, we can now construct an algorithm for the ground case. The algorithm C-SLAF is created
from our meta-algorithm (Figure 3.4) by plugging in the following formulas:
Poss(a,) = €))

(Vg (“acauses fif G”AG)) A (Vg (“acauses ~f if G ANG')) |

NextVal(a, f) = (2)
(Vg (“acauses fif G”ANG))V (f A (Ag — (“a causes —f if G N G')))]
base :=

—(“a causes F'if G” A “a causes —F if G”)|A ,(“a causes F' if G’ — “a causes I if G”
a,F\.G a,F,G—G

40

3.4.3 Relational

The ground algorithm allows complex domains to be learned, but its complexity is sometime high (as we show later),
and it cannot generalize. In this section we present another family of algorithms, designed to take advantage of

relational domains.

Expressivity

For humans, the action of opening a door and opening a book is the same meta-action; in both cases, the object will
be opened. We try to capture this intuition in the languages that we present next.

For example, we can represent the opening action as:

(raction open
:parameters (7?7x)
:precondition (not (opened ?x))

ceffect (opened ?7x))

Note that ?x is a variable: therefore, this is an action schema rather than a ground action (compare to the previous
sections; in the Ground language, we would replace this schema by many ground actions, such as (open book), (open
door)).

To take advantage of the relational framework, we need to slightly change our transition definition:

Definition 3.4.5 A relational transition system is a tuple (Obj, Pred,Act, P,S,A,R)
e Obj, Pred, and Act are finite sets of objects in the world, predicate symbols, and action names, respectively.

Predicates and actions also have an arity.

P is a finite set of fluents of the form p(ca, ..., ¢,), where p € Pred, c1, .., ¢y, € ODj.

S C Pow(P) is the set of world states; a state s € S is the subset of P containing exactly the fluents true in s.

A C{a(©) | a € Act, €= (c1,..,¢n),¢; € Obj, }, ground instances of Act.

e RC S x A x S isthe transition relation.

(s,a(€),s’) € R means that state s is the result of performing action a(c) in state s.

3.4.4 Logical Languages for the Relational Case

Our logical languages represent transition belief states, using ground relational fluents from P (representing the state

of the world), and action-schemas, which are propositions that represent the possible transition relations. Informally,

41

schemas correspond to if-then rules; together, they are very similar to actions’ specification in PDDL (Ghallab et al.,
1998). For example, a schema in our language is
“SwUp(x) causes Up(x) if TRUE”
[switching up an object causes it to be up, if TRUE].
This schema represents a set of instances— ground transition rules, e.g.
“SwUp(ISw) causes Up(ISw) if TRUE” and

“SwUp(rSw) causes Up(rSw) if TRUE”.

Definition 3.4.6 (Schemas) A schema is a proposition of the form “a(x1, ..., x,) causes F if G” (read: o(T) causes
FifG). a € Act is an n-ary action name, T are n different symbols, F (the effect) is a literal and G (the precondition)
is a sentence, both over Pp, which we now define. W.l.g., G is a conjunction of literals; otherwise, we can take its
DNF form and split it to several schemas of this form.

Let Pat be a set of symbols that includes {x1,xa, ...}. Ppy is the set of patterned fluents over Pat:

PPat = {p(y177ym) |p S Preda Y1y -, Ym € Pat}-

In other words, a schema is a transition rule containing variables. Its instances can be calculated by assigning objects
to these variables; the result is a ground transition rule “a(c) causes F if G” for a € A,F, G over P. That is, every
patterned fluent (Up(x)) becomes a fluent (Up(ISw)) after the assignment. In order to compute the instances, we may
need to know some relations between objects, e.g. which switch controls which bulb. The set of possible relations is

denoted by RelatedObjs (see SL-H below).

Transition Rule Semantics and the C-SLAFS Algorithm

We again assume that actions are always executable, and do not change the state unless one of their preconditions

fired.

Definition 3.4.7 (Transition Rule Semantics: Conditional Effect) Given a state s and a ground action a(c), the
resulting state s' satisfies every literal F' € F which is the effect of an activated rule (a rule whose precondition held
in s). The rest of the fluents do not change— in particular, if no precondition held, the state stays the same. If two rules

with contradicting effects are activated, we say that the action is not possible.

Our algorithm for the relational case is presented in Figure 3.6. Just like in previous cases, the algorithm needs to

calculate the NextVal and Poss formulas.

'If the language does not involve related objects, assume RelatedObjs={TRUE}.
2Implementation depends on the schema language used.

42

PROCEDURE PossibleAct(f,a(¢))
input: f € P, a(¢) an action

1: ¢p = TRUE
2: for relobjs € RelatedObjs ' do
3: Compute all schema-instance pairs with effect f,

{(sch+,inst+)}, and those with effect —f, {(sch-,inst-)}, regarding action a(¢) and relobjs. *
4. =1 Avrelobjs —
[V sch+ A prec(inst+)) A (\/ sch- A prec(inst-))]
{[the action is possible if relobjs is true |}
5: return v

PROCEDURE NextVal(f,a())
input: f € P, a(€) an action
I: ¢ = TRUE
2: for relobjs € RelatedObjs do
3: Compute all schema-instance pairs with effect f,
{(sch+,inst+)}, and those with effect = f, {(sch-,inst-)}, regarding action a(¢) and relobjs.
4: Y =1 Avrelobjs —
[\ sch+ A prec(inst+)] V [f A =(\/ sch- A prec(inst-))]
{[/’s value after the action if relobjs is true |}
5: return v

Figure 3.6: C-SLAFS Algorithm

The algorithm is given a ground action (such as (open bookl)), and looks for all schema-instance pair that might
change the next state. For example, the schema “(open x) causes (opened x) if TRUE” can influence the value if
(opened bookl). It uses this to construct a formula for the next state of each fluent (the action caused it to hold, or it
held and the action did not change it), and for the action to be possible (no contradicting effects).

The formula base restricts possible assignments:

base := baserelobjx/\
Aa.r. ~(causes(a, F, G) A causes(a, ~F, G))
Ne.F c—c[causes(a, F,G') — causes(a, F, G)]

and base,j,pjs is a formula that the related objects must satisfy. It depends on the schema language used.

Schema Languages

Like in ground domains, transition relations in relational domains can be of different degrees of expressivity. We now
present several languages to represent schemas, starting from our most basic language.

SLj: The Basic Language

In this language, Pat = {x1,x2,...}. For any schema “a(z1, ..., z,) causes F' if G”, F and G include only sym-
bols from x4, ..., x,. An instance is an assignment of objects to z1,...,x,. No related objects are needed (we set

RelatedObjs = {TRUE}).

43

Examples include “SwUp(z;) causes Up(x) if TRUE”,
“PutOn(x1, x2) causes On(x1, x2) if Has(xz1) A Clear(x2)” (you can put a block that you hold on another, clear one).
Any STRIPS domain can be represented in SLy. Note that SLy can only describe domains in which every action a(c)

can affect only the elements in ¢; the following extensions are more expressive.

SL-V: Adding Quantified Variables

Some domains permit quantified variables in effects and preconditions; there, an action can affect objects other than
its parameters. For example,

“sprayColor(x) causes Color(zs, 1) if RobotAt(xs) N At(xs,x3)” (spraying color x; causes everything at the
robot’s location to be painted).

Pat is still {x1, 2z, ...}, but F, G can include any symbol from Pat. {x1,...,2,} are the action’s parameters, ¢
(thus, they are specified by the action a(€)). {zp41,...} represent free variables. Similarly to PDDL, free variables
that appear in the effect part of the schema are considered to be universally quantified, and those that appear only in
the precondition part are considered existentially quantified. In the previous example, 2 is universally quantified and
xg is existentially quantified. No related objects are needed.

In a more expressive variant of SL-V, the variables range only over objects that cannot be described any other way—
that is, they do not range over the action’s parameters, ¢ (and in richer languages, not over their functions). This allows
us to express defaults and exceptions, as in “blowing a fuse turns every light bulb off, except for a special (emergency)
bulb, which is turned on”, or “moving the rook to (c1, c2) causes it to attack every square (x, c3) except for (¢, c2)”.

If Pred includes equality, we can use a simpler variant.

SL-H: Adding Hidden Object Functions

Pat = {x1,22,...} U{h1, hg,...}. We write hy as a shorthand for h(Z). This extension can handle hidden objects—
objects that are affected by an action, although they do not appear in the action’s parameters. For example, the rules
“SwUp(ISw) causes On(lBulb) if TRUE”
“SwUp(rSw) causes On(rBulb) if TRUE”
are instances of the schema
“SwUp(x1) causes On(hy(x1)) if TRUE”
(flipping up switch ¢; causes its light bulb, h;(c;), to turn on. Note that 4 is a function of the action’s parameters,

which does not change over time). SL-H includes related object propositions, which specify these functions: {h;(d) =

d' | d; € Obj,d" € ObjU_L}. | means undefined’. Every relobjs € RelatedObjs completely specifies those functions.

44

Other Possible Extensions:

Extended Hidden Objects: in SL-H, the hidden objects depended only on the action’s parameters. We add to the lan-
guage new functions, that can depend on the quantified variables as well. We add their specifications to RelatedObyjs.
(example schema: OpenAll causes all the doors for which we have a key to open)

Invented Predicates: sometimes the representation of the world does not enable us to learn the transition model.
For example, consider a Block-world with predicates On(x,y),Has(x); this suffices for describing any world state, but
we cannot learn the precondition of Take(x): it involves universal quantification, Vy.—On(y,x). If we add a predicate
Clear(x), it is easy to express all of the transition rules (including those that affect Clear) in our language. This idea
is similar to the ones used in Constructive Induction and Predicate Invention (Muggleton and Buntine, 1988).

We can also combine the languages mentioned above. For example, SL-VH allows both variables and hidden

objects.

3.4.5 Extended Example

After presenting our base languages, we take a closer look at the way we update our circuit.

Imagine a room with two switches, one on the left wall and one on the right. In some other room there are
lightbulbs which these switches control; however, the agent does not know which switch controls which bulb. Assume
the agent decides to flip the left switch.

In order to update the circuit, we need to construct a next-state formula for every possibly-affected fluent. Take
the state of left lightbulb, for example. The idea is to find all ground instances that can affect the lightbulb, and find
their matching schemas.

Figure 3.7 shows how to update the current state of the left lightbulb, expl,, g, after executing SwUp(ISw). The
circuit in Figure 3.7 is the formula expl’ ,,,;,) (after update). The node labeled “expl” is the root of the circuit before
the update. The bottom nodes (the leaves) are the propositions: This is a simplified example, so we only show two
relobjs nodes— (pl,p2), and two schemas— trl,tr2. trl claims that switching up an object x causes its hidden object,
h(x) to become on. #r2 claims that it turns off everything that is currently on. p1,p2 relate the left switch with the left
and right light bulbs, respectively.

The — nodes (second layer) correspond to different cases of relobjs. The V node is the explanation of On(IBulb)
in case pl holds. Its left branch describes the case that the action caused the fluent to hold- #r/ is true, and its
preconditions hold; the right branch deals with the case that On(I/Bulb) held before the action, and the action did not
change it (that is, either #2 is false, or its precondition does not hold). The formula in Figure 3.7 can be simplified,

but this is an optimization that is not needed for our algorithm.

45

h(ISw)= SwUp(x) init SwUp(x) h(ISw)=

IBu causes On(IBu) causes rBu
On(h(x)) =10n(y)
if T if On(y)

Figure 3.7: A (simplified) update of On(IBulb) after the first action, SwUp(ISw)

In general, given relobjs, a ground action a(¢) and a fluent f, we want to update expl ¢ and cb. To do this, we first
identify the instances that can affect fluent f, and the schemas they correspond to.

Denote by (sch+,inst+) a schema-instance pair that can cause f. inst+ is a transition rule with effect f, which is
an instance of schema sch+. In other words— if the schema is true in our domain, and the precondition of the instance
(prec(inst)) holds, f will hold after the action. Similarly, (sch-,inst-) is a pair that can cause —f. We need relobjs and
a(c) to match schemas and instances.

Fluent f is true after the action if either (1) a schema sch+ is true and the precondition of its instance holds, or (2)
f holds, and for every schema sch- that is true, no precondition holds. cb asserts that the action was possible; it cannot
be the case that there are two schema-instance pairs, such that their effects are f and —f, and both preconditions hold.

We assume that the sequence consists of possible actions; if the agent has a way to know whether the action was

possible, we do not need this assumption.

3.5 Analysis

3.5.1 Correctness and complexity

Theorem 3.5.1 The algorithms we presented are correct. For any formula ¢ and a sequence of actions and observa-

tions,

{(s, R) that satisfy STRIPS-C-SLAF({ai, 0;)o<i<<t,)} = SLAF [(a;, 0i)o<i<<t)({(s, R) that satisfy ©})

{(s, R) that satisfy C-SLAF((ai, 0i)o<i<<t,¢)} = SLAF [(a;, 0:)o<i<<t]({(s, R) that satisfy ©})

46

{(s, R) that satisfy C-SLAFS ((a;(€;), 0i)o<i<<t,¢)} = SLAFS[(a;(C;), 0i)o<i<<t)({(s, R) that satisfy p}).

[such that the domain description can be expressed in the corresponding transition relation language |

PROOF OVERVIEW The proof is very similar to the Filtering proof in Section 2.5.1. We define an effect model
for action a(c) at time ¢, T,p(a(c),t), which is a logical formula consisting of Situation-Calculus-like axioms (Re-
iter, 2001). It describes the ways in which performing the action at time ¢ affects the world. We then show that
S£a75[a(¢)](y) is equivalent so consequence finding in a restricted language of ¢ A T,4(a(c),t). Consequence find-
ing can be done by resolving all fluents that are not in the language; we show that C-SLAFS calculates exactly those
consequences.

COMPLEXITY The complexity of these algorithms depends on the expressivity of the transition relations we
consider. The general time-space complexity for a sequence of length ¢ is the size of the initial knowledge + total
size of observations + (¢ times the size of the next-state and action-possible formulas). That is because we start with a
circuit that represents the initial knowledge, at any time step we add an observation, an assertion that the action was

possible, and next-state formulas to update our fluents.

STRIPS-C-SLAF

Theorem 3.5.2 The space and time complexities of the algorithm are O(|@o| + |Obs| + t| P|), where g is the initial

belief state,

Obs| is the total length of the observations throughout the sequence (can be omitted if observations are

always conjunctions of literals).

C-SLAF

Theorem 3.5.3 The space and time complexities of the algorithm are O(|¢o| + |Obs| +tk(2|P|)**1), where @y is the

initial belief state,

Obs| is the total length of the observations throughout the sequence (can be omitted if observations
are always conjunctions of literals), t is the length of the sequence, and k is a parameter of the domain- the minimum

number such that preconditions are k-DNF.

If there are no preconditions (always executable actions), we can maintain a flat formula (instead of a circuit) with

complexity O(|gg| + |Obs| + t|P]).

C-SLAFS Let ¢ be the initial belief state,

Obs| the total length of the observations (if observations are always
conjunctions of literals, we can omit it), ¢ is the length of the sequence. The maximal precondition length, k, is at
most min{%’ | preconditions are k’-DNF}. Let pairs be the maximal number of schema-instance pairs for an action

a(€). Let 74, r), be the maximal arities of actions and predicates, respectively.

47

C-SLAF: Learning Rate

—&- Full Observability

Transition Rules Learned
(Out of Random 50)

—o—60% Observability

0 10 20
Number of Steps

Figure 3.8: Experimental results showing learning rates for the C-SLAF algorithm under different degrees of observ-
ability (the percentage of randomly selected fluents that are observed at each step).

Theorem 3.5.4 With circuit implementation, C-SLAFS ’s time and space (formula size) complexities are O(|po| +

|Obs| + t - k - pairs) We can maintain an NNF-circuit (no negation nodes) with the same complexity.

If we allow preprocessing (allocating space for the leafs): In SLo, pairs = (2|Pred| - r,"»)*+1. In SL-H with f

functions, pairs = |RelatedObjs|(2|Pred| - (ro + f)"»)**1. In SL-V without existential quantifiers,

P|"™ - (2|Pred| -
(rq + 7,)")5 T, and with them- |P|*+ 17> . (2|Pred| - (r,, + (k + 1)r,)"»)F+1. If we add invented predicates, we
increase |Pred| accordingly.
Since rq, 7p and k are usually small, this is tractable.
Interestingly, SLy (and some cases of SL-H) allow runtime that does not depend on the domain size (requiring a
slightly different implementation). Importantly, SLq includes STRIPS.
If there are no preconditions (always executable actions), we can maintain a flat formula with the same complexity.
Note: The inference on the resulting circuit is difficult (SAT with | P| variables). The related problem of temporal

projection is coNP-hard when the initial state is not fully known.

3.6 Experimental Evaluation

We implemented two versions of our SLAF meta-algorithm: C-SLAF , for the ground language, and C-SLAFS , for

the relational case.

C-SLAF

We tested our ground algorithm, C-SLAF (Section 3.4.2), on several domains. These domains include Blocks world,
Briefcase world, a variation of the Safe world, Bomb-in-toilet world, and the Driverlog domain from the 2002 Inter-

national Planning Competition 3. In the variation of the Safe world domain tested, the agent must try a number of

3http://planning.cis.strath.ac.uk/competition/

48

. T . . C-SLAF: Finding a model
« C-SLAF: Time C-SLAF: Space 9

3 900

E 1000 | _g 19 FI. = 1000
S oy 19 FL. 50

. — so00| 55 FI. 02 g ™
=T £T ©

Q< g = 55FI. @

w2 109 FI. ﬂ% £ 600
E 600 @ 2 6004 Y

2
2% P e S SO e o £
o £

2 £ 400 S5 4001 [
(7 S 300
S N Lo -
& L3 L
[T - o — o £ 200+

= - £ 150

5 E 5
£ E

Py 090000009 Fu -

g 0 . . : . 0w ? ; : :) : : : : :
[0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 6000

Number of Steps Number of Steps Number of Steps

Figure 3.9: Experimental results for the C-SLAF algorithm showing time required to process actions, space required
to process actions, and time required to extract an action model.

different possible combinations in order to open a safe. In addition, there is an action CHANGE which permutes the
right combination. Note that many of these domains (Briefcase world, Safe world, Bomb-in- toilet world) feature
conditional actions, which cannot be handled by previous learning algorithms.

Figure 3.9 shows the time (always in milliseconds) and space results for instances of Block World of various
sizes. The time plots show the time required to process every 500 actions. Note, that C-SLAF requires less than 2
milliseconds per action. The space plots show the total space needed in bytes. The rightmost graph shows the time
taken by our inference procedure to find an action model of the Blocksworld domain (19 fluents) from the formula
produced by C-SLAF . Finding an action model is accomplished by simply finding a model of the logical formula

produced by the algorithm using our inference procedure; inference times are generally longer for more complex

queries.

(CHANGE) causes (RIGHT COM2)
if (RIGHT COM1)

(CHANGE) causes (RIGHT COM3)
if (RIGHT COM2)

(CHANGE) causes (NOT (RIGHT COM2))
if (RIGHT COM2)

(CLOSE) causes (NOT (SAFE-OPEN))
if (TRUE)

(TRY COM1) causes (SAFE-OPEN)
if (RIGHT COM1)

Figure 3.10: A Model of the Safe World (after 20 steps)

Figure 3.10 shows part of an action model learned after running the C-SLAF algorithm on the Safe world domain
for 20 steps. The model shown was the first model extracted by our inference procedure on the logical formula returned
by the algorithm. In this particular model, the algorithm was able to partially learn how the correct combination is

permuted after the CHANGE action executes.

49

The learning rate graph in Figure 3.8 show learning rates for C-SLAF . The graph shows the number of transition
rules (corresponding to action propositions) successfully learned out of 50 randomly selected rules from the domain.
Initially, the algorithm has no knowledge of the state of the world or the action model. The first graph shows results
for the Safe world domain containing 20 fluents and the latter graph shows results for the Driverlog domain containing
15 fluents. Note that in the domains tested, it is not possible for any learning algorithm to completely learn how every
action affects every fluent. This is because in these domains certain fluents never change, and thus it is impossible to
learn how these fluents are affected by any action. Nevertheless, our algorithms demonstrate relatively fast learning
rate under different degrees of partial observability. Unsurprisingly, the results show that learning rate increased as
the degree of observability increased. It is also worth noting that inference time generally decreased as the degree of
observability increased.

Our algorithm finds exactly all action models that are consistent with the actions and observations, while the
algorithm of (Qiang Yang and Jiang, 2005) only guesses a (possibly incorrect) action model heuristically. The goal of
this chapter is to perform exact learning where there is no assumed probabilistic prior on the set of action models. In
this case, there is no principled way to favor one possible action model over another. However, introducing bias by

preference between models was studied by the non-monotonic reasoning community, and can be applied here as well.

C-SLAFS

We implemented and tested our relational algorithm, C-SLAFS (Section 3.4.3), for SLy and for a variant of SL-V;
we also implemented a version for the case of always-executable actions, which returns a flat formula. In addition,
we implemented a DPLL SAT-search algorithm for circuits (C-DPLL , described in the previous chapter). It finds
satisfying assignments for the algorithm’s output. We tested the S£LA%S algorithms on randomly generated partially
observable action sequences, including STRIPS domains (Block-Worlds, Chess, Driverlog), and ADL, PDDL domains
(Briefcase, Bomb-In-Toilet, Safe, Grid) of various size, ranging from tens to thousands of propositional fluents.

Figures 4, 3.13 present some of our results. We measured the time, space, knowledge rate (percentage of schemas
that were learned, out of all the schemas currently in the knowledge base), and learning rate (percentage of schemas
that were learned, out of all of the schemas that could have been learned from the given sequence). A schema is
learned, if all models assign the same truth value to it.

As expected, the algorithm takes linear time and space in the sequence length, and does not depend on the domain’s
size (Figure 3.11). Importantly, simple SAT queries return relatively fast, especially regarding schemas which were
contradicted by the sequence. Naturally, more complicated queries take longer time.

Decreasing the number of observations also resulted in long inference time: in the Bomb-In-Toilet domain, we

generated several action-observation sequences, with different degrees of observability (from full observability to 10%

50

1500

1200

8
s

(nodes*1000)

Formula Size

Total Time (sec/1000),

o

Time \ Size as SLAFS Proceeds

o Time (991)
o Time (271)
A Time (55)
m Size (991)
@ Size(271)
A Size (55) a

°

2000 4000

Number of Steps

6000 8000 10000

Total Time (sec/1000)

Inference on the DAG

2000

1750

1500

1250

1000

-@-Find a Model
- False Schema
A-True Schema

500

©-False Fluent -
<& True Fluent 78
O

o

0 1000

2000
Number of Steps

3000 4000

Figure 3.11: Left: Time and space for several Block-Worlds (numbers represent | P|). As can be seen, the time and
space do not depend on the size of the domain. Slight time differences are due to a hash table. Right: Inference time
on C-SLAFS’ output, for several simple queries.

of the fluents). Then, we then chose 40 transition rules at random, and checked how many of them were learned for

each sequence. Not surprisingly, both learning and inference were faster when the number of observations was higher.

If there are no observations we can still eliminate some models, since we know that the actions were possible.

Another important point is that, most of the schemas that can be learned are learned very quickly, even for larger

domains. In most domains, more than 98% of schemas were learned after 200 steps (Figure 3.13). This is mainly be-

cause the number of action schemas does not depend on the size of the domain, e.g. all Block-Worlds have exactly the

same number of schemas. Compare this with the decreasing knowledge rate in the propositional approach of (Amir,

2005). The latter does not generalize across instances, and the number of encountered (propositional) transition rules

grows faster than those that are learned.

(dunk ?bomb ?toilet) causes (NOT (armed
?bomb)) if (NOT (clogged ?toilet))

(dunk ?bomb ?toilet) causes (clogged
?toilet) if (TRUE)

(dunk ?bomb ?toilet) causes (toilet
?toilet) if (TRUE)

(flush ?toilet) causes (not (clogged
?toilet)) if (TRUE)

(dunk ?bomb ?toilet) causes (NOT (armed
?bomb)) if (AND (bomb ?bomb) (toilet
?toilet) (NOT (clogged ?toilet)))

(dunk ?bomb ?toilet) causes (clogged
?toilet) if (TRUE)

(flush ?toilet) causes (not (clogged
?toilet)) if (toilet ?toilet)

Figure 3.12: Possible Models of the Bomb-Toilet World (Top: after 5 steps. Bottom: after 20 steps)

In another comparison, we ran sequences from (Wu et al., 2005), and each one took our algorithm a fraction of a

second to process. We also cross-validated our output and the output of (Wu et al., 2005) with a known model. We

51

Learning Curve SLAF vs. SLAFS

&

-

=)
3

L= —

9

a
4
o

4
o

—4-89 Fluents

——SLAFS Learning
A~ SLAFS Knowledge

-@-181 Fluents

oS
IS

A 461 Fluents

% of Schemas Learned
» a
R]

% of Schemas Learned

-@-SLAF Learning
©- SLAF Knowledge

o
N

)
o
o C\) —
[+
(o}
]
]

-=-991 Fluents

6
120

! ! :
100 400 30

o

200 60
Number of Steps Number of Steps

Figure 3.13: Block Worlds. Left: S£LAFS learning rate. Right: S£4F (Amir, 2005) and SLAFS knowledge and learning
rates.

found that several outputs of (Wu et al., 2005) were inconsistent with the action-observation sequence, while the true
model was consistent with our final transition belief state.

Note that their algorithm returns one (approximate) model, whereas our algorithm return a formula that represents
all consistent models. Figure 3.12 shows two models of Bomb-In-Toilet world. Those models were found by running
our DPLL algorithm on the resulting circuit after 5 and 20 steps, respectively, and returning the first satisfying assign-
ment. The second model (20 steps) is more refined than the first one, and is quite close to the real model.

Trying a schema language that is too weak for the model (for example, trying SLy for the Briefcase World) resulted in

no models, eventually.

3.7 Conclusions

We presented an approach for learning action schemas in partially observable domains. The contributions of our work
are a formalization of the problem, the schema languages, and the tractable algorithm. Our results compare favorably
with previous work, and we expect to apply and specialize them to agents in text-based adventure games, active Web
crawling agents, and extensions of semantic Web services.

Significantly, our approach is a natural bridge between machine learning and logical knowledge representation. It
shows how learning can be seen as logical reasoning in commonsense domains of interest to the KR community. It
further shows how restrictions on one’s knowledge representation language give rise to efficient learning algorithms
into that language. Its use of logical inference techniques (especially resolution theorem proving served in proving
correctness of our theorems) and knowledge representation techniques makes it applicable to populating commonsense

knowledge bases automatically.

52

Chapter 4

Applications

Filtering and Learning can be useful for many applications in partially observable domains. In this section we focus
on two of them, Conformant Planning and Bounded Model Checking; we demonstrate how to solve them using our

circuit representation, and evaluate our solution. We believe our methods can be useful in many other domains.

4.1 Conformant Planning

Assume that you have a robot in a corridor (see Figure 4.1). The robot can move left and right. If it is in front of a
door, it can attempt opening, closing or locking it. The robot cannot open a locked door. Also, trying to lock an open
door will damage it.

The robot’s goal is to lock all doors in the corridor. It might have some partial knowledge about its initial state, but

it has no sensors. In Conformant Planning (CP), the robot tries to find a sequence of actions that guarantees it reaches

i

Figure 4.1: A corridor: doors can be opened, closed, or locked.

its goal despite this uncertainty.

One possible solution is to first go left until it is sure it reached the end of the corridor (in Figure 4.1, that would
mean going left twice). Then, it should apply (Close,Lock,Move-Right) until all doors are locked.

Formally, a planning problem is a tuple (I,G,D) in which D is a domain description, I C S is a non-empty
initial set of world states and G C S is a set of goal world states. A solution for (I, G, D) is a plan 7 (a sequence of
actions, no observations) such that performing 7 from a state in I necessarily results in a state in GG. In other words,
Filter[r](I) C G.

In Conformant Planning we assume that we start in a world state in I, but we do not know which world in I it is.

There, planning includes no sensing actions, no automatically sensed conditions, and no branching on conditions.

53

PROCEDURE Forward-Search (I, G, D)
1, G initial belief-state and goal formulas, D domain description

1: ProcessDomain (D)

2: ¢y := CreateCircuit (True)

3: cr.ActionSequence= ()

4: Queue.insert(cy)

5: while NOT Queue.empty() do

6: ¢ :=Queue.pop()

7. if Goal (c, I, G) then

8: return c.ActionSequence

9: else

10: fora € Ado

11: ¢ :=ProgressAction (c, a)
12: ¢’ .ActionSequence= {c.ActionSequence, a)

13: Queue.insert(c’)

PROCEDURE Currently(c, 1))
{c a belief-state circuit, 1 a formula}
[Replace fluents with current values]
1: for f € P in ¢ do replace f with the node pointed by c.expl,
2: return 1)

PROCEDURE [nitially(c, 1))
{c a belief-state circuit, ¢ a formula}
[Replace fluents with leaves
1: for f € P in v do replace f with the leaf c.inits
2: return v

PROCEDURE CreateCircuit ()
 formula

1: ¢ an empty circuit

2: for f € Pdo

3: c.AddNewLeaf(inity)

4 c.exply 1= inity

5: c.cb := Currently(c, ¢)

6: return c

PROCEDURE Goul (¢, I, G)
c a belief-state circuit, I, G initial-state and goal formulas

1: return UNSAT(Initially (c, I) A—(c.cbA Currently (c, G)))

Figure 4.2: Forward-Search Algorithm

We can use C-Filter and C-DPLL to forward search for the goal, starting from the initial belief state. At every step
we can check if the goal conditions are satisfied (entailed) by the current belief state. If they do, we stop and return

the plan that satisfies this projection. The attractive nature of this approach is that we can apply standard planning

techniques without fear of reaching belief states that are too large to represent.

Algorithm Overview

The template of forward-search is shown in Figure 4.2. The algorithm receives an initial belief-state formula I,
goal formula G. and a domain description D. D includes the description of actions in A; an action has a precondition

and a list of conditional effects. Every deterministic domain can be represented like this (including, for example,

54

STRIPS and PDDL); see Section 3.4.2. The precondition has to hold before executing the action, and the conditional
effects occur iff their condition holds. In our example,
Move-Left Precondition: True

t1)

“Causes (at posl) N—(at pos2) if (at pos2)
“Causes (at pos2) N—(at pos3) if (at pos3)”
Close Precondition: True
“Causes —(open doorl) if (at posl)”
“Causes —(open door2) if (at pos2)”
“Causes —(open door3) if (at pos3)”
Lock Precondition: [(at posl) A —(open doorl)| V [(at pos2) N —(open door2)| V [(at pos3) A —(open door3)]
“Causes (locked doorl) if (at posl)”

“Causes (locked door2) if (at pos2)”

The algorithm starts by processing the domain description; using C-Filter subroutines, it extracts next-state and
possible formulas. Poss(a) is the precondition of action a, and NextVal(a,f) is the value of fluent f after action a as a
function of the world before it (intuitively, the formula “a caused f or f already held and a did not change it”). Note
that we only calculate this for fluents that might have been affected by a; the circuit structure obviates the need for

specifying that other fluents do not change (Frame axioms). For example,

NextVal(Close,(open doorl)) = (open doorl) \ —(at posl)
NextVal(Open,(open doorl)) =

[(at posl) N\ —(locked doorl)] NV (open doorl) “.1)

The algorithm maintains a set of alive belief-states circuits in a priority queue, for which a priority function must be
specified (this function is the most significant difference between various search algorithms). The circuits correspond
to action sequences: this is similar to (Hoffmann and Brafman, 2004), that represent a belief state by the initial belief
state representation and the action sequence that leads to it.

In every iteration a candidate is extracted from the queue and checked. If it is a solution sequence (starting from [
entails that the sequence is applicable and results in (G), the algorithm returns the associated sequence. Otherwise, the
algorithm applies every action a € A, builds the updated circuits and stores them in the queue.

The update step is the one used in C-Filter . We do not use observations, since they are not included in the

Conformant model.

55

N\ YN <N £\
e(p1 eo1 e(l1 e(p2) || e(o2

Init(p1) Init(o1) Init(11) Init(p2)Init(o2)

(a) A belief-state update: action sequence ()

e O f@em O -
Init(p1) Init(o1) In|t(I1)In|t(p2)In|t(02)

(b) A belief-state update: action sequence {Close)

In|t(p1) Init(o1) In|t(I1)In|t(p2)In|t(02)
Figure 4.3: (c) A belief-state update: action sequence (Close, Open)

The update is illustrated in Figure 4.3. 4.3a shows a belief-state that corresponds to the empty sequence, the result
of CreateCircuit (True): the circuit contains a node for each fluent f, and the pointer e(f) is set to it. cb is set to True
(not shown in the figure).

4.3b shows how we progress with the action Close. The action is always applicable (no preconditions), so cb
does not change. The only fluents that can be affected by this action are (open doorl), (open door2), (open door3).
We progress each one of them, by building the NextVal formulas (see Equation 4.1). After building the formula that
explains the current state of doorl, we assign the pointer to the root of this formula (similarly for the other doors).

4.3c goes one step further, and progresses 4.3b with another action, Close. Note that we update the only possibly-
affected fluents (no Frame axioms). Also, when we refer to fluents of the previous time step we use the internal node
constructed in the 4.3b; this allows recursive sharing of subformulas, resulting in compactness.

We showed how to create belief-states that correspond to action sequences. We still need to determine solution
sequences: in Procedure Goal (Figure 4.2) we look for a counterexample, an initial state in for which the sequence is
either not applicable or does not result in G. We construct this formula (leaves represent initial state, cb is applicability,

and the explanation pointers represent final state), and look for a satisfying assignment.

56

4.1.1 Analysis

Theorem 4.1.1 (Correctness) The algorithm is sound. If the queue implements systematic search, it is also complete.

Theorem 4.1.2 (Complexity) Let ActDesc be the length of the longest action-description in domain D (the length of
the precondition and conditional effects). Building a query circuit that corresponds to an action-sequence of length k,
initial belief-state I and goal G takes time O(|I| + |G| + k - ActDesc) . Its output is a circuit of the same size, with at

most | P| variables.

Note that size does not depend on the domain size,

P|. ActDesc is usually small- especially if the actions in the
domain affect a small number of fluents, and have simple preconditions. A flat formula, on the other hand, will be of
size O(CNF(|I|) + CNF(|G|) + k - (|P| + CNF(ActDesc))), and will involve k| P| variables. BDDs cannot guarantee
compactness at all, and sometimes blow up exponentially. The proofs follow from the correctness of the C-Filter

algorithm and from (LaValle, 2006).

4.1.2 Extensions

We have described our representation and basic algorithm. In this section we extend them in several ways to handle
non-determinism, backward search and parallel actions.

Non-Determinism

Many real-life environments are inherently non-deterministic. However, the circuit-representation update step relies
heavily on determinism (specifying the state of each fluent as a function of the previous step). Please recall Section
2.5.5 for ways to make the Filtering algorithm handle non-determinism; each of these ways can be used for Conformant

Planning as well.

Backward Search

A backward version of the forward search algorithm can be made. The algorithm is very similar, but actions are added
at the beginning of the sequence. To achieve this, the update-step builds NextVal and Poss formulas as before, but adds
them to the bottom of the circuit instead (creating new leaves).

Action Fluents

Instead of building circuits that correspond to one action sequence, we can add propositions representing actions and

construct a circuit that represents all sequences of length k. The algorithm is similar, but the NextVal and Poss formulas

57

should now take those variables into account. We can take advantage of many encodings, including allowing actions
to execute in parallel.

Reasoning with those circuits is different: we now need to answer an IsequenceVinitial-state-query, instead of
Vinitial-state like previously. We first look for a possible plan (satisfies to “Initially (c, I) Nc.cbA Currently (c, G)”).
We take the (perhaps partial) assignment to the action fluents, and check (the same way we did before) every action-

sequence assignment that agrees with it.

4.1.3 Optimizations

In this section we discuss the efficiency of our search method, and present some domain-independent optimizations

we implemented.

Reuse

Two main sources of inefficiency in our algorithm are the independence of satisfiability checks (resulting in learning
things over and over) and building circuits from scratch every time. To solve this we first implemented an “undo”
command, so that some search procedures (e.g. DFS) can operate on a single data structure. In addition, whenever a
SAT check determined the value of a fluent it replaces it with the value, preventing future checks. As a special case of
this, if an action sequence is not executable the cb formula becomes False, and no sequences that start with this prefix

are checked.

Search Heuristics

One of the most important parts in our searching algorithm the queue sorting function. Much research was spent on
using heuristics to guide the CP search (e.g. (Bonet and Geffner, 2000; Bertoli et al., 2001a)). Many of the results can
be applied with small changes to our circuits.

We describe three heuristics which we found most effective: one estimated the belief-state cardinality by sampling.
We prefer small, high-informed belief-states when performing forward search and big belief-states when proceeding
backward. The second heuristics also estimates the level of knowledge associated with the belief-state by checking
how many propositions are known in it. This requires | P| + 1 SAT checks, but seems to guide the search well.

The final heuristic split the goal into subgoals. The distance estimation was the number of subgoals that were not
entailed by the current belief state, divided by the number that can be reached in a single step (estimating the minimal
number of steps to the goal). We added a random ordering on subgoals to break ties. Later we refined this heuristic to
take into account preconditions of subgoals that are entailed. This heuristics worked well for domains in which one

knows when a subgoal was achieved (i.e. Bomb in Toilet), but breaks in others (i.e. Ring domain).

58

10000

SAT Time (logscale)

1000 f/

B Flat
4 Circuit

log(Avg SAT Time, msec)
2
L=

X BDD
M dynBDD

1
50 75 100

Sequence Length

Belief-State Space (logscale)

100000

10000 | /-/é/.’/.

< X
‘qu? X
° V! ol
1000
)
c i o
g
@ 100 4 B Flat
87 @ Circuit
10 x BDD L
X dynBDD
1 T T T T 1
0 20 40 60 80 100

Sequence Length

Figure 4.4: Comparison of flat formulas, BDDs, dynamic-reorder BDDs and circuits for various sequences in Block-
World variant with ~ 100 fluents. Time for SAT is on the left (msec), Space (nodes) on the right; both are logscale.

SAT Heuristics

Like CNF-SAT, the efficiency of the circuit-SAT solver depends heavily on the variable-instantiation order. We exper-

imented with several heuristics, among those choosing the variable that is closest/farthest from root, ZChaff’s VSIDS

heuristic (which counts the number of conflicts that a variable causes) , and the most-effective variable (in the sense

of flow algorithms).

Bombs || Circuit | CMBP | CGP | GPT |

Time, sec (deterministic)

2 0 0 0 0.074
5 0.09 0.02 0.13 0.094
8 0.53 0.15 13.69 | 0.288
10 1.26 0.71 157.6 | 1.309
16 11.57 99.2 TO 351.4
Time, sec (non-det)

2 0 0 - 0.076
5 0.109 0.01 - 0.098
8 0.578 0.17 - 0.38
10 1.484 0.72 - 1.828
16 159.06 | 98.27 | - 486.25

Table 4.1: Comparison: Conformant Planners in Bomb-in-Toilet domains (sec)

We noticed a tradeoff: “closest” and “farthest” instantiated the most variables (i.e. did not choose good ones), but

since they are both logarithmic in the size of the circuit their overall time was better than the others. This situation

changed as action sequences became longer; ZChaff’s heuristic outperformed the others on our longest sequences.

59

4.1.4 Preliminary Experimental Results

We implemented our method and tested it empirically. Our main goal was to evaluate the space-time tradeoff of our
representation compared to other methods. In order to eliminate as many sources of bias as possible, our algorithm was
designed to work with four representations: BDDs, dynamic-reordering BDDs, flat formulas and circuits. Further-
more, to avoid different SAT-solvers we encoded CNF formulas as shallow circuits and applied the same circuit-solver
to all.

The representation is (almost) orthogonal to the search method and the heuristics; therefore, we believe that those
experiments can reveal the potential of our method. Figure 4.4 shows some of the results in a Block-World variant
with ~ 100 fluents: the left part shows the average time for SAT queries for action-sequences of different length, and
the right part shows the corresponding representation size (number of nodes). Note that both graphs are logscale.

As can be seen, our representation is the most compact, and is not subject to oscillations like the BDD. In some big-
ger domains and longer sequences the BDD algorithm could not even represent the initial belief-state. Our algorithm
is also faster than the flat-formula SAT; dynamic-reordering BDD is comparable (faster at the beginning, but does not
scale as well). This makes sense, since BDDs do not need SAT inference, but tend to grow with long sequences.

Figure 4.4 also shows some comparisons of our naive algorithm to times reported by other algorithms on Bomb-
In-Toilet deterministic and non-deterministic domains. Despite being naive, it is comparable with them some of the
time and even outperforms them. We believe that incorporating techniques from other CP solvers into our solver (such

as pruning, or fast-forward search (Hoffmann and Brafman, 2004)) could result in a strong CP algorithm.

4.1.5 Conclusions

We have presented algorithms for solving Conformant Planning via a novel logical circuit representation. This rep-
resentation is better than other representations is some ways and worse in others. Thus, we strike a different point in
the tradeoff. Unlike enumeration or BDDs, this representation guarantees compactness; unlike flat logical formulas, it
uses only | P| variables and keeps more structural information.

We showed how to take advantage of the benefits of our representation and how to minimize the effect of its
drawbacks. We analyzed our method experimentally and analytically, and proposed several extensions and domain-
independent optimizations.

Finally, we showed that our representation outperforms others. Most importantly, our algorithm could handle large
domains and long sequences that other (BDD-based) algorithms could not process. We expect that more sophisticated

search and analysis techniques for planning would yield significant improvements when combined with our method.

60

4.2 Formal Verification

Testing alone cannot prove that a system does not have a certain defect, or that it has a certain property (unless all
possible states are tested). In contrast, Formal Verification is the act of proving or disproving such properties, using
formal methods of mathematics.

In Formal Verification we are given a formal model of a system and check whether the system satisfies some
property, usually specified in temporal logic (e.g., a bad state is not reachable). In Bounded Model Checking (BMC),
an initial belief state is given, and we check whether the system satisfies the property after at most k time steps.

The connection of Filtering to Bounded Model Checking is straightforward. If we know how to maintain a belief-
state, we can unfold our system for k steps, and then check for the desired property (for example, check that the
register is non-zero). If the property does not hold, there is some % for which we can find a counterexample. In fact,
the most interesting part in applying Filtering to BMC is handling those temporal-logic queries. We now turn our

attention to translating queries into our circuit structure.

4.2.1 Queries

Assume we have constructed the circuit that corresponds to the belief-state after & steps. The next step of the BMC
algorithm is finding a counterexample.

To do this, we first show how to translate a Linear Temporal Logic (LTL) formula into a circuit. LTL has many
applications; in particular, it is a popular choice for specifying temporal properties in verification domains. We start
(Section 4.2.1) with a description of LTL and our translation procedure, LTLtoCircuit. After the translation, finding a

counterexample reduces to circuit-satisfiability problem (addressed in Section 2.3.3).

LTL

LTL is a modal temporal logic with modalities referring to time. It can encode formulas about the future of paths such
as that a condition is always true, will eventually be true, will be true until another fact becomes true, etc. Formally,

an LTL formula is:

Definition 4.2.1 (LTL Formula)
1. @ a propositional variable is an LTL formula.
2. If o, ¥ are LTL formulas then so are —~p, o V 1, ¢ A ¥, Ny (Next. X is also used), Gy (Globally), Fy
(Finally), YU p (Until), 1 Ry (Release).

For example, G(xo V x1 V 23 V x3) specifies that the register never contains only zeros.

61

Several translations of LTL to SAT have been proposed in the past (Cimatti et al., 2002c; Frisch et al., 2002). Our
translation is based on the one presented in (Latvala et al., 2004), since it is the most compact one and can be easily
incorporated into our circuit structure. We now describe it in detail.

We first note that properties specified in LTL can require two different types of counterexamples: properties such
as “always ¢” require finite counterexamples, while others (like ’eventually ¢”’) require infinite ones. However, BMC
considers only finite paths. In order to handle both types, we note that a finite path can represent an infinite path if it
contains a loop. Therefore, for every path of length k, we consider k& + 1 possibilities: the k simple loops (states at
time ¢, k are equal), and the no-loop case.

The basic idea of (Clarke et al., 2001) is to construct a formula for each of these cases, such that a satisfying
assignment corresponds to a counterexample. The complete translation simply joins those formulas in a disjunction.
(Clarke et al., 2001) have shown that it is enough to use a finite prefix of a path, and case split based on the loops the
path contains. If a formula is true in the bounded semantics, it is true is the normal semantics.

Like (Latvala et al., 2004), our translation uses the fact that for lasso-shaped paths, the semantics of LTL and CTL
coincide. An LTL formula can therefore be evaluated by a CTL model checker, if we add E quantifiers in front of
each temporal operator. Thus, the fixed-point characterization of CTL model checking serves as a starting point for
the translation.

We take the circuit generated in earlier steps of the algorithm, the one representing our belief-state after & time
steps. Note that unlike the propositional formulas generated in similar approaches, the only variables that the circuit
involves are those of time 0. Variables of time 0 < 7 < k are internal nodes in the graph. In the following, whenever
we refer to p;, we mean the internal node that represents p at time 4.

We generate k£ + 1 extensions to the circuit, representing the different loop cases. Each extension is of the form
|[counterexample;]lo N N\pcp(fi < fi), where |[counterexample;]|o is the translation of the negation of the LTL
property for the case of an i-loop. Of course, if f; and f; are the same node (that is, if f was not affected between
steps ¢ and k), there is no need to add the <" constraint. The no-loop case formula is only |[counterexample,]|o; we
do not require that a loop actually not exist.

The translation of the LTL formula is shown in Figure 4.5. It is defined recursively, and according to the loop case.
Again, p; refers to an internal node; at no stage we need to add variables. The until operator E(p1Up2) and the release
operator E(p1Rp2) are evaluated by computing the least and greatest fixed-point, respectively. The fixed-points are
evaluated by first computing an approximation (()) (defined in Figure 4.5). The results of the approximation are used
to compute the exact result (see (Latvala et al., 2004) for more details). That translation allows a lot of sharing between

different formulas, thus is very suited for our circuit framework.

62

PROCEDURE C-Filter-BMC((ai , 0 > 0<i<k; Yo, @, D)
{ {as, 0;): actions-observations, 1o: initial belief state over P, ¢: LTL formula to verify,
D: domain description}
[Preprocess D, ¢]

1: ProcessDomain(D, {a;)o<i<t)
: for f € P do expl; := anew proposition fo
: ¢b := Time0(¢o)
[Process sequence
4: fori=1totdo
5: ProgressAction(a;)
6 FilterObservation(o;)
7: return cb A LTLtoCircuit(—y, k)

W N

PROCEDURE LTLtoCircuit(y, k)
{¢ an LTL formula, k depth}
[Return the translation of ¢ to a circuit]

= i<k i=k+1 i=k+1
J-11loop case | no-loop case

[[p]]s (p proposition) | p; (the internal node representing | p; FALSE

p at time)
|[=p]li —pi —p; FALSE
[[N%]]s |[¢]] i+ |[1]541 FALSE
[WU]l: llelle v (s A YU e]isr) (Ue)); | FALSE
|[¥Re]|: llelle A (1A V [Rl fiv1) ((Re)); | FALSE
[[GY]l: [[]1i A G i1 (G)); FALSE
|[F]]s |[1]: v [TE Y]l (Fy)); FALSE
(WU@)); llells v (01l A (WU))syy) | FALSE FALSE
((YRo)), llelle v (11 A (W RP))) TRUE TRUE
(Gy)); [l A (G, TRUE TRUE
(F)); W]l vV ((FY)),, FALSE FALSE
1: ¥ :=|[p]lo { translate ¢ according to no-loop case. use History[f] pointers }
2: fori=1..k do
3: Y=V ([Asep fi-r < fr] Allp]lo { translate ¢ according to i-/ loop case}
4: return)

Figure 4.5: C-Filter-BMC Algorithm

The until operator and the release operator are evaluated by computing fixed-points. First, we compute an approx-
imation ((-)); for each state and subformula. The results of the approximation are used to compute the final result
IBIF

Note that implementing this translation in (Latvala et al., 2004) required adding new variables to the formula.
However, our circuit structure obviates the need for those, as those fluents are represented as internal nodes.

Our algorithm is now complete. We have shown how to unfold the state of the system for k timesteps, and how to
construct a query. We now argue for the correctness and compactness of our algorithm; in the next section we discuss

the final part of the method, reasoning with the algorithm’s output.

Theorem 4.2.2 (Correctness) Letr (P, S, A, R) be a transition system, g the initial belief-state formula, and ¢ an

LTL formula that we wish to verify. Let k be the model-checking depth, and {(a;, 0;)o<i<k be a sequence of actions

63

[sec [CFilter [NuSMV | Tip | [CFilter [NuSMV | Tip | [CFilter | Tip | NuSMV]

eijk.S444.S nusmv.syncarb52.B nusmv.syncarb102.B

30 38 34 34 860 73 103 598 40 101
180 46 38 39 2092 134 142 1452 74 155
360 47 39 40 2927 170 158 2040 94 172
540 48 39 40 3603 195 169 2493 108 181
720 48 41 41 4106 214 184 2866 119 187
900 49 41 41 4581 230 187 3196 128 190
eijk.S208.S eijk.S1238.8 eijk.S1423.8

30 23 23 28 11 5 finish 8 9 6
180 28 33 36 66 14 | (property 10 9 10
360 30 39 41 142 21 holds) 10 9 10
540 32 42 44 204 26 11 9 11
720 33 45 46 273 30 11 10 11
900 34 47 48 346 34 11 10 11
eijk.S349.S texas.ifetchl E nusmv counter

30 16 11 finish count. count. count. count. count. count.
180 26 19 | (property example | example example example | example | example
360 29 24 holds) found found found found found found
540 33 28
720 35 30
900 37 31

Figure 4.6: Comparison of maximal depth reached vs. time (sec), best results marked in bold. In the last two domains,
counterexamples were found in < 30 seconds.

and observations.

The resulting circuit is satisfiable iff there is a path of length at most k satisfying —p.

Theorem 4.2.3 (Complexity) 1. If the property does not require checking loops (e.g. Gp), the resulting circuit
size is O(|wo| + |Obs| + k - (|| + |Act.|)), where |Obs| is the total size of observations in the sequence (often
0), and |Act.| is the longest circuit-representation of an action that appears in the sequence.
2. Otherwise, the size is O(|[to| + |Obs| + k - (k|p| + |Act.| + | P]))

In both cases, the circuit has | P| variables.

We can also construct a circuit of size O(|1o| + |Obs| + k - (|| + |Act.| + | P|)) and | P| + k variables for the second
case (the extra variables determine the loop).

A typical action is represented as a precondition, and a set of if-then rules that represent conditional effects.
For example, the action negate(x) (that is, x :=!x) has an empty precondition, TRUE, and two conditional effects:
negate(x) causes x if —x, negate(x) causes —x if x.

The proofs follow from the correctness and compactness results of (Shahaf and Amir, 2007; Latvala et al., 2004).

4.2.2 Experiments

In order to evaluate our method, we used a benchmark of SMV files available online and compared our algorithm to
two state-of-the-art bounded model checkers, Tip (Een and Sorensson, 2003) and nuSMV (Cimatti et al., 2002b).

First, we implemented a utility that translates smv files to our logical format. The resulting files were later used

64

100 Maximum Depth Ratio Verification Time with C-Filter
= 10 3
=3 i
& ®0 .
® @
.g %01 % 6
& 40 A g .l
£ =
S 20 - 2]
= 0
0 L ‘ ! ‘ ‘ ‘
Domain 0 100 200 300 400 500
O C-Filter ENuSMV OTip Depth

Figure 4.7: Left: for each domain, the percentage of the maximal depth each solver achieved (in the last two, Tip
stopped with a proof). Right: Time for Verification (sec) on nusmv.syncarb52.B vs. Search depth.

to extract next-state and possible formulas (Procedure ProcessDomain in Figure 2.3). Many of those systems are
non-deterministic, in the sense that transitions depend on unspecified user input. This was handled as described in
Section 2.5.5. The translation took linear time in the size of the input file.

After the translation phase, we ran the comparison experiments. They were run in an iterative-deepening fashion,
increasing k every iteration and trying to find a counterexample of length k. Some of the results are shown in Figures
4.6-4.7.

Figure 4.6 compares the maximal depth the solvers reached in a fixed amount of time for several domains. The
domains were of varied complexity, so the maximal depths differ a lot between them. The normalized results are
also shown in Figure 4.7 (left) for each domain, the maximal depth reached is set to be 100%, and the figure shows
how well the model checkers did in comparison. Note that C-Filter-BMC outperformed the others on many of those
domains. Figure 4.7 (right) shows a sample runtime graph for C-Filter-BMC.

The results are interesting: no algorithms seems to dominate the others on all domains. However, on most of
the domains our algorithm is comparable with the rest of the model checkers, or outperforms them. On several
domains (such as eijk.5444.S), our algorithm outperforms NuSMV and Tip by orders of magnitude. This is especially
impressive since clausal SAT solvers have been studied and optimized for years, while circuit SAT solvers are relatively
new. We strongly believe that circuit SAT solvers will improve over time, resulting in better results for our algorithm.

In addition to those experiments, we compared C-Filter-BMC to a BDD-based model checker. BDDs are not
guaranteed to be compact, and indeed — many times the belief-state was too large for this solver. In some cases, even
the BDDs for the initial state could not be constructed, while C-Filter-BMC was able to look for counterexamples in
large depth.

Discussion It seems that our algorithm does especially well on domains that are mostly deterministic, and
involve many don’t-care variables (variables whose value is not important for the SAT check). This is the case, for

example, when the next-state of fluents depends mostly on the last action, and less on their previous value. CNF

65

solvers could spend a lot of time branching on variables that have become don’t-care due to previous decisions, while
it is easier for circuit solvers to avoid those areas. C-Filter-BMC also did well on files with many definitions; those are

formulas that are shared between many next-state formulas. Our circuit takes full advantage of this sharing.

4.2.3 Conclusions and Future Work

We presented an approach for BMC which limits the number of propositional variables that must be assigned by the
SAT solver. It uses a Boolean circuit representation to encode the set of possible states up to the last execution step.
This is similar in spirit to the Symbolic Model Checking approach, only with a more space-efficient representation.
The new approach applies SAT solvers for our logical-circuit representation of possible states. The result is a BMC-
like algorithm that is faster empirically on almost all models, sometimes improving over current techniques by a
significant margin. The empirical results are particularly striking because there is much space for optimizing and
speeding up SAT solvers for logical circuits.

One important future direction that we plan to pursue is software BMC, e.g., (Clarke et al., 2004). Several features
of C-Filter-BMC make it promising for software BMC. Transitions for hardware systems usually include only one
action, and thus each transition involves all the state variables. In contrast, software verification typically involves
many actions, each affecting only few variables (e.g., an action x++ affects only the variable x). C-Filter-BMC
does not modify the logical circuit where fluents need not change. Thus, we expect software BMC to manipulate
formulas whose number gates grows slowly with the number of steps. Finally, many scenarios in software verification
are deterministic, thus requiring us to add little or no variables at all to the representation. The minimal growth
in variables and gates during processing of C-Filter-BMC suggests that it will scale particularly well in software

verification applications.

66

Chapter 5

Conclusions

A straightforward approach to filtering is creating all prime implicates at time ¢+ 1 from the belief state representation
of time ¢. Previous work (e.g. (Liberatore, 1997b)) showed that deciding if a clause belongs to the new belief state is
coNP-complete, even for deterministic domains. This discouraged further research on the problem.

Nevertheless, in this work we presented an exact and tractable filtering algorithm for all deterministic domains.
Our result is surprising because it shows that creating a representation of all of the consequences at time ¢ + 1 is easier
(poly-time) than creating the new belief state piecemeal.

We extended our method and presented an algorithm for learning action schemas in partially observable domains.
The contributions of our work are a formalization of the problem, the schema languages, and the tractable algorithm.

The key to our advance was our logical circuits representation. We also showed how to maintain NNF-Circuits. We
have implemented those algorithms and tested them in learning, Conformant Planning and Bounded Model Checking
domains. Our results compare favorably with previous work, sometimes by orders of magnitude.

Significantly, our approach is a natural bridge between machine learning and logical knowledge representation. It
shows how learning can be seen as logical reasoning in commonsense domains of interest to the KR community, and

how restrictions on one’s representation language give rise to efficient learning algorithms into that language.

Criticism and Future Directions This work presented results for partially observable deterministic domains. We
obtained encouraging results for several classes of domains, mainly relational ones with simple action models. How-
ever, there is room for improvement.

Firstly, our work is not robust to noise (because of its logical nature). This limits its potential utility. Naive ways
to handle noise will affect the efficiency of the inference.

In addition, we only handled the case of a single agent. For example, assume an agent knows that some switch in
another room is up, and then another agent flips it. When the first agent notices that the switch is down, it will reach a
contradiction. Extending our methods to handle multi-agent systems could be an interesting direction.

Several other topics need to be addressed: How does observability affect learning? How does the choice of schema

language affect it? Also, a more detailed analysis of convergence to the correct underlying model is needed.

67

References

Amir, E. (2002). Planning with nondeterministic actions and sensing. Technical report, CogRob’02.
Amir, E. (2005). Learning partially observable deterministic action models. In IJCAI "05. MK.
Amir, E. and Russell, S. (2003). Logical filtering. In IJCAI '03. MK.

Baral, C., Kreinovich, V., and Trejo, R. (2000). Computational complexity of planning and approximate planning in
the presence of incompleteness. AlJ, 122(1-2):241-267.

Bertoli, P., Cimatti, A., and Roveri, M. (2001a). Heuristic search + symbolic model checking = efficient conformant
planning. In IJCAI *01. MK.

Bertoli, P., Cimatti, A., Roveri, M., and Traverso, P. (2001b). Planning in nondeterministic domains under partial
observability via symbolic model checking. In IJCAI "01, pages 473-478. MK.

Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena Scientific.

Biere, A., Cimatti, A., Clarke, E., Fujita, M., and Zhu, Y. (1999). Symbolic model checking using SAT procedures
instead of BDDs. In DAC’99.

Bonet, B. and Geffner, H. (2000). Planning with incomplete information as heuristic search. In Proc. AIPS’00.

Boyen, X., Friedman, N., and Koller, D. (1999). Discovering the hidden structure of complex dynamic systems. In
Proc. UAI ’99, pages 91-100. MK.

Bryant, R. E. (1992). Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM Computing
Surveys.

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., and Tacchella, A.
(2002a). NuSMV 2: An opensource tool for symbolic model checking. In Proceedings of 14th International
Conference on Computer Aided Verification (CAV 2002), pages 359-364. Springer Verlag.

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., and Tacchella, A.
(2002b). NuSMYV Version 2: An OpenSource Tool for Symbolic Model Checking. In CAV 2002.

Cimatti, A., Pistore, M., Roveri, M., and Sebastiani, R. (2002c). Improving the encoding of LTL model checking into
SAT. In VMCAI, pages 196-207.

Cimatti, A. and Roveri, M. (2000). Conformant planning via symbolic model checking. JAIR.

Clarke, E., Biere, A., Raimi, R., and Zhu, Y. (2001). Bounded model checking using satisfiability solving. Formal
Methods in System Design.

Clarke, E., Kroening, D., and Lerda, F. (2004). A tool for checking ANSI-C programs. In TACAS 04.

Doucet, A., de Freitas, N., Murphy, K., and Russell, S. (2000). Rao-Blackwellised particle filtering for dynamic
bayesian networks. In Proc. UAI "00, pages 176-183. MK.

Dzeroski, S. and Luc De Raedt, K. D. (2001). Relational reinforcement learning. Machine Learning, 43(1-2):7-52.

68

Een, N. and Sorensson, N. (2003). Temporal induction by incremental sat solving.

Eiter, T. and Gottlob, G. (1992). On the complexity of propositional knowledge base revision, updates, and counter-
factuals. AlJ, 57(2-3):227-270.

Even-Dar, E., Kakade, S. M., and Mansour, Y. (2005). Reinforcement learning in POMDPs. In IJCAI '05.

Fagin, R., Ullman, J. D., and Vardi, M. Y. (1983). On the semantics of updates in databases. In Proceedings of
the Second ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, pages 352-365, Atlanta,
Georgia.

Ferraris, P. and Giunchiglia, E. (2000). Planning as satisfiability in nondeterministic domains. In Proc. AAAI *00,
pages 748-753.

Fikes, R., Hart, P., and Nilsson, N. (1972). Learning and executing generalized robot plans. AZJ.

Fikes, R., Hart, P., and Nilsson, N. (1981). Learning and executing generalized robot plans. In Webber, B. and Nilsson,
N., editors, Readings in Artificial Intelligence, pages 231-249. MK.

Friedman, N., Getoor, L., Koller, D., and Pfeffer, A. (1999). Learning probabilistic relational models. In IJCAI *99,
pages 1300-1307. MK.

Friedman, N., Murphy, K., and Russell, S. (1998). Learning the structure of dynamic probabilistic networks. In Proc.
UAI ’98. MK.

Frisch, A., Sheridan, D., , and Walsh, T. (2002). A fixpoint encoding for bounded model checking. In FMCAD’02.
Getoor, L. (2000). Learning probabilistic relational models. Lecture Notes in Computer Science, 1864:1300-1307.
Ghahramani, Z. and Jordan, M. L. (1997). Factorial Hidden Markov Models. Machine Learning, 29:245-2775.

Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld, D., and Wilkins, D. (1998). PDDL
— The Planning Domain Definition Language, version 1.2. Technical Report CVC TR-98-003/DCS TR-1165,
Yale center for computational vision and control.

Gil, Y. (1994). Learning by experimentation: Incremental refinement of incomplete planning domains. In Proc.
ICML-94, pages 10—13.

Giunchiglia, E. and Lifschitz, V. (1998). An action language based on causal explanation: preliminary report. In Proc.
AAAI ’98, pages 623-630.

Hoffmann, J. and Brafman, R. (2004). Conformant planning via heuristic forward search: A new approach.

Jaakkola, T., Singh, S. P., and Jordan, M. 1. (1994). Reinforcement learning algorithm for partially observable Markov
decision problems. In Proc. NIPS’94, volume 7.

Jarvisalo, M., Junttila, T., and Niemel4, 1. (2004). Unrestricted vs restricted cut in a tableau method for Boolean
circuits. AI&M 15.

Kaelbling, L. P, Littman, M. L., and Cassandra, A. R. (1998). Planning and acting in partially observable stochastic
domains. AlLJ, 101:99-134.

Kearns, M., Mansour, Y., and Ng, A. Y. (2000). Approximate planning in large pomdps via reusable trajectories. In
Proc. NIPS 99, pages 1001-1007.

Kumar, T. S. and Russell, S. (2006). On some tractable cases of logical filtering. In Proc. ICAPS’06.

Latvala, T., Biere, A., Heljanko, K., and Junttila, T. (2004). Simple bounded LTL model checking. Research report,
Helsinki University of Technology.

LaValle, S. M. (2006). Planning Algorithms. Cambridge University Press, Cambridge, U.K. Also available at
http://planning.cs.uiuc.edu/.

69

Liberatore, P. (1997a). The complexity of belief update. In Proceedings of the Fifteenth International Joint Conference
on Artificial Intelligence (IJCAI’97), pages 68-73.

Liberatore, P. (1997b). The complexity of the language A. ETAIL
Lifschitz, V. (2000). Missionaries and cannibals in the causal calculator. In Proc. KR 2000, pages 85-96. MK.

Lin, F. and Reiter, R. (1995). How to progress a database II: The STRIPS connection. In Proc. Fourteenth International
Joint Conference on Artificial Intelligence (IJCAI °95), pages 2001-2007, Montreal, Canada.

Lin, F. and Reiter, R. (1997). How to progress a database. AlJ.

Lind-Nielsen, J. (1999). Buddy - a binary decision diagram package. Technical report, Institute of Information
Technology, Technical University of Denmark.

Littman, M. L. (1996). Algorithms for sequential decision making. PhD thesis, Brown U.

McCarthy, J. (1986). Applications of circumscription in formalizing common sense knowledge. Artificial Intelligence,
28:89-116.

McCarthy, J. and Hayes, P. J. (1969). Some Philosophical Problems from the Standpoint of Artificial Intelligence
http://www-formal.stanford.edu/jmc/mcchay69.html. In Meltzer, B. and Michie, D., editors, Machine Intelli-
gence 4, pages 463-502. Edinburgh University Press.

Miller, R. and Shanahan, M. (1999). The event calculus in classical logic — alternative axiomatizations. ETAI, 4:nr 16.
under review.

Moskewicz, M. W., Madigan, C. F.,, Zhao, Y., Zhang, L., and Malik, S. (2001). Chaff: Engineering an Efficient SAT
Solver. In Proceedings of the 38th Design Automation Conference (DAC’01).

Muggleton, S. and Buntine, W. (1988). Machine invention of first-order predicates by inverting resolution. In Proc.
ICML-8S.

Nebel, B. and Béckstrom, C. (1992). On the computational complexity of temporal projection and plan validation. In
Proc. AAAI ’92, pages 748-753, Cambridge, MA, USA. MIT Press.

Ostrowski, R., Gregoire, E., Mazure, B., and Sais, L. (2002). Recovering and exploiting structural knowledge from
cnf formulas. In CP’02.

Pasula, H. M., Zettlemoyer, L. S., and Kaelbling, L. P. (2004). Learning probabilistic relational planning rules. In
Proc. ICAPS 04.

Petrick, R. and Bacchus, F. (2004). Extending the knowledge-based approach to planning with incomplete information
and sensing. In ICAPS-04. AAAI Press.

Qiang Yang, K. W. and Jiang, Y. (2005). Learning action models from plan examples with incomplete knowledge. In
Proc. ICAPS’05.

Reiter, R. (1991). The frame problem in the situation calculus: A simple solution (sometimes) and a completeness
result for goal regression. In Artificial Intelligence and Mathematical Theory of Computation. Academic Press.

Reiter, R. (2001). Knowledge In Action: Logical Foundations for Describing and Implementing Dynamical Systems.
MIT Press.

Sandewall, E. (1994). Features and Fluents. Oxford University Press.

Selman, B., Levesque, H. J., and Mitchell, D. (1992). A new method for solving hard satisfiability problems. In
Rosenbloom, P. and Szolovits, P., editors, Proceedings of the Tenth National Conference on Artificial Intelligence,
pages 440—446, Menlo Park, California. American Association for Artificial Intelligence, AAAI Press.

Shahaf, D. and Amir, E. (2006). Learning partially observable action schemas. In Proc. AAAI *06. AAAI Press.

70

Shahaf, D. and Amir, E. (2007). Logical circuit filtering. In IJCAI *07. MK.

Shahaf, D., Chang, A., and Amir, E. (2006). Learning partially observable action models: Efficient algorithms. In
Proc. AAAI °06. AAAI Press.

Son, T. C. and Baral, C. (2001). Formalizing sensing actions a transition function based approach. AlJ, 125(1-2):19-
91.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: an introduction. MIT Press.
Thielscher, M. (1998). Introduction to the fluent calculus. ETAI 3:nr 14.
Thiffault, C., Bacchus, F., and Walsh, T. (2004a). Solving non-clausal formulas with DPLL search. In CP’04.

Thiffault, C., Bacchus, F., and Walsh, T. (2004b). Solving non-clausal formulas with dpll search. In Principles and
Practice of Constraint Programming.

Val, A. D. (1992). Computing knowledge base updates. In Proc. KR '92, pages 740-750. MK.

Val, A. D. and Shoham, Y. (1994). A unified view of belief revision and update. Journal of Logic and Computation,
4(5):797-810.

Wang, X. (1995). Learning by observation and practice: an incremental approach for planning operator acquisition.
In Proc. ICML-95, pages 549-557. MK.

Williams, B. C. and Nayak, P. P. (1996). A model-based approach to reactive self-configuring systems. In Proc. AAAI
'96, pages 971-978.

Winslett, M. (1990). Updating Logical Databases. Cambridge U. Press.

Wu, K., Yang, Q., and Jiang, Y. (2005). Arms: Action-relation modelling system for learning action models. Proc.
ICAPS’05.

71

Vita

Dafna Shahaf

Research Interests

Artificial Intelligence (Al), Learning theory, Game Theory and Algorithms.

Education

M.S. in Computer Science, University of Illinois at Urbana-Champaign, IL
2005—Current: anticipated graduation in May 2007
Research supervised by Prof. Eyal Amir
GPA: 4.0/4.0

B.Sc. Mathematics and Computer Science (Double Major), Tel Aviv University, Israel
2001-2005, Graduated with honors (Summa Cum Laude)
GPA: 96% (4.0 / 4.0)
Took several M.Sc. classes before coming to UIUC, GPA: 4.0 /4.0

Honors & Awards
2006: Siebel Fellowship — given to five graduate students from ten leading universities (siebelscholars.com)
2006: Phi Kappa Phi Honor Society (phikappaphi.org)
2004: Tel-Aviv University Dean’s List award of Distinction.
2004: Tel-Aviv University Computer Science school award of Distinction.
2004: The Shmuel Beck Scholarship — given to one student in the faculty of Exact Sciences

2004: Laureate of Wolf Foundation prize of Distinct Student.

72

2003: Tel-Aviv University Dean’s List award of Distinction.

2002: Center of Technology, 8200 Unit — Distinct Soldier.

2002: Tel-Aviv University Dean’s List award of Distinction.

2001: Tel-Aviv University Freshmen Fellowship — given to one freshman from several selected programs

2001: President of Israel - IDF Distinct Soldier Award.

Publications
Refereed Conference Papers

[1] D. Shahaf and E. Amir, Logical Circuit Filtering, in 20th International Joint Conference on Artificial Intelligence

(IJCAT’07), 2007

[2] D. Shahaf and E. Amir, Learning Partially Observable Action Schemas, in 21st National Conference on Artificial

Intelligence (AAAI’06), 2006

[3] D. Shahaf, A. Chang, and E. Amir, Learning Partially Observable Action Models: Efficient Algorithms, in 21st
National Conference on Artificial Intelligence (AAAI’06), 2006

[4] D. Shahaf and E. Amir, Towards a Theory of AI Completeness, in CommonSense’07, 2007

Academic Service

Reviewer, 21st National Conference on Artificial Intelligence (AAAI’06), 22st National Conference on Artificial

Intelligence (AAAI’07), CommonSense’07, Artificial Intelligence Journal.

Volunteer, 21st National Conference on Artificial Intelligence (AAAT’06).

Selected Coursework

Computer Science Theory Computational Models, Efficiency of Computations, Computational Complexity, Dis-

tributed Computing, On-line and Approximation algorithms.

Pure Mathematics Logic, Probability Theory, Graph Theory, Number Theory, Game Theory (Cooperative Games),

Group Theory, Bioinformatics and Learning Seminar (Advanced Statistical Methods).

73

Applied Mathematics and Computer Science Reasoning and Knowledge Representation, Decision Making Under
Uncertainty, Planning Algorithms, Modern Cryptography, Introduction to Artificial Intelligence, Neural Com-

putation, Reinforcement Learning Workshop, Software Project (genetic algorithms).

Work Experience

Research Assistant (2005—-Current), Department of Computer Science, University of Illinois at Urbana-Champaign
(Under the supervision of Prof. Eyal Amir). We develop algorithms that keep track of the world and learn its
dynamics, using insights from Mathematical Logic. We presented the first algorithm that is tractable and exact
for all deterministic domains; we are currently applying our techniques to Planning and Verification problems.

We also investigate ways to establish theoretical foundations for Al

Researcher at Safend Ltd. (2004-2005) 32 Habarzel Street, Tel Aviv, Israel.
Analyzed software and protocols, found endpoint security holes, implemented proof-of-concept attacks and

tested security solutions.

Grader, Tel-Aviv University and University of Haifa (2003-2004)

For classes “Introduction to Modern Cryptography” and “Introduction to AI”, respectively.

Israel Defense Force (IDF), Intelligence Corps, 8200 Unit (2000-2003)

Served as an individual contributor in an award-winning communication software project.

Skills

Programming Languages: C++, Visual Basic, Lisp, Scheme, Ocaml, Perl, Prolog, Matlab, SQL, Pascal.
Web Skills: HTML, ASP, VBScript.
Languages: Hebrew (native), English (high fluency), French as a foreign language.

Interests: Scuba Diving, Swimming (a certified instructor), Science Fiction and Animation.

74

