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Abstract

Many image-to-image translation problems are ambiguous, as a single input image
may correspond to multiple possible outputs. In this work, we aim to model
a distribution of possible outputs in a conditional generative modeling setting.
The ambiguity of the mapping is distilled in a low-dimensional latent vector,
which can be randomly sampled at test time. A generator learns to map the given
input, combined with this latent code, to the output. We explicitly encourage the
connection between output and the latent code to be invertible. This helps prevent
a many-to-one mapping from the latent code to the output during training, also
known as the problem of mode collapse, and produces more diverse results. We
explore several variants of this approach by employing different training objectives,
network architectures, and methods of injecting the latent code. Our proposed
method encourages bijective consistency between the latent encoding and output
modes. We present a systematic comparison of our method and other variants on
both perceptual realism and diversity.

1 Introduction

Deep learning techniques have made rapid progress in conditional image generation. For example,
networks have been used to inpaint missing image regions [20, 34, 47], add color to grayscale
images [19, 20, 27, 50], and generate photorealistic images from sketches [20, 40]. However, most
techniques in this space have focused on generating a single result. In this work, we model a
distribution of potential results, as many of these problems may be multimodal in nature. For
example, as seen in Figure 1, an image captured at night may look very different in the day, depending
on cloud patterns and lighting conditions. We pursue two main goals: producing results which are (1)
perceptually realistic and (2) diverse, all while remaining faithful to the input.

Mapping from a high-dimensional input to a high-dimensional output distribution is challenging. A
common approach to representing multimodality is learning a low-dimensional latent code, which
should represent aspects of the possible outputs not contained in the input image. At inference time,
a deterministic generator uses the input image, along with stochastically sampled latent codes, to
produce randomly sampled outputs. A common problem in existing methods is mode collapse [14],
where only a small number of real samples get represented in the output. We systematically study a
family of solutions to this problem.

We start with the pix2pix framework [20], which has previously been shown to produce high-
quality results for various image-to-image translation tasks. The method trains a generator network,
conditioned on the input image, with two losses: (1) a regression loss to produce similar output
to the known paired ground truth image and (2) a learned discriminator loss to encourage realism.
The authors note that trivially appending a randomly drawn latent code did not produce diverse
results. Instead, we propose encouraging a bijection between the output and latent space. We not
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Figure 1: Multimodal image-to-image translation using our proposed method: given an input image from
one domain (night image of a scene), we aim to model adistributionof potential outputs in the target domain
(corresponding day images), producing both realistic and diverse results.

only perform the direct task of mapping the latent code (along with the input) to the output but also
jointly learn an encoder from the output back to the latent space. This discourages two different latent
codes from generating the same output (non-injective mapping). During training, the learned encoder
attempts to pass enough information to the generator to resolve any ambiguities regarding the output
mode. For example, when generating a day image from a night image, the latent vector may encode
information about the sky color, lighting effects on the ground, and cloud patterns. Composing the
encoder and generator sequentially should result in the same image being recovered. The opposite
should produce the same latent code.

In this work, we instantiate this idea by exploring several objective functions, inspired by literature in
unconditional generative modeling:

� cVAE-GAN(Conditional Variational Autoencoder GAN): One approach is �rst encoding the
ground truth image into the latent space, giving the generator a noisy “peek" into the desired
output. Using this, along with the input image, the generator should be able to reconstruct the
speci�c output image. To ensure that random sampling can be used during inference time, the latent
distribution is regularized using KL-divergence to be close to a standard normal distribution. This
approach has been popularized in the unconditional setting by VAEs [23] and VAE-GANs [26].

� cLR-GAN(Conditional Latent Regressor GAN): Another approach is to �rst provide a randomly
drawn latent vector to the generator. In this case, the produced output may not necessarily look like
the ground truth image, but it should look realistic. An encoder then attempts to recover the latent
vector from the output image. This method could be seen as a conditional formulation of the “latent
regressor" model [8, 10] and also related to InfoGAN [4].

� BicycleGAN: Finally, we combine both these approaches to enforce the connection between latent
encoding and output in both directionsjointly and achieve improved performance. We show that
our method can produce both diverse and visually appealing results across a wide range of image-
to-image translation problems, signi�cantly more diverse than other baselines, including naively
adding noise in thepix2pix framework. In addition to the loss function, we study the performance
with respect to several encoder networks, as well as different ways of injecting the latent code into
the generator network.

We perform a systematic evaluation of these variants by using humans to judge photorealism and
a perceptual distance metric [52] to assess output diversity. Code and data are available athttps:
//github.com/junyanz/BicycleGAN .

2 Related Work

Generative modeling Parametric modeling of the natural image distribution is a challenging
problem. Classically, this problem has been tackled using restricted Boltzmann machines [41] and
autoencoders [18, 43]. Variational autoencoders [23] provide an effective approach for modeling
stochasticity within the network by reparametrization of a latent distribution at training time. A
different approach is autoregressive models [11, 32, 33], which are effective at modeling natural
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Figure 2:Overview: (a) Test time usage of all the methods. To produce a sample output, a latent codez is
�rst randomly sampled from a known distribution (e.g., a standard normal distribution). A generatorG maps an
input imageA (blue) and the latent samplez to produce a output samplêB (yellow). (b)pix2pix+noise [20]
baseline, with an additional ground truth imageB (brown) that corresponds toA . (c) cVAE-GAN(andcAE-GAN)
starts from a ground truth target imageB and encode it into the latent space. The generator then attempts to map
the input imageA along with a sampledz back into the original imageB . (d) cLR-GANrandomly samples a
latent code from a known distribution, uses it to mapA into the output̂B , and then tries to reconstruct the latent
code from the output. (e) Our hybridBicycleGAN method combines constraints in both directions.

image statistics but are slow at inference time due to their sequential predictive nature. Generative
adversarial networks [15] overcome this issue by mapping random values from an easy-to-sample
distribution (e.g., a low-dimensional Gaussian) to output images in a single feedforward pass of a
network. During training, the samples are judged using a discriminator network, which distinguishes
between samples from the target distribution and the generator network. GANs have recently been
very successful [1, 4, 6, 8, 10, 35, 36, 49, 53, 54]. Our method builds on the conditional version of
VAE [23] and InfoGAN [4] or latent regressor [8, 10] models by jointly optimizing their objectives.
We revisit this connection in Section 3.4.

Conditional image generation All of the methods de�ned above can be easily conditioned. While
conditional VAEs [42] and autoregressive models [32, 33] have shown promise [16, 44, 46], image-
to-image conditional GANs have lead to a substantial boost in the quality of the results. However, the
quality has been attained at the expense of multimodality, as the generator learns to largely ignore the
random noise vector when conditioned on a relevant context [20, 34, 40, 45, 47, 55]. In fact, it has
even been shown that ignoring the noise leads to more stable training [20, 29, 34].

Explicitly-encoded multimodality One way to express multiple modes is to explicitly encode
them, and provide them as an additional input in addition to the input image. For example, color
and shape scribbles and other interfaces were used as conditioning in iGAN [54], pix2pix [20],
Scribbler [40] and interactive colorization [51]. An effective option explored by concurrent work [2,
3, 13] is to use a mixture of models. Though able to produce multiple discrete answers, these
methods are unable to produce continuous changes. While there has been some degree of success
for generating multimodal outputs in unconditional and text-conditional setups [7, 15, 26, 31, 36],
conditional image-to-image generation is still far from achieving the same results, unless explicitly
encoded as discussed above. In this work, we learn conditional image generation models for modeling
multiple modes of output by enforcing tight connections between the latent and image spaces.
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