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Abstract

This paper presents the design, implementation and eval-
uation of Mingle, a secure distributed search system. Each
participating host runs a Mingle server, which maintains an
inverted index of the local file system. Users initiate peer-
to-peer keyword searches by typing keywords to lightweight
Mingle clients. Central to Mingle are its access control
mechanisms and its insistence on user convenience. For ac-
cess control, we introduce the idea of access-right mapping,
which provides a convenient way for file owners to specify
access permissions. Access control is supported through a
single sign-on mechanism that allows users to conveniently
establish their identity to Mingle servers, such that sub-
sequent authentication occurs automatically, with minimal
manual involvement. Preliminary performance evaluation
suggests that Mingle is both feasible and scalable.

1 Introduction

During the normal course of our work, we have managed
to acquire accounts on dozens of different laptop, desktop,
and remote hosts. Thousands of files are stored on the local
disks of these hosts. With so many files on so many com-
puters, it is becoming increasingly difficult and time con-
suming for us to find our own data and let other people find
and share our data.

Although there are a number of useful tools for locat-
ing data on a single machine, locating data in a distributed
environment is still troublesome. Tools like grep and find
are good for searching small directory hierarchies, but are
inappropriate for searching entire disks. The GNU locate
command provides fast keyword search of file names, but
not the contents of those files. Tools such as Glimpse [16]
and Windows Indexing Service precompute inverted index
tables of local files. Each entry in the index table stores
a word and its occurrences in the files, which enables fast
keyword querying. However, these tools do not support
querying across different computers. Peer-to-peer applica-
tions such as Napster [18], Gnutella [8] and Freenet [3] have

been used for large-scale locating and sharing of MP3 files.
A serious drawback of such systems is that there is no secu-
rity mechanism to protect data from access by unauthorized
users. In addition, no indexing is provided to quickly locate
information.

Thus, it would appear that we need new systems that help
people find the data in their personal distributed computing
environments. These systems should be both efficient, in
the sense that our searches complete quickly, and secure, in
the sense that unauthorized users are not allowed to locate
our data. So how might we build such systems?

A straightforward solution is to build a global index-
ing service, where dedicated servers crawl files from ev-
ery computer on the Internet and then compute a central-
ized index table. Search engines like Google [9] have used
this kind of scheme very effectively for the Web. How-
ever, the centralized model is inappropriate for searching
personal computing systems for a number of reasons. First,
indexing is an expensive operation requiring large amounts
of memory and disk space. Even massive search engines
like Google can index only limited number of Web pages.
Therefore, centralized indexing servers can not scale with
the increasing number of computers and the exploding ca-
pacities of modern disks. Second, many personal files are
private in nature. Users lose control of their files once they
are indexed by the server. Even with complicated security
and access control mechanisms, they may be unwilling to
release their files to the dedicated servers.

Another approach is to have one or more dedicated in-
dexing servers for a cluster of computers. For example, dis-
tributed search engines such as Harvest [1] and Oasis [19]
set up one or more index servers to search within an intranet.
With this scheme, a significant amount of network traffic
is needed to fetch distributed files to the servers for index
computing. More important, this scheme requires large, ex-
pensive, dedicated indexing servers, which are not feasible
in a personal computing environment.

In this paper, we present Mingle, a secure distributed
search system. Mingle is designed to meet the following re-
quirements, which we consider fundamental to a distributed
search system for personal computing:



� Searches should be fast. For fast search, Mingle pre-
computes an inverted index of local files on each par-
ticipating host. A query can be processed by the local
host, or routed through the participating hosts using
peer-to-peer communication to locate all of the desired
data.

� The system should scale. Since each participating host
devotes computing resources for indexing, the Mingle
scheme should scale well with the number of comput-
ers. Participating hosts communicate with each other
only when there is a search request, greatly reducing
network traffic.

� The system should be secure: The Mingle security ar-
chitecture focuses on preventing unauthorized release
of information while allowing files to be maximally
shared. Since search is a frequent operation, we insist
that the security mechanism be as convenient as possi-
ble for users. Access control policy is expressed using
an access-right mapping, a novel mechanism that ex-
tends a local file system’s access control primitives to
Mingle users in a uniform and convenient way. This
mechanism builds upon a single sign-on mechanism
implemented in Mingle, which allows a user to per-
form authenticated search requests across many Min-
gle servers seamlessly.

The remainder of the paper is organized as follows. Sec-
tion 2 summarizes related work. Section 3, 4, 5 are the core
of the paper, describing the Mingle prototype, including the
novel security architecture based on access-right mapping.
Mingle is currently targeted for personal computing envi-
ronments with tens of hosts. Preliminary performance eval-
uation of the Mingle prototype in Section 6 suggests that the
system is feasible and scalable in such an environment.

2 Related Work

Distributed search has been studied in the area of infor-
mation retrieval [2, 7, 12, 27], with emphasis on algorithms
for server selection and result merging. Mingle is different
from these works in that our focus is on the system archi-
tecture and the security mechanisms to prevent data from
access by unauthorized users.

Distributed service and resource discovery [4, 10, 26]
is a special type of distributed search, where queries con-
sist of resource or service attributes instead of keywords.
In such systems, search is performed at hierarchical direc-
tory servers in large scaled networks consisting of hetero-
geneous hosts. Compared with these systems, Mingle is
currently targeted for a cluster of computers, and search
is performed among friendly end hosts without centralized
servers. Because of the architectural level differences, the

security emphases are different. These systems assume ma-
licious attacks and stress data privacy and integrity. Mingle
focuses on access control and has a strong emphasis on user
convenience while at the same time preserving file system
access control semantics.

Peer-to-peer systems [21, 25, 24, 29] have been designed
to locate objects in self-organizing overlay networks. Such
systems use hash based distributed indexing schemes to lo-
cate objects. The location of each object is stored at one
or more nodes selected by a distributed hash function. Al-
though hash functions can deterministically locate object,
they do not support keyword searching, a desirable opera-
tion to search information among personal data.

3 Overview of the Mingle System

Figure 1 shows the overall architecture of a Mingle clus-
ter. On each host, there is a Mingle server running as a
daemon. Communication among servers is peer-to-peer. A
user may issue a request from any host to any of the servers
by launching a lightweight client program, which simply
sends the request to the local server and waits for replies. If
only a local reply is required, then the local server handles
the request and sends back the reply. Otherwise, the server
forwards the request to remote servers for further process-
ing.

Mingle clients issue separate requests for indexing and
searching. Only the owners of files can issue requests to
index those files. Any Mingle user can issue a search re-
quest to any Mingle server, but they only receive informa-
tion about files that they are authorized to see, as described
in the next section.

When a Mingle server daemon is started on a host for the
first time, none of the files on that host are indexed. Users
must make explicit requests to the Mingle server to index
directory trees that they own. Thus Mingle is “opt-in”, in
the sense that users on Mingle hosts must issue explicit re-
quests before their data is indexed and made available to
Mingle clients.

Each Mingle server computes an inverted index of local
files that have been indexed. The inverted index consists
of: (1) a lexicon containing all of the words that appear in
the files; and (2) an inverted file entry for each word, which
stores a list of pointers to the occurrences of that word in
the files. To locate a given word, only its inverted file entry
needs to be traversed, allowing fast queries. The detailed
design and data structures of the inverted index in Mingle
are discussed in Section 5.1

In many cases, a user may wish to search all hosts in a
Mingle cluster without specifying host identities. To enable
this, we establish a master server, which is a normal Mingle
server that maintains the list of host names inside the clus-
ter. As shown in Figure 1, upon reception of a user request
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Figure 1. Architecture of a Mingle cluster.

that needs to be routed through the cluster, the local server
first fetches the host list from the master server, and then
forwards the request to each remote host in the list individ-
ually.

While the server is implemented as a daemon, the client
program is a lightweight program that is launched only
when needed. An alternative design is for each user to
run their own stand-alone server that they interact with via
the command line. This approach would lead to multiple
server processes running simultaneously on the same com-
puter, leading to a large overhead. By implementing a sep-
arate lightweight client program, we build one index table
and enable multiple users on the same host to share a single
Mingle server.

4 Mingle Security Architecture

Since Mingle is used in personal computing environ-
ments where servers are assumed to trust each other, the
Mingle security architecture focuses on preventing unau-
thorized release of information while allowing files to be
shared among different types of users. Both the local users
who have accounts on the Mingle host and remote users
who do not have accounts should be able to participate in
Mingle. Sensitive files can be accessed only by authorized
users, while public files can be searched by even anonymous
users.

Existing mechanisms are deficient in terms of both flex-
ibility and user convenience. Mingle users might belong to
different organizations and not have accounts on every ma-
chine. In this case, file system access controls on the Min-
gle hosts are not flexible enough to separate remote visitors
into different classes of trustworthiness. Further, search is a
stateless request involving one simple command. Supplying
passwords with each request is not acceptable.

The design of the Mingle security architecture is guided

by the following three principles:

� File owners decide whom to trust. We cannot expect
every Mingle user to trust the same set of people. We
must let file owners decide who is allowed to access
their files.

� Authorization is flexible and convenient. Because
some files are more sensitive than others and some
people are more trustworthy than others, file owners
must be able to specify access rights for different users
on each single file conveniently.

� Authentication has small overhead. Since “search” is a
stateless operation for everyday usage, we require the
user authentication mechanism to be as lightweight as
possible while providing reasonable level of security.

In the following, we present the details of the Mingle
security architecture. We begin by describing the autho-
rization mechanism, which addresses the first and second
principles. We then discuss the user authentication mecha-
nism, which addresses the third design principle. We close
this section with a discussion of possible malicious attacks
against Mingle.

4.1 Authorization

A straightforward way to handle access control is to
maintain an access control list (ACL) for each file. Each
item in the ACL specifies the permitted operations for each
user. Although ACLs are flexible, they can be costly and
prone to error since file owners must manually specify an
ACL for each file.

We propose a new, more convenient approach that arises
from the observation that the underlying file system in the
Mingle host already enables access control on each file. By
granting a user (or group) “read” permission to a file, the



// Return whether Mingle user U is al-
lowed to search file F
bool is_search_permitted(filename F, mingle_user U) {

// Get the file owner of F
O = get file owner(F);

//Get the SPD of U with respect to the file owner O
SPD = O.get SPD(U);

// Check if any member in SPD is allowed to read F
foreach id in SPD {

if F is readable by id {
return true;

}
}

return false;
}

Figure 2. The Mingle algorithm for access per-
mission checking

file owner implicitly allows that user (or group) to search
the file as well. However, the access control schemes in
the file system are only applicable to local users who have
accounts on the same computer.

To extend the file system access control to a remote user,
we introduce the idea of access-right mapping. For a file
owner with local account name A, a Mingle user with Min-
gle ID U (see Section 4.2) can be mapped to a search protec-
tion domain (SPD) that consists of one or more local users
or user groups:
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where userIDi is some local user account name, and grou-
pIDi is some local group name.

The meaning of the mapping is that Mingle user U has
permission to search any local file owned by A and readable
by one or more members of ,�-/.103254/6 .

The process of access-right mapping is performed by
each file owner independently. Thus, a Mingle user can be
mapped to different SPDs by different file owners on the
same host. Given the access-right mapping, the algorithm
for access permission checking is simple, as shown in Fig-
ure 2.

The access-right mapping preserves the file system ac-
cess control semantics. It greatly simplifies the access con-
trol specification, while giving file owners full control over
their data. For example, each Unix file has 9 mode bits as-
sociated with it. These mode bits specify whether the file
owner, specific group of users, and everyone else can read,
write or execute the file. In many cases, a file owner can
map a friendly remote Mingle user to an SPD that consists
of only the owner account or a “guest” account, allowing

file owners to specify access permissions to most of their
files conveniently. For the small number of files that need
fine-grained access control, file owners can define a user
group for each file and map Mingle users to the correspond-
ing user groups. In particular, in order to allow anonymous
Mingle users to search shared public files, a file owner can
define a special user group for public files and map any
anonymous user to that group.

4.2 User Authentication

In Mingle, each request to index or search files on a host
must be authenticated by that host. Since a Mingle user
might not have accounts on every host, or might have dif-
ferent account names on different hosts, each Mingle user
is assigned a unique global Mingle ID (a text string) that
identifies the user to Mingle servers in a uniform way. A
Mingle user without a Mingle ID is regarded as an anony-
mous Mingle user and can search only public files.

A Mingle ID is assigned to a user via a registration pro-
cess that she executes once. In this registration process, the
user selects and inputs a Mingle ID and password to her
lightweight client, which conveys these inputs to the local
Mingle server. The local Mingle server sends this pair to
the master server for this Mingle cluster, using an encrypted
channel (e.g., encrypted under the public key of the master
server). The master server confirms that this Mingle ID has
not previously been registered. If so, it generates a public
signing key pair (e.g., [23]) for this Mingle ID, and saves the
Mingle ID and associated password and key pair. Upon suc-
cessful return, the user can convey her Mingle ID to other
users in whatever way she wishes, so that these users can
create access-right mappings (see Section 4.1) for this Min-
gle ID on other machines, as they choose.

This user can then execute distributed searches using
Mingle from any computer running a Mingle server as fol-
lows. The user enters her Mingle ID, password, and search
keyword into the lightweight Mingle client, which conveys
these to the local Mingle server. The local Mingle server
executes a protocol with the master server to retrieve the
private key corresponding to this Mingle ID (using the pass-
word to authenticate to the master server). Once the private
key is obtained, the local Mingle server can issue the query,
containing the user’s Mingle ID and signed using the re-
trieved private key, to the relevant remote Mingle servers.
Each remote Mingle server that receives this query can use
the contained Mingle ID to retrieve the corresponding pub-
lic key from the master server, and can then verify the digital
signature using it.

There are numerous opportunities to use caching to elim-
inate steps in the above description and thereby improve
the user experience. Specifically, the user’s local Mingle
server can temporarily cache the user’s private key for use



in subsequent searches, which eliminates the need for the
user to re-enter her Mingle ID or password. Moreover, a
remote Mingle server can temporarily cache the public key
of this Mingle ID, so that it need not contact the master
server again upon receiving another search query bearing
this Mingle ID. Of course, this caching also introduces win-
dows of vulnerability: e.g., if the user’s public key is re-
voked due to the compromise of the corresponding private
key, this may go unnoticed by a remote Mingle server that is
caching the public key. It is therefore necessary to tune this
caching to best balance performance, user experience, and
security. Such tradeoffs are common in public key infras-
tructures (e.g., [14]), and we will not discuss them further
in the present paper.

A benefit of this architecture is the fact that the user’s
password and private key are exposed only on machines
where the user enters her password (and on the master
server). Moreover, the protocol by which the user’s machine
retrieves the user’s private key can be constructed to achieve
strong security properties (e.g., see [20]), notably that the
protocol messages themselves do not leak information that
would permit an eavesdropping adversary to conduct a “dic-
tionary attack” against the user’s password [17, 13]. As
a result, dictionary attacks are limited to online guesses
sent to the master server, which the server can detect and
stop. The primary vulnerability of this approach is the mas-
ter server itself: if penetrated, the master server will leak
all user’s private keys. This risk can be mitigated by dis-
tributing the master server in a way that requires multiple
master servers to be compromised to disclose sensitive data
(e.g., [6]), though we have not implemented this approach
in the present system.

We view the above approach to user authentication and
single sign-on in Mingle as an interim solution suitable for
small-scale Mingle deployments in user populations lacking
a unified authentication infrastructure. For user populations
with an existing authentication and single sign-on solution,
ideally Mingle would exploit that solution for its user au-
thentication needs, rather than “reinventing the wheel.”

4.3 Other Vulnerabilities

Since Mingle assumes a friendly personal computing en-
vironment where servers trust each other, it is subject to var-
ious malicious attacks. Although we do not explicitly ad-
dress how to defend against these attacks in Mingle, many
of them can be prevented or mitigated by standard tech-
niques. We briefly outline the types of malicious attacks
that Mingle is vulnerable to and discuss possible ways to
cope with them. Completely addressing these attacks is be-
yond the scope of this paper.

Mingle query responses are sent from remote servers un-
encrypted, and thus Mingle is vulnerable to information re-

lease and modification attacks. Moreover, without strong
authentication of servers, a malicious Mingle server can
provide fraudulent information. If data privacy and integrity
is a major concern, then further cryptographic protocols can
be used to authenticate servers as well as clients, and to set
up session keys for message encryption.

A potential vulnerability to timing attacks exists within
Mingle, due to its precomputation of an inverted index to
permit fast searching. Specifically, the processing time for
a Mingle server to compute its response is a function of the
number of files actually containing the search item, not only
those to which the client has search access. As a result, a
client that can accurately measure the duration required for
a Mingle daemon to respond to its search request can learn
some information about the number of files on that host that
contain the search item, even if the client has search access
to very few of them. Randomizing search latencies could
mitigate this threat. In addition, a filter could be applied to
check user permission before searching through the inverted
index. We note, however, that this threat applies only to files
that their owners have volunteered to be indexed by Mingle.

Finally, like most other distributed systems, Mingle is
vulnerable to various forms of denial-of-service attacks.

5 Mingle Implementation

In this section, we discuss the implementation of the
Mingle server and client. We first describe the design of
the inverted index in Mingle. Then we present the Mingle
server architecture and explain the interactions among vari-
ous system components.

5.1 Inverted Index

Indexing is a mechanism for quickly locating a given
word in a collection of files. There are three common data
structures for file indexing: inverted index, signature files
and bitmaps (see [28]). An inverted index is the most nat-
ural indexing method, with each entry consisting of a word
and its occurrences in the files. A signature file is a proba-
bilistic method for file indexing, where each file has a sig-
nature. Every indexed word in a file is used to generate sev-
eral hash values. The bits of the signature corresponding to
those hash values are set to one, indicating the occurrences
of the word. A bitmap stores a bit vector for every word.
Each bit in the bit vector corresponds to a file and is set
to one if the word appears in that file. Compared with the
inverted index, signature files can cause false matches, re-
sulting in either longer search times or large signature files.
Bitmaps have relatively short search times, but require ex-
travagant storage space and the update is slow when files are
updated frequently. In Mingle, we decided to choose the in-
verted index because of its relatively small cost of storage



and low search latency.
However, a fine-grained inverted index is still space con-

suming. A fine-grained inverted index containing all oc-
currences of every word can consume 50% to 300% of the
original text size, which is not acceptable in personal com-
puting. Therefore, Mingle computes a coarse-grained in-
verted index. Each index entry for a word contains only the
first occurrence of that word in every file. A hash table is
used to quickly locate the index entry for a word.

Word ID Word (Document ID; First occurrence)

1 movie (1;6), (4;228)
2 day (2;8), (3;57), (4;200)
3 event (1;37), (3;22)

Figure 3. An example of inverted index table
in Mingle

Before a file is indexed, it is assigned a document ID.
Then the file is scanned word by word to build the index
table incrementally. All of the words are converted to lower
case. User specified stop words (defined by a configure
file) are removed to reduce index size. For each word in
the index table, if it appears multiple times in the file, then
only the position of the first occurrence of that word will be
recorded in the corresponding index entry. Figure 3 shows
an example of inverted index table in Mingle. Once the in-
dex table is built, it can be updated regularly to remove out
of date entries.

A query can consist of one or more keywords. With
a coarse-grained inverted index table, queries are resolved
in two steps. First, the corresponding index entries of the
queried keywords are searched to return a list of files that
match the query. Then, each individual file in the list is
scanned to return all the exact occurrences of the queried
keywords. For example, Figure 4 illustrates the search pro-
cess for a query “movie AND event” using the index table in
Figure 3. There is a tradeoff between index granularity and
search latency. Compared with the fine-grained inverted in-
dex, a coarse-grained index table requires longer search la-
tency since the second step will be otherwise unnecessary.
However, the extra latency is typically small, as is shown in
Section 6.1.

5.2 Mingle Server Architecture

The Mingle server is implemented as a single process
(Figure 5). The file descriptor manager uses the select
function to multiplex concurrent requests. After a request
has been received by the receiver, it is parsed by the request
manager, which determines the request type and forwards

File ID list for keyword "movie AND event": (1)
 File with ID 1: /home/bovik/example.txt

Hash(movie) = 1

Hash(event) = 3 Index Table

Search result:

keyword:  "movie AND event"
Number of query results: 1
Result display:
1. /home/bovik/example.txt
line #2: ... a movie festival, which is a big event ....

search index entry 1 and 3

File ID list for keyword "event": (1,3)

File ID list for keyword "movie": (1,4) 

scan /home/bovik/example.txt 
from position 6

Figure 4. A query example in Mingle
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Figure 5. Mingle server architecture

the request to the appropriate components for further pro-
cessing. The major components that process a user request
are the file indexer, query processor, and security manager.
The file indexer accesses files from the local disk and builds
up an inverted index table in disk. For performance op-
timization, the file indexer maintains a cache in memory
for frequently accessed terms and their indices. The query
processor processes user queries, including advanced query
options based on the index table built by the file indexer.
The security manager performs security operations, includ-
ing access control and user authentication. After the request
processing is finished, the sender sends out the reply passed
by the request manager.

Both the Mingle server and the client program are im-
plemented in C++ in Linux. The request signing and signa-
ture verification use the RSA algorithm [23], which is im-



plemented by the Crypto ��� library (version 4.2) [5]. The
communications among servers are via TCP connections,
while the server and the client program communicate via
Unix IPC.

6 Performance Evaluation

In this section, we present the performance evaluation of
Mingle. We have conducted three sets of experiments to
answer the following three questions: (1) What is the cost
of index and search — the two major operations in Min-
gle? (2) What is the impact of our security mechanism on
performance? (3) What is the scalability of Mingle? The
first and the second sets of experiments are conducted on
PIII 550MHz machines with 128 MB of RAM. The last
set of experiments are run on the cluster of computers (PIII
550MHz) in a 10BaseT Ethernet LAN. Each data point in
the figures is the average of ten runs.

6.1 What is the Cost of Index and Search?

Since only text files will be indexed, we have down-
loaded the RFC [22] and the Internet Drafts [11] reposi-
tories to test the index performance. We vary the text size
to be indexed. Figure 6 plots the index latency and the gen-
erated index table size. We observe that both costs increase
linearly with the text size. It takes about 30 minutes to index
200 MB of text (about 9 seconds per 1 MB). Usually, only
a portion of the data on a disk will be text. With the current
index speed, we can index a local disk regularly at machine
idle time. The generated index table size is about 15% of
the original text size. Both costs are acceptable for personal
computing.

With the pre-computed index table, we then examine the
search latency on the local server without using our security
mechanism. We vary the indexed text size and the number
of keywords in a query. Figure 7(a) plots the query lookup
latency in case of cache hits, when the required items in
the index table are already in memory. Overall, the search
latency is on the order of milliseconds and seconds, which
is fast. For example, in 200 MB text, it takes about 250
ms to find answers to a two-keyword query, while it takes
as long as 15 seconds to get the same results using “grep”.
If the keywords in a query do not exist in the indexed text,
the search latency is less than 1ms regardless of the indexed
text size.

We are also interested in the penalty of a cache miss,
when the required items in the index table need to be fetched
from the disk. Figure 7(b) shows the comparison of search
latency in case of cache hit and cache miss. In both cases,
the indexed text size is 100 MB. As indicated in the figure,
the penalty of a cache miss is on the order of tens of mil-
liseconds, which is relatively small.
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Figure 6. Index latency and disk size vs. text
size indexed

6.2 What is the Impact of Security on Perfor-
mance?

In this section, we measure the impact of the Mingle
security mechanism on performance. Since cryptographic
computation is often expensive, our main concern is the la-
tency penalty of cryptographic operations for remote user
authentication. We evaluate the cost of request signing and
signature verification by measuring the time spent in each
step of request processing.

We conducted our experiments on two machines serving
as the local server and the remote server respectively in the
same LAN. Since the security penalty does not depend on
request type, we choose a 3-keyword search request as our
example and fix the indexed text size to be 100 MB. We use
1024-bit and 512-bit 1 RSA keys, respectively. Figure 8
lists the processing steps we are interested in. The pro-

1Each user can select her own key length in Mingle. Though we report
performance for 512-bit keys here, such keys provide insufficient security
for commercial applications [15] and are discouraged for use in any com-
mercial application of Mingle.



Total Parsing Networking Look up Signing Sig.Check

Mean (1024 bit) 313590 940 6010 279530 25710 1400
Std dev (1024 bit) 2615 15 643 2613 44 25
Percentage (1024 bit) 100.0% 0.3% 1.9% 89.1% 8.2% 0.5%
Mean (512 bit) 292440 950 5610 279650 5390 850
Std dev (512 bit) 1100 10 55 1037 18 10
Percentage (512 bit) 100.0% 0.3% 1.9% 95.6% 1.9% 0.3%

Figure 8. Time to process a search request using 1024-bit and 512-bit RSA keys ( � s).
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Figure 7. Search latency on a single server

cessing consists of two stages: First, the request is parsed
and signed at the local server, and forwarded to the remote
server. Second, the remote server verifies the signature and
generates the reply by query lookup. The “Total” column
corresponds to the time elapsed between the arrival of the
request and sending the reply to the client program by the
local server. The “Networking” column corresponds to the
latency spent in forwarding the request and getting the reply
from the remote server. For each step, we show the mean
and the standard deviation of latency as well as the percent-
age of total latency.

We can see from Figure 8 that most of the processing
latency is spent on query lookup. Although request sign-
ing is also expensive, it is not the performance bottleneck.
Compared with signing, signature verification is fast. Note
that the standard deviation is small for all steps except net-
working latency, which has a relatively larger variation due
to the network instability. In summary, our security mecha-
nism has little impact on overall search performance.

6.3 What is the Scalability of Mingle?

In this section, we examine whether Mingle is able to
scale with an increasing number of hosts. We consider sce-
narios with and without our security mechanism. We run the
Mingle server on every host in a cluster of up to 23 comput-
ers. Each server has a precomputed index table of 100 MB
text.

Figure 9(a) plots the average search latency and the stan-
dard deviations without security checking by varying the
number of participating hosts. We can see that the per-
formance degradation is not constant with the increasing
number of Mingle servers. The search latency increases
most when the number of hosts in Mingle increases from
one to three. The increased latency is due to network com-
munication and remote processing, which do not happen in
the single server case. When we further increase the num-
ber of the participating hosts, the performance degradation
becomes smaller. The reason is that although the network
communication time is increased, the remote processing can
be done in parallel on different servers. We observe that
the search latency has higher standard deviation with the
increased number of servers. This is because the network
latency variation increases with the number of hosts in the
system. If security checking is enforced, the overall search
latencies increase only slightly, as indicated by Figure 9(b).
We note that when the number of hosts is greater than 21,
the search latency with security checking is even lower than
that without security checking. This is because the security
overhead is small compared with the overall search latency.
The lower search latency with security checking is due to
the large variance of network latencies when there are more
hosts in the cluster. Overall, our measurements suggest that
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Figure 9. Search latency in a Mingle cluster.
(a) Search latency without security checking
(b) Search latency with and without security
checking

Mingle is able to scale with increasing number of hosts.

7 Concluding Remarks

We have developed Mingle to help authorized users ef-
ficiently locate their personal data on distributed comput-
ers. Mingle hosts precompute inverted index of local files,
searching among each other in a peer-to-peer way. The
Mingle security architecture consists of authorization and
authentication mechanisms. One of the major benefits of
our security mechanism is user convenience. For authoriza-
tion, we introduce an access-right mapping that allows data
owners to conveniently specify access permissions. This is
supported using a user authentication mechanism that per-
mits a form of single sign-on.

Preliminary performance evaluation of Mingle suggests
that: (1) Both the cost of index and search grow linearly
with the indexed text size. (2) The Mingle security mecha-

nism has little impact on search performance. (3) Mingle is
able to scale with increasing number of hosts.

Future work includes expanding Mingle to larger net-
works, considering schemes for encrypting and replicating
host indexes, and better understanding Mingle’s vulnerabil-
ity to attacks such as timing attacks.
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