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Abstract

Topic-models for video analysis have been used for unsu-
pervised identification of normal activity in videos, thereby
enabling the detection of anomalous actions. However,
while intervals containing anomalies are detected, it has not
been possible to localize the anomalous activities in such
models. This is a challenging problem as the abnormal con-
tent is usually a small fraction of the entire video data and
hence distinctions in terms of likelihood are unlikely.

Here we propose a methodology to extend the topic
based analysis with rich local descriptors incorporating
quantized spatio-temporal gradient descriptors with image
location and size information. The visual clips over this vo-
cabulary are then represented in latent topic space using
models like pLSA. Further, we introduce an algorithm to
quantify the anomalous content in a video clip by projecting
the learned topic space information. Using the algorithm,
we detect whether the video clip is abnormal and if posi-
tive, localize the anomaly in spatio-temporal domain. We
also contribute one real world surveillance video dataset
for comprehensive evaluation of the proposed algorithm.
Experiments are presented on the proposed and two other
standard surveillance datasets.

1. Introduction
Analyzing surveillance videos to identify unusual or

anomalous events is a challenging problem owing to the
wide range of events that can be called anomalous. The
dominant class of approaches is to a) model the common
actions based on weak supervision in terms of a set of
training videos that may not contain anomalies [3, 17], b)
identify anomalies as spatio-temporal patterns that do not
agree with the models. Models may be based on clus-
tering trajectories (point-based) [4, 7, 11, 22], or on find-
ing correlations among a collection of features (trajectory,
spatio-temporal position, texture, size). Correlations may
seek to preserve local context using markov fields [9] , or
may seek to identify latent topics from the word-document
data [6, 16, 20, 23]. Finally, anomaly detection is usu-

(a) Traffic Junction Dataset [20]. The left image is usual while
right is an anomaly - car stops after the stop-line.

(b) Highway Dataset. The left image is usual while right is an
anomaly with a jaywalker crossing the road.

(c) AVSS Dataset [8]. The left image is usual while right is an
anomaly with a vehicle abruptly crossing the road.

Figure 1: Sample frames from video datasets.

ally based on computing the likelihood of the test video-
fragment, given the model.

In this paper, we focus on topic models for situations
where several actions are happening in the scene at the same
time. Such situations have been investigated recently by
Varadarajan et al. [20]. Two difficulties can arise in such a
case. First, many actions are occurring simultaneously, but
in any anomalous scene only one of the events may be un-
usual. Consequently, the likelihood of a video snippet con-
taining an anomaly may not vary significantly from that of



a “normal” snippet; in Figure 2 we present the distribution
curves for normalized log-likelihood for test clips, and find
that the difference between that of ‘normal’ and ‘anoma-
lous’ clips is very small. Consequently, any classifier will
have to be contend with a high cost in terms of false classi-
fications.

The major challenges involved in scenes involving many
agents are frequent occlusions, and a large divergent set of
behaviors. Many anomaly detection datasets involve either
very sparse agents, or dense data (crowds) that are a gluti-
nous whole. Figure 1 shows all the three datasets we evalu-
ate our approach on.

The second challenge relates to the fact that in a topic
model, it is often possible to identify the document contain-
ing the anomaly, without being able to localize the region
of the image+time where it is occurring. The word-based
neighbourhood analysis also resolves this problem, and we
are able to mark regions in the video that contain anomalous
actions.

Our primary contribution to tackle these problems is to
propose a mechanism where the topic-based identification
of anomalous documents is combined with a classifier based
on spatio-temporal quantized words. The mechanism has
three steps: (a) We design the visual vocabulary by incorpo-
rating the location and blob size information with quantized
spatio-temporal descriptors, which is particularly relevant
to static camera scenes. The blob size helps in differenti-
ating individuals from vehicles. The visual clips over this
vocabulary are then represented in latent topic space using
models like pLSA. (b) We propose an algorithm to quan-
tify the anomalous content in a video clip by projecting the
information learned from training on to the clip. (c) Based
on the algorithm, we finally detect whether the video clip is
abnormal or not and if so, further localize the anomaly in
spatio-temporal domain. This mechanism is shown to pro-
vide an improvement of the area under the precision-recall
curve(AUC) of anomaly detection over the results from the
likelihood model proposed in [20]. We call this the ‘pro-
jection model algorithm’ and it is particularly robust to the
amount of abnormal content in video clip. This not only
enhances the detection accuracy but also provides spatio-
temporal localization of the anomalous content.

This paper is organized further as follows. Section 2 dis-
cusses about the literary survey in general. Section 3 pro-
vides methodology i.e. modeling, detection and localization
of anomalies. Results and experiments with respect to base-
line are in Section 4 followed by concluding discussion in
Section 5.

2. Related Work
Video abnormality detection broadly includes two ma-

jor approaches. The first approach involves tracking ob-
jects in a series of frames, and then working in the trajec-

(a) Traffic Junction Dataset (b) Highway Dataset

(c) AVSS Dataset

Figure 2: Density plots for Normalized Log-Likelihood for
test ‘usual’ and ‘anomalous’ clips.

tory space to identify the deviant points which are potential
candidates for being anomalous [7, 11, 22]. Such methods
yield good performance in general, but are not robust to oc-
clusions which cause inaccuracy in tracking. This impedes
their extent to surveillance videos with natural traffic sce-
narios. In the second approach, the intrinsic patterns of the
scene are captured using feature descriptors, which are then
used to model the behaviour. However, removal of tracking
information in the latter approach leads to significant loss
but this shows a more promising way to build generalizable
real-life models. Niebles et al. [16] discuss the results ob-
tained by applying topic models for the task of action recog-
nition and classification. They model the features in terms
of visual words, and use pLSA-LDA models to predict the
correct actions in an unsupervised sense. Wang et al. [21]
propose a hierarchical variant of LDA for connecting low
level visual features, atomic actions and interactions. This
model achieves multi-fold objectives of discovering typi-
cal actions in videos, segmenting long video sequences into
different actions, and segmenting motions into different ac-
tivities. Li et al. [12] use hierarchical pLSA for generat-
ing global behavioural correlations in a wide area scene.
This model also aids in detecting anomalous activities in
the scene subsequently. Mehran et al. [15] present a social
force model for dense crowd behaviour, and their model is
primarily driven by optical flow based ideas for detecting
abnormal panicky crowd situations. They detect and local-
ize anomalous behaviour, but the approach does not extend
to sparse and structured anomalous space.

Works which attempt to detect unusual events in the
videos begin by building a model for the normal events oc-
curring in the videos. Mahadevan et al. [14], which aims at



anomaly detection, and its extension [13] to localization of
the anomaly rely on dynamic texture models for building a
joint temporal and spatial model for constructing saliency
measure for the events occurring in the video. A rare or
unusual event is expected to possess temporal and spatial
saliency values which are significantly deviant from the ex-
pected saliency values.

Roshtkhari et al. [18] also build a joint model for spatial
and temporal dominant behaviour by constructing spatio-
temporal volumes centred around every pixel. The features
are clustered using a fuzzy C-means clustering algorithm.
Anomalous events are detected based on the distances of
the words occurring in the events to these centres. Varadara-
jan et al. [20] utilise topic modelling for understanding the
usual events occurring in the video. It is assumed that in a
domain, the set of usual events is fixed and can be mined
from the distribution of the visual words and the video clips
in the domain. A video clip which has the occurrence of
anomalous events would then be expected to have a low
likelihood over the learnt model.

3. Methodology
Our aim is to model the usual events, given a surveil-

lance video, so as to detect the anomalous events in an
unsupervised setting. The two major issues addressed in
the methodology are robustness to the quantity of abnor-
mal events in a video clip, and localization of anomaly in
space-time domain. We now discuss the proposed three tier
framework for video abnormality analysis - modeling, de-
tection and localization.

3.1. Unsupervised Modelling

We use topic model to parametrically learn the infor-
mative content of surveillance video. Initially, videos are
divided into clips and the length of clip (l seconds) de-
fines the granularity for time interval of abnormality detec-
tion. These clips are analogous to documents in language
processing. It is crucial that training clips contain no or
very less anomaly, so that the resultant normalized likeli-
hood of usual topics is high in the learned model. We then
extract context-based finite dimensional, discrete domain
words from the video, called visual words. These docu-
ments (video clips) are then represented as histograms over
the finite visual vocabulary. This forms the basis for topic-
modelling in videos.

3.1.1 Formation of Words

The visual words should be rich and generalizable enough
to capture possible behaviours or events in any video. The
vocabulary of such words should also belong to a finite do-
main, so as to account for unseen test document clips. Im-
proving upon the feature descriptors suggested in [20, 21],

(a) Sample Frame (b) Foreground Marked

(c) HOG-HOF Marked (d) Sample Frame

(e) Foreground Marked (f) HOG-HOF Marked

Figure 3: Representative images for intermediate results.
Figures (a)-(c) are from Traffic Junction Dataset and (d)-(f)
from Highway Dataset.

we incorporate HOG-HOF descriptors [10] with location
and size information; each of them being quantized. The
proposed visual words are three dimensional : spatial loca-
tion, HOG-HOF cluster and parent blob size.

The foreground segregation in image frame reduces the
complexity of problem to a great extent with focus on
dynamic actions which are relevant candidates for being
anomalous. We consider visual words only at these fore-
ground pixels. We use the ViBe foreground extraction tech-
nique suggested in [1]. This approach develops the back-
ground model by ignoring the insertion time attribute of
pixel entering it. The main benefit of ViBe is to depict the
object in foreground for sometime even after it has stopped
moving, for example, a car parked in a no-parking area.
This assures that such events do not go unscrutinised dur-
ing abnormality analysis. We then use median filtering and
repeated morphological filters for smoothening the image
and removing the noise. Figure 3 depicts the result of this
pre-processing on sample frames. Now we discuss how the
information in individual dimension of these visual words
is being assimilated.

Each video frame is divided into disjoint grids, and each



grid acts as the location attribute of visual word. Every loca-
tion cell in a frame containing at least one foreground pixel
is a candidate for defining a visual word. The location at-
tribute is significant especially in static camera videos.

As second attribute, we use space time extension of HOG
descriptor complemented with quantized optical flow fea-
tures. This is HOG-HOF descriptor suggested in [10]. We
find this descriptor around a pixel selected randomly from
the foreground ones in each cell. The idea of the descriptor
is to consider a spatio-temporal volume around the interest
point, which is further divided into disjoint cells. There-
after in each cell, gradient orientations are quantized into 4-
bins (HOG) and optical flow into a 5-bin histogram (HOF).
These histograms are normalized within cells and then con-
catenated for the complete volume. The spatial scale (σ2)
and temporal scale (τ2) parameters used are 4 and 2 respec-
tively. The total length of descriptor is 162 i.e. 72 dimen-
sional HOG vector and 90 dimensional HOF vector. Over-
all, these orientation quantized bins capture the gradient-
texture information, while optical flow histogram incorpo-
rates the motion content in the neighborhood. These de-
scriptor values are then clustered using k-means algorithm.
We randomly pick 200K HOG-HOF descriptors from train-
ing documents and quantize them into 20 centers.

Final attribute corresponds to the size of connected com-
ponent of the foreground pixel in consideration. We find
the 4-side-connected ‘blob’ of the pixel using contour de-
tection algorithm [19]. Contours are then filled and the area
under the contour is computed, which we quantize using a
threshold into either large or small.

3.1.2 Construction of vocabulary and documents

The dimension of frames in video dataset is 288∗360. Each
frame is divided into 20∗20 disjoint grids, leading to 15∗18
possible cells. Hence these many values are possible for
the location attribute. The vocabulary is the domain of all
possible values for visual word. Since last dimension ’size’
has 2 quantizations, each word is a triplet accounting for
(15 ∗ 18) ∗ 20 ∗ 2 = 10800 possible combinations.

3.1.3 Probabilistic Latent Semantic Analysis

Probabilistic topic modeling has a wide literature in sta-
tistical learning. Beginning from Latent Semantic Anal-
ysis, the probabilistic graph based model pLSA was sug-
gested by [5], and subsequently a parametric fully genera-
tive model with dirichlet prior LDA was suggested in [2].
It is suggested that pLSA and LDA give similar results in
capturing activity pattern [20], so we would discuss pLSA
model for topic discovery.

Say we represent each word as w ∈ W =
{w1, w2, . . . wM} and each document as d ∈ D =
{d1, d2 . . . , dN}, then we have a N ∗ M term-frequency

matrix N where N(i, j) is the frequency of wj in di. LSA
tries to factorize this matrix into lower vector space by esti-
mating the SVD of N considering only significant diagonal
terms. pLSA is probabilistic version of LSA to represent a
document as a probability distribution over the space of la-
tent factors called topics say z ∈ Z = {z1, z2 . . . , zK}. The
conditional independence assumption in the pLSA model is
that given the topic z, the variable w and d are independent.
The joint distribution of word and topic space, respecting
this independence assumption is given by

P (d,w) = P (d)P (w|d) = P (d)
∑
z∈Z

P (w, z|d)

= P (d)
∑
z∈Z

P (w|z, d)P (z|d)

= P (d)
∑
z∈Z

P (w|z)P (z|d)

The parameters of the model are estimated using EM algo-
rithm as suggested in [5]. The likelihood estimate of the
document matrix is shown as follows

L(θ;N) =
∑
d∈D

∑
w∈W

n(d,w) log(P (d,w))

where n(d,w) is the frequency of word w in document
d. The limitation of pLSA model is that it is not fully-
generative for the testing data where documents are unseen.
Thus, we estimate the distribution P (z|d) and P (w|z) from
the training data and change the EM algorithm for test set
to estimate P (z|d) using the P (w|z) distribution estimate
from the training set. Thus we use following form of Like-
lihood function:

L(θ;N) =
∑
d∈D

∑
w∈W

n(d,w) log
(
P (d)

∑
z∈Z

P (w|z)P (z|d)
)

3.2. Anomaly Detection: Projection Model Algorithm

Although we have the overall likelihood values for any
document obtained as a result of topic modeling, using them
for abnormality detection is not a robust approach. This
is sensitive to the amount of anomaly, i.e. the number of
anomalous words, present in the document. In general, the
abnormal event in any clip is confined to a small spatio-
temporal region, thus leading to very few anomalous words
in the clip relative to the total number of words present in
it. Due to this, there is not much difference between the
likelihood of an anomalous and that of a usual test clip. So,
we propose an algorithm for individual evaluation of visual
words present in the test video document. We call this pro-
jection model algorithm due to the fact that for every word
we mine the information projected from the nearest training
documents in topic space. The details of the algorithm are
as follows.



1. The likelihood of documents in topic space i.e. P (z|d)
is given by the pLSA model. Using this, we can rep-
resent every document dx as a distribution over topic
space as (θx1 , θ

x
2 . . . , θ

x
k). Let Dtrain be the set of all

such topic vectors for the training documents.

2. Given a new test document dtest, represent it in terms
of a topic vector. In the topic space, find the nearest
m training documents di ∈ Dtrain using the Bhat-
tacharyya metric. The Bhattacharyya distance between
two documents dx and dy is defined as follows -

DB(dx, dy) = − log

( K∑
i=1

√
θxi θ

y
i

)

3. Let the word histogram of document dx be Hx. Then
stack (i.e. add frequency of each bin) the histogram
of all these m nearest train documents into a combined
histogram H0.

4. Now observe every word wtest that occurs in the test
document dtest (the words that do not occur are ig-
nored right away) at least once. If the frequency of the
bin corresponding towtest inH0 is more than a certain
threshold, call it usual i.e.

If (H0(wtest) ≥ thcur) then wtest is usual word

5. Consider the eight neighbors ofwtest in the grid image
in all possible spatial directions i.e. up,down,left etc.
Let their set be N(wtest). Now if H0(w) ≥ thnbr is
true for at least l neighbors w ∈ N(wtest), then the
word wtest will be called usual.
Note that l is any integer from 1 to 8.

6. If steps 4 and 5 do not hold for wtest, then call it an
anomalous word.

In the above algorithm, if the training data does not con-
tain any abnormal event then we keep thcur = 1. Thus,
final parameters to optimize are {m, thnbr, l}. Through ex-
periments, we observed that keeping the value of m to be
around one fourth of total training documents and keeping
value of l as 3 gives decent performance.

Now, the test document clip dtest will be called abnor-
mal if the number of anomalous words in it is more than a
threshold. We vary this threshold and present the precision-
recall curve in the results section.

3.3. Anomaly Localization

We get the localization of anomaly as a direct bi-product
of our projection model algorithm. If the overall test doc-
ument dtest is being called abnormal, then we mark the
anomalous flagged words in clip dtest. This is possible
because words contain the spatial location information in

(a) Traffic Junction Dataset

(b) Highway Dataset

(c) AVSS Traffic Dataset

Figure 4: Anomalous frames identified and anomalous
words localised by the algorithm. Currently, in our imple-
mentation we highlight the anomalous event in test docu-
ments as shown above.

them as their attribute. In implementation, we just need to
do book-keeping of frame numbers while creating word his-
tograms of each document.

4. Experiments and Results
We perform experimentation on datasets created in real

world setting shown in Figure 1:
Traffic Junction Dataset: It consists of a single video of

45 minutes duration shot from a camera perched at the top
of a building at a traffic junction. This was released in [20]
Anomalous events occurring in the video have been marked
in a separate file which states the start time of the anomalous
event, the end time of the anomalous event and the kind of
anomaly. There are four kinds of anomalous actions in the
video.

Highway Dataset: We contribute this 6 and a half minute
video depicting the traffic scene of a highway in real world
scenario. Frame rate is 25fps. We provide the temporal
labels for abnormal events for evaluation of results. The
anomaly description is described in text for localizing the



Dataset Likelihood
Model

Projection
Model

Traffic-Junction Dataset 54.47 (54.04) 65.15 (85.19)
Highway Dataset 67.30 (71.08) 81.40 (84.36)
AVSS Traffic Dataset 68.11 (68.63) 75.49 (75.53)

Table 1: Results for Anomaly Detection. The reported val-
ues are AUC of precision-recall curve with average preci-
sion in parenthesis.

abnormal event. This dataset is made publicly available1.
AVSS traffic Dataset: This video was released as a part

of i-LIDS vehicle detection challenge in AVSS 2007 [8]. It
consists of a single long shot of traffic on a sub-urban street
over the day, with varying lighting and weather conditions,
and trembling camera which makes the task of robust fore-
ground extraction challenging. Unlike the first two datasets,
the anomalous events have not been provided separately.
So, we manually find and label the anomalous events.

The experimentation was conducted by keeping the num-
ber of actions in the video to be 20, which served as the
number of topics in the document. We experiment with
length l = 4 to l = 10 seconds, presenting final results on
contiguous document clips of 4 sec duration. Anomalous
video clips were separated from the rest of the video clips
for testing. From the remaining set, 75% of the clips were
used for training and the remaining 25% of the clips were
included in the test data along with the anomalous ones.
Figure 4 shows the detection and localization results of pro-
posed projection model algorithm.

For anomaly detection i.e. predicting whether a clip con-
tains anomaly or not, the baseline model was fixed as the
normalized likelihood model with the same feature set i.e.
vocabulary as our proposed algorithm. Baseline results are
obtained by varying the log-normalized likelihood as the
threshold. The comparison with baseline model, as seen in
Figure 5 for all datasets, suggests that projection model al-
gorithm improves upon detection in addition to localization
of anomalies. The quantitative results for detection accu-
racy are reported in Table 1. We measure the 0/1 accuracy
for localization of anomalies by manual inspection of test
clips. Since the baseline model does not deal with anomaly
localization, we do not provide a direct comparison of the
two models with respect to anomaly localization. Our algo-
rithm localizes 55.88% of abnormal events in Traffic Junc-
tion Dataset, 63.15% in Highway Dataset, and 59.23% in
AVSS Traffic dataset correctly.

5. Conclusion
In this paper, we propose an improved methodology for

anomaly detection and localization in situations with a large

1http://www.cse.iitk.ac.in/users/vision/
traffic-datasets/dataset3/dataset3.html

(a) Traffic Junction Dataset

(b) Highway Dataset

(c) AVSS Traffic Dataset

Figure 5: Precision-Recall curves for anomaly detection.
Anomalous clips were considered as positive and the non-
anomalous clips as negative examples.

number of agents actively pursuing divergent goals. With
a weakly supervised input, the projection model algorithm
improves upon the baseline likelihood model in detection
accuracy, and additionally localizes the abnormal actions in
space-time. The system uses object-based models, includ-
ing object size, which are identified via modern techniques
for foreground modelling and low-level feature description.



This is efficient in situations with sparse anomalous set in
structured behaviour scenarios, which is mostly the case
with surveillance videos. We also contribute a real world
surveillance video dataset with marked temporal anomalous
events.

One possible direction for future work would be to inves-
tigate hierarchical topic models instead of pLSA to obtain
finer granularity in activity pattern analysis. The proposed
pipeline has independent components connected together,
and thus improving upon any of the steps would increase
the overall accuracy. In future, we plan to automatically in-
fer semantic tags for objects in natural language using the
commentary for localized abnormal events.
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