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Abstract

Traditional recommendation systems produce
static rather than interactive recommendations
invariant to a user’s specific requests, clarifi-
cations, or current mood, and can suffer from
the cold-start problem if their tastes are un-
known. These issues can be alleviated by
treating recommendation as an interactive di-
alogue task instead, where an expert recom-
mender can sequentially ask about someone’s
preferences, react to their requests, and recom-
mend more appropriate items. In this work,
we collect a goal-driven recommendation di-
alogue dataset (GoRecDial), which consists
of 9,125 dialogue games and 81,260 conver-
sation turns between pairs of human workers
recommending movies to each other. The task
is specifically designed as a cooperative game
between two players working towards a quan-
tifiable common goal. We leverage the dataset
to develop an end-to-end dialogue system that
can simultaneously converse and recommend.
Models are first trained to imitate the behavior
of human players without considering the task
goal itself (supervised training). We then fine-
tune our models on simulated bot-bot conver-
sations between two paired pre-trained mod-
els (bot-play), in order to achieve the dialogue
goal. Our experiments show that models fine-
tuned with bot-play learn improved dialogue
strategies, reach the dialogue goal more often
when paired with a human, and are rated as
more consistent by humans compared to mod-
els trained without bot-play. The dataset and
code are publicly available through the ParlAI
framework1.

1 Introduction

Traditional recommendation systems factorize
users’ historical data (i.e., ratings on movies) to
extract common preference patterns (Koren et al.,

1https://github.com/facebookresearch/ParlAI

2009; He et al., 2017b). However, besides mak-
ing it difficult to accommodate new users because
of the cold-start problem, relying on aggregated
history makes these systems static, and prevents
users from making specific requests, or exploring
a temporary interest. For example, a user who usu-
ally likes horror movies, but is in the mood for a
fantasy movie, has no way to indicate their prefer-
ence to the system, and would likely get a recom-
mendation that is not useful. Further, they cannot
iterate upon initial recommendations with clarifi-
cations or modified requests, all of which are best
specified in natural language.

Recommending through dialogue interactions
(Reschke et al., 2013; Wärnestål, 2005) offers a
promising solution to these problems, and recent
work by Li et al. (2018) explores this approach
in detail. However, the dataset introduced in that
work does not capture higher-level strategic be-
haviors that can impact the quality of the rec-
ommendation made (for example, it may be bet-
ter to elicit user preferences first, before making
a recommendation). This makes it difficult for
models trained on this data to learn optimal rec-
ommendation strategies. Additionally, the rec-
ommendations are not grounded in real observed
movie preferences, which may make trained mod-
els less consistent with actual users. This paper
aims to provide goal-driven recommendation di-
alogues grounded in real-world data. We col-
lect a corpus of goal-driven dialogues grounded in
real user movie preferences through a carefully de-
signed gamified setup (see Figure 1) and show that
models trained with that corpus can learn a suc-
cessful recommendation dialogue strategy. The
training is conducted in two stages: first, a super-
vised phase that trains the model to mimic human
behavior on the task; second, a bot-play phase that
improves the goal-directed strategy of the model.

The contribution of this work is thus twofold.

https://github.com/facebookresearch/ParlAI


Hmm, we've got ..

I like comedy movies. 

...

Iron Man (2008)
Iron Man is a 2008 
American superhero film 
based on the Marvel 
Comics character of the 
same name, produced by 
Marvel Studios and 
distributed by Paramount 
Pictures….

Seeker Expert

Figure 1: Recommendation as a dialogue game.
We collect 81,260 recommendation utterances between
pairs of human players (experts and seekers) with a col-
laborative goal: the expert must recommend the cor-
rect (blue) movie, avoiding incorrect (red) ones, and
the seeker must accept it. A chatbot is then trained to
play the expert in the game.

(1) We provide the first (to the best of our knowl-
edge) large-scale goal-driven recommendation di-
alogue dataset with specific goals and reward sig-
nals, grounded in a real-world knowledge base.
(2) We propose a two-stage recommendation strat-
egy learning framework and empirically validate
that it leads to better recommendation conversa-
tion strategies.

2 Recommendation Dialogue Task
Design

In this section, we first describe the motivation
and design of the dialogue-based recommenda-
tion game that we created. We then describe the
data collection environment and present detailed
dataset statistics.

2.1 Dialogue Game: Expert and Seeker

The game is set up as a conversation between a
seeker looking for a movie recommendation, and
an expert recommending movies to the seeker.
Figure 2 shows an example movie recommenda-
tion dialogue between two-paired human workers
on Amazon Mechanical Turk.

Game Setting. Each worker is given a set of five
movies2 with a description (first paragraph from
the Wikipedia page for the movie) including im-
portant features such as director’s name, year, and

2We deliberately restricted the set of movies to make the
task more tractable. One may argue that the expert can sim-
ply ask these candidates one by one (at the cost of low en-
gagingness). However, this empirically doesn’t happen: ex-
perts make on average only 1.16 incorrect movie recommen-
dations.

genre. The seeker’s set represents their watching
history (movies they are supposed to have liked)
for the game’s sake. The expert’s set consists of
candidate movies to choose from when making
recommendations, among which only one is the
correct movie to recommend. The correct movie
is chosen to be similar to the seeker’s movie set
(see Sec. 2.2), while the other four movies are dis-
similar. The expert is not told by the system which
of the five movies is the correct one. The expert’s
goal is to find the correct movie by chatting with
the seeker and recommend it after a minimal num-
ber of dialogue turns. The seeker’s goal is to ac-
cept or reject the recommendation from the expert
based on whether they judge it to be similar to their
set. The game ends when the expert has recom-
mended the correct movie. The system then asks
each player to rate the other for engagingness.

Justification. Players are asked to provide rea-
sons for recommending, accepting, or rejecting a
movie, so as to get insight into human recommen-
dation strategies3.

Gamification. Rewards and penalties are pro-
vided to players according to their decisions, to
make the task more engaging and incentivize bet-
ter strategies. Bonus money is given if the expert
recommends the correct movie, or if the seeker ac-
cepts the correct movie or rejects an incorrect one.

2.2 Picking Expert and Seeker movie sets

This section describes how movie sets are selected
for experts and seekers.

Pool of movies To reflect movie preferences
of real users, our dataset uses the MovieLens
dataset4, comprising 27M ratings applied to 58K
movies by 280K real users. We obtain descriptive
text for each movie from Wikipedia5 (i.e., the first
paragraph). We also extract entity-level features
(e.g., directors, actors, year) using the MovieWiki
dataset (Miller et al., 2016) (See Figure 1). We fil-
ter out less frequent movies and user profiles (see
Appendix), resulting in a set of 5,330 movies and
65,181 user profiles with their ratings.

Movie similarity metric In order to simulate
a natural setting, the movies in the seeker’s set

3Our model doesn’t utilize this or the engagingness scores
for learning, but these are potential future directions.

4https://grouplens.org/datasets/movielens/
5https://dumps.wikimedia.org/

https://grouplens.org/datasets/movielens/
https://dumps.wikimedia.org/


Figure 2: An example dialogue from our dataset of movie recommendation between two human workers: seeker
(grey) and expert (blue). The goal is for the expert to �nd and recommend the correct movie (light blue) out of
incorrect movies (light red) which is similar to the seeker movies. Best viewed in color.

should be similar to each other, and the cor-
rect movie should be similar to these, according
to a metric that re�ects coherent empirical pref-
erences. To compute such a metric, we train
an embedding-driven recommendation model (Wu
et al., 2018).6 Each movie is represented as an em-
bedding, which is trained so that embeddings of
movies watched by the same user are close to each
other. The closeness metric between two movies is
the cosine similarity of these trained embeddings.
A movie is deemed close to a set of movies if its
embedding is similar to the average of the movie
embeddings in the set.

Movie Set Selection Using these trained embed-
dings, we design seeker and expert sets based on
the following criteria (See Figure 3):
ˆ Seeker movies (grey) are a set of �ve movies

which are close to each other, chosen from the
set of all movies watched by a real user.

ˆ The correct movie (light blue) is close to the av-
erage of the �ve embeddings of the seeker set.

ˆ The expert's incorrect movies (light red) are far
from the seeker set and the correct movie.

We �lter out movie sets that are too di� cult or

6We also tried a classical matrix-factorization based rec-
ommendation model, which shows comparable performance
to the embedding model.

Figure 3: Movie set selection: watched movies for
seeker (grey) and correct (light blue)/ incorrect (light
red) movies for expert.

easy for the recommendation task (see Appendix),
and choose 10,000 pairs of seeker-expert movie
sets at random.

2.3 Data Collection

For each dialogue game, a movie set is randomly
chosen without duplication. We collect dialogues
using ParlAI (Miller et al., 2017) to interface with
Amazon Mechanical Turk. More details about
data collection are included in the Appendix.

Table 1 shows detailed statistics of our dataset
regarding the movie sets, the annotated dialogues,
actions made by expert and seeker, dialogue



Dialogue statistics

Number of dialogues 9,125
Number of utterances 170,904

Number of unique utterances 85,208
Avg length of a dialogue 23.0

Avg duration (minutes) of a dialogue 5.2

Expert's utterance statistics

Avg utterance length 8.40
Unique tokens 11,757

Unique utterances 40,550

Seeker's utterance statistics

Avg utterance length 8.47
Unique tokens 10,766

Unique utterances 45,196

Action statistics (all scores are averaged)

# of correct/incorrect recs. by expert 1.0/ 1.16
# of correct/incorrect decisions by seeker 1.1/ 1.04

Game statistics(all scores are averaged)

min/max movie scores 12.3/ 46.0
correct/incorrect movies 39.9/ 15.0

real game score by expert/seeker 61.3/ 50.8
random game score by expert/seeker 43.2/ 38.1

Engagingness statistics(all scores are averaged)

engagingness score by expert/seeker 4.3/ 4.4
engagingness scores & feedback collected 18,308

Table 1: Data statistics. “correct/incorrect” in the
action stats means that the expert recommends the
correct/incorrect movie or the seeker correctly ac-
cepts/rejects the movie.

games, and engagingness feedback.
The collected dialogues contain a wide vari-

ety of action sequences (recommendations and ac-
cept/reject decisions). Experts make an average
of 1.16 incorrect recommendations, which indi-
cates a reasonable di� culty level. Only 37:6% of
dialogue games end at �rst recommendation, and
19:0% and 10:8% at second and third recommen-
dations, respectively.

Figure 4 shows histogram distributions of (a)
expert's decisions between speaking utterance and
recommendation utterance and (b) correct and
incorrect recommendations over the normalized
turns of dialogue. In (a), recommendations in-
creasingly occur after a su� cient number of
speaking utterances. In (b), incorrect recommen-
dations are much more frequent earlier in the dia-
logue, while the opposite is true later on.

3 Our Approach

In order to recommend the right movie in the role
of the expert, a model needs to combine several
perceptual and decision skills. We propose to con-

(a) Decision to speak (-1)
or recommend (+1)

(b) Correct (+1) or incorrect
(-1) recommendations

Figure 4: Histogram distribution of (a) experts' deci-
sions of whether to speak or recommend and (b) cor-
rect/incorrect recommendations over the normalized
dialogue turns.

duct learning in two stages (See Figure 5):super-
vised multi-aspect learningandbot-play.

3.1 Supervised Multi-Aspect Learning

The supervised stage of training the expert model
combines three sources of supervision, corre-
sponding to the three following subtasks: (1)gen-
erate dialogue utterances to speak with the seeker
in a way that matches the utterances of the human
speaker, (2)predict the correct movie based on the
dialogue history and the movie description repre-
sentations, and (3)decidewhether to recommend
or speak in a way that matches the observed deci-
sion of the human expert.

Using an LSTM-based model (Hochreiter and
Schmidhuber, 1997), we represent the dialogue
history contextht of utterancesx1 to xt as the av-
erage of LSTM representations ofx1; � � � ; xt, and
the descriptionmk of the k-th movie as the aver-
age of the bag-of-word representations7 of its de-
scription sentences. Let (xt+1; y; dt+1) denote the
ground truth next utterance, correct movie index,
and ground truth decision at timet+1, respectively.
We cast the supervised problem as an end-to-end
optimization of the following loss:

L sup = � L gen+ � L predict + (1� � � � )L decide; (1)

where � and � are weight hyperparame-
ters optimized over the validation set, and
L predict; L decide; L gen are negative log-likelihoods

7We empirically found that BOW works better than other
encoders such as LSTM in this case.



(a) Supervised multi-aspect learning (b) Bot-play

Figure 5: (a) Supervised learning of the expert modelM expert and (b) bot-play game between the expertM expert

and the seekerM seekermodels. The former imitates multiple aspects of humans' behaviors in the task, while the
later �ne-tunes the expert model w.r.t the game goal (i.e., recommending the correct movie).

of probability distributions matching each of the
three subtasks:

L gen = � log pgen(xt+1jht;m1; � � � ;mK); (2)

L predict = � log p(yjc1; � � � ; cK); where (3)

c j = ht � mj for j 2 1::K; (4)

L decide= pMLP(dt+1jht; c1; � � � ; cK); (5)

with pgen the output distribution of an attentive
seq2seq generative model (Bahdanau et al., 2015),
p a softmax distribution over dot productsht � mk

that capture how aligned the dialogue historyht

is with the descriptionmk of the k-th movie, and
pMLP the output distribution of a multi-layer per-
ceptron predictor that takesc1; � � � ; cK as inputs8.

3.2 Bot-Play

Motivated by the recent success of self-play in
strategic games (Silver et al., 2017; Vinyals et al.,
2019; OpenAI, 2018) and in negotiation dialogues
(Lewis et al., 2017), we show in this section how
we construct a reward function to perform bot-
play between two bots in our setting, with the aim
of developing a better expert dialogue agent for
recommendation.

Plan optimizes long-term policies of the vari-
ous aspects over multiple turns of the dialogue
game by maximizing game-speci�c rewards. We

8We experimented with various other encoding functions,
detailed in the Appendix.

�rst pre-train expert and seeker models individu-
ally: the expert modelM expert(� ) = min� L sup

is pre-trained by minimizing the supervised loss
in Eq 1, and the seeker modelM seeker(� ) is a
retrieval-based model that retrieves seeker utter-
ances from the training set based on cosine sim-
ilarity of the preceding dialogue contexts encoded
using the BERT pre-trained encoder9. � and� are
model parameters of the expert and seeker model,
respectively. Then, we make them chat with each
other, and �ne-tune the expert model by maximiz-
ing its reward in the game (See Figure 5, Right).

The dialogue game ends if the expert model rec-
ommends the correct movie, or a maximum dia-
logue length is reached10, yielding T turns of di-
alogue; g = (xexpert

1 ; xseeker
1 ::xexpert

T ; xseeker
T ). Let

TREC the set of turns when the expert made a rec-
ommendation. We de�ne the expert's reward as:

rexpert
t =

1
jTRECj

�
X

t2TREC

� t� 1 � bt; (6)

where� is a discount factor11 to encourage ear-
lier recommendations,bt is the reward obtained
at each recommendation made, andjTRECj is the
number of recommendations made.bt is 0 unless
the correct movie was recommended.

9See Sec. 4.2 for details on BERT. We also experimented
with sequence-to-sequence models for modeling the seeker
but performance was much worse.

10We restrict the maximum length of a dialogue to 20.
11we use� = 0:5.



We de�ne the reward functionR as follows:

R(xt) =
X

xt2Xexpert

 T� t(rexpert
t � � ) (7)

where� = 1
t

P
1::t rexpert

t is the average of the re-
wards received by the expert until timet and 
is a discount factor to diminish the reward of ear-
lier actions. We optimize the expected reward for
each turn of dialoguext and calculate its gradient
using REINFORCE (Williams, 1992). The �nal
role-playing objectiveL RP is:

rL RP(� ; z) =
X

xt2Xexpert

Ext [r log p(xtjx<t)R (xt)]

(8)

We optimize the role-playing objective with the
pre-trained expert model's decision (L decide) and
generation (L gen) objectives at the same time. To
control the variance of the RL loss, we alternate
optimizing the RL loss and other two supervised
losses for each step. We do not �ne-tune the pre-
diction loss, in order not to degrade the prediction
performance during bot-play.

4 Experiments

We describe our experimental setup in §4.1. We
then evaluate our supervised and unsupervised
models in §4.2 and §4.3, respectively.

4.1 Setup

We select 5% of the training corpus as validation
set in our training.

All hyper-parameters are chosen by sweep-
ing di� erent combinations and choosing the ones
that perform best on the validation set. In
the following, the values used for the sweep
are given in brackets. Tokens of textual in-
puts are lower-cased and tokenized using byte-
pair-encoding (BPE) (Sennrich et al., 2016) or
the Spacy12 tokenizer. The seq-to-seq model
uses 300-dimensional word embeddings initial-
ized with GloVe (Pennington et al., 2014) or Fast-
text (Joulin et al., 2017) embeddings, [1; 2] lay-
ers of [256;512]-dimensional Uni/Bi-directional
LSTMs (Hochreiter and Schmidhuber, 1997) with
0.1 dropout ratio, and soft attention (Bahdanau
et al., 2015). At decoding, we use beam search
with a beam of size 3, and choose the maxi-
mum likelihood output. For each turn, the initial

12https://spacy.io/

movie text and all previous dialogue turns includ-
ing seeker's and expert's replies are concatenated
as input to the models.

Both supervised and bot-play learning use
Adam (Kingma and Ba, 2015) optimizer
with batch size 32 and learning rates of
[0:1;0:01;0:001] with 0.1 gradient clipping.
The number of softmax layers (Yang et al.,
2018) is [1; 2]. For each turn, the initial movie
description and all previous dialogue utterances
from the seeker and the expert are concatenated
as input text to the other modules. Each movie
textual description is truncated at 50 words for
e� cient memory computation.

We use annealing to balance the di� erent su-
pervised objectives: we only optimize thegen-
erate loss for the �rst 5 epochs, and then grad-
ually increase weights for thepredict anddecide
losses. We use the same movie-sets as in the su-
pervised phase to �ne-tune the expert model. Our
models are implemented using PyTorch and Par-
lAI (Miller et al., 2017). Code and dataset will be
made publicly available through ParlAI13.

4.2 Evaluation of Supervised Models

Metrics. We �rst evaluate our supervised mod-
els on the three supervised tasks: dialogue gener-
ation, movie recommendation, and per-turn deci-
sion to speak or recommend. The dialogue gener-
ation is evaluated using the F1 score and BLEU
(Papineni et al., 2002) comparing the predicted
and ground-truth utterances. The F1 score is com-
puted at token-level. The recommendation model
is evaluated by calculating the percentage of times
the correct movie is among the top k recommenda-
tions (hit@k). In order to see the usefulness of di-
alogue for recommendation, precision is measured
per each expert turn of the dialogue (Turn@k) re-
gardless of the decision to speak or recommend,
and at the end of the dialogue (Chat@k).

Models. We compare our models with In-
formation Retrieval (IR) based models and
recommendation-only models. The IR models re-
trieve the most relevant utterances from the set
of candidate responses of the training data and
rank them by comparing cosine similarities using
TFIDF features or BERT (Devlin et al., 2019) en-
coder features. Note that IR models make no rec-
ommendation. The recommendation-only models

13https://github.com/facebookresearch/ParlAI



Generation Recommendation Decision

F1 BLEU Turn@1 Turn@3 Chat@1 Chat@3 Acc

B
as

el
in

e TFIDF-Ranker 32.5 27.8 - - - - -
BERT-Ranker 38.3 23.9 - - - -
RandomRecc. 3.6 0.1 21.3 59.2 23.1 62.2 -

BERT Recc. 16.5 0.2 25.5 66.3 26.4 68.3 -

O
ur

s

Generate 39.5 26.0 - - - - -
+predict 40.2 26.4 76.4 96.9 75.7 97.0 -
+Decide 41.0 27.4 77.8 97.1 78.2 97.7 67.6

+Plan 40.9 26.8 76.3 95.7 77.5 97.6 53.6

Table 2: Evaluation on supervised models. We incrementally add di� erent aspects of modules: Generate, predict,
and Decidefor supervised multi-aspect learning and Plan for bot-play �ne-tuning.

always produce recommendation utterances fol-
lowing the template (e.g., “how about this movie,
[MOVIE]?”) where the[MOVIE] is chosen ran-
domly or based on cosine similarities between di-
alogue contexts and the text descriptions of can-
didate movies. We use the pre-trained BERT en-
coder (Devlin et al., 2019) to encode dialogue con-
texts and movie text descriptions.

We incrementally add each module to our base
Generate model: Predict and Decidefor super-
vised learning and Plan for bot-play �ne-tuning.
Each model is chosen from the best model in our
hyper-parameter sweeping.

Results. Table 2 shows performance compari-
son on the test set. Note that only the full super-
vised model (+Decide) and the �ne-tuned model
(+Plan) can appropriately operate every function
required of an expert agent such as producing ut-
terances, recommending items, and deciding to
speak or recommend.

Compared to recommendation-only models,
our prediction Predict modules show signi�cant
improvements over the recommendation baselines
on both per-turn and per-chat recommendations:
52% onTurn@1and 34% onTurn@3. Chat scores
are always higher thanTurn, indicating that rec-
ommendations get better as more dialogue context
is provided. The Decidemodule yields additional
improvements over the Predict model in both gen-
eration and recommendation, with 67.6% decision
accuracy, suggesting that the supervised signal of
decisions to speak or recommend can contribute to
better overall representations.

In generation, our proposed models show com-
parable performance as the IR baseline models

(e.g., BERTRanker). The +Decidemodel im-
proves on the F1 generation score because it learns
when to predict the templated recommendation ut-
terance.

As expected,+Plan slightly hurts most met-
rics of supervised evaluation, because it optimizes
a di� erent objective (the game objective), which
might not systematically align with the supervised
metrics. For example, a system optimized to max-
imize game objective should try to avoid incor-
rect recommendations even if humans made them.
Game-related evaluations are shown in §4.3.

Analysis We analyze how each of the supervised
modules acts over the dialogue turns on the test
set. Figure 6(a) shows a histogram of the rank
of the ground-truth movie over turns. The rank
of the model's prediction is very high for the �rst
few turns, then steadily decreases as more utter-
ances are exchanged with the seeker. This indi-
cates that the dialogue context is crucial for �nd-
ing good recommendations.

The evolution of generation metrics (F1, BLEU)
for each turn is shown in Fig. 6(b), and the (ac-
cumulated) recommendation and decision metrics
(Turn@1/Accuracy) in Fig. 6(c)14. The accumu-
lated recommendation and decision performance
sharply rises at the end of the dialogue and vari-
ance decreases. The generation performance in-
creases, because longer dialogue contexts helps
predict the correct utterances.

14For better understanding of the e� ect of recommenda-
tion and decision, we show accumulated values, and per-turn
values for generation.



(a) Rank of recommendation

(b) F1/BLEUover dialogue turn ratio

(c) Turn@1/DecisionAcc over dialogue turns

Figure 6: Analysis of the expert's model: as the dia-
logue continues (x-axis is either fraction of the full di-
alogue, or index of dialogue turn), y-axis is (a) rank
of the correct recommendation (the lower rank, the
better) and (b,c)F1/BLEU/Turn@1/DecisionAccuracy
(the higher the better) with the variance shown in grey.

4.3 Evaluation on Dialogue Games

Metrics. In the bot-play setting, we provide
game-speci�c measures as well as human evalu-
ations. We use three automatic game measures:
Goal to measure the ratio of dialogue games
where the goal is achieved (i.e., recommending the
correct movie or not),Score to measure the total
game score, andTurn2Gto count the number of
dialogue turns taken until the goal is achieved.

We conduct human evaluation by making the

expert model play with human seekers. We mea-
sure automatic metrics as well as dialogue qual-
ity scores provided by the player: �uency, con-
sistency, and engagingness (scored between 1 and
5) (Zhang et al., 2018). We use the full test set
(i.e., 911 movie sets) for bot-bot games and use 20
random samples from the test set forfbot,humang-
human games.

Models. We compare our best supervised model
with several variants of our �ne-tuned bot-play
models. We consider bot-play of an expert
model with di� erent seeker models such as BERT-
Ranker based seeker and Seq-to-Seq based seeker.
Each bot-play model is trained on the same train
set that is used for training the original supervised
model. The seeker model uses retrieval based on
BERT pretrained representations of dialogue con-
text (BERT-R) 15.

Players Automatic Human

Expert Seeker Goal Sco T2G F C E

Supervised� BERT-R 30.9 38.3 1.4 - - -
Bot-playnw S2S BERT-R 42.1 49.6 2.8 - - -
Bot-playnw BERT-R BERT-R 48.6 52.4 3.2 - - -

Supervised� Human 55.0 51.2 2.1 3.1 2.22.0
Bot-play� Human 68.5 54.7 3.1 3.2 2.6 2.0

Human Human 95.0 64.3 8.5 4.8 4.7 4.2

Table 3: Evaluation on dialogue recommendation
games: bot-bot (top three rows) andfbot,humang-
human (bottom three rows). We use automatic game
measures (Goal, Score , Turn2Goal ) and human qual-
ity ratings (Fluency , Consistency , Engagingness).

Results. Compared to the supervised model, the
self-supervised model �ne-tuned by seeker mod-
els shows signi�cant improvements in the game-
related measures. In particular, theBERT-R model
shows a+27.7% improvement in goal success ra-
tio. Interestingly, the number of turns to reach the
goal increases from 1.4 to 3.2, indicating that con-
ducting longer dialogues seems to be a better strat-
egy to achieve the game goal throughout our role-
playing game.

In dialogue games with human seeker players,
the bot-play model also outperforms the super-
vised one, even though it is still far behind human
performance. When the expert bot plays with the

15A potential direction for future work may have more
solid seeker models and explore which aspect of the model
makes the dialogue with the expert model more goal-oriented
or human-like.



human seeker, performance increases compared to
playing with the bot seeker, because the human
seeker produces utterances more relevant to their
movie preferences, increasing overall game suc-
cess.

5 Related Work

Recommendation systems often rely on matrix
factorization (Koren et al., 2009; He et al., 2017b).
Content (Mooney and Roy, 2000) and social re-
lationship features (Ma et al., 2011) have also
been used to help with the cold-starting problem
of new users. The idea of eliciting users’ pref-
erence for certain content features through dia-
logue has led to several works. Wärnestål (2005)
studies requirements for developing a conversa-
tional recommender system, e.g., accumulation of
knowledge about user preferences and database
content. Reschke et al. (2013) automatically pro-
duces template-based questions from user reviews.
However, no conversational recommender sys-
tems have been built based on these works due to
the lack of a large publicly available corpus of hu-
man recommendation behaviors.

Very recently, Li et al. (2018) collected the Re-
Dial dataset, comprising 10K conversations of
movie recommendations, and used it to train a
generative encoder-decoder dialogue system. In
this work, crowdsource workers freely talk about
movies and are instructed to make a few movie
recommendations before accepting one. Com-
pared to ReDial, our dataset is grounded in real
movie preferences (movie ratings from Movie-
Lens), instead of relying on workers’ hidden
movie tastes. This allows us to make our task goal-
directed rather than chit-chat; we can optimize
prediction and recommendation strategy based on
a known ground truth, and train the predict and
plan modules of our system. That in turn allows
for novel setups such as bot-play.

To the best of our knowledge, Bordes et al.
(2016) is the only other goal-oriented dialogue
benchmark grounded in a database that has been
released with a large-scale publicly available
dataset. Compared to that work, our database is
made of real (not made-up) movies, and the choice
of target movies is based on empirical distances
between movies and movie features instead of be-
ing arbitrary. This, combined with the collabora-
tive set-up, makes it possible to train a model for
the seeker in the bot-play setting.

Our recommendation dialogue game is collabo-
rative. Other dialogue settings with shared objec-
tives have been explored, for example a collabora-
tive graph prediction task (He et al., 2017a), and
semi-cooperative negotiation tasks (Lewis et al.,
2017; Yarats and Lewis, 2018; He et al., 2018).

6 Conclusion and Future Directions

In conclusion, we have posed recommendation as
a goal-oriented game between an expert and a
seeker, and provided a framework for both training
agents in a supervised way by learning to mimic a
large set of collected human-human dialogues, as
well as by bot-play between trained agents. We
have shown that a combination of the two stages
leads to learning better expert recommenders.

Our results suggest several promising direc-
tions. First, we noted that the recommendation
performance linearly increases as more dialogue
context is provided. An interesting question is
how to learn to produce the best questions that will
result in the most informative dialogue context.

Second, as the model becomes better at the
game, we observe an increase in the length of di-
alogue. However, it remains shorter than the aver-
age length of human dialogues, possibly because
our reward function is designed to minimize it,
which worked better in experiments. A potential
direction for future work is to study how different
game objectives interact with each other.

Finally, our evaluation on movie recommen-
dation is made only within the candidate set of
movies given to expert. Future work should eval-
uate if our training scheme generalizes to a fully
open-ended recommendation system, thus making
our task not only useful for research and model
development, but a useful end-product in itself.
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A Additional Notes on Data Preparation

we obtain a rating matrix of 265,905 users and
11,382 movies. We filter the data according to a
few criteria:
� users who watched less than 50 movies are fil-

tered out.
� moves which are watched less than 50 users are

filtered out.
� movies which are filmed before 1950 are filtered

out.
� movies whose average rates are less than 2 and

users who average rates are less than 2 are fil-
tered out.
We also remove some movie sets which are too

difficult or too easy to predict based on their dis-
tance scores. For example, we filter out movie sets
where the cosine similarity of the correct movie
and the averaged incorrect movies is less than
0.75. After filtering, the remaining data comprises
5,330 movies, rated by 65,181 users.

We tested different types of embedding fea-
tures such as movie IDs (i.e., MovieLens’s rat-
ings), movie text (i.e., Wiki-text), and knowledge
base features (e.g., director’s name). The movie
ID features turn out to be the best performing for
recommendation performance. After training, the
model finds reasonable close neighbors; for exam-
ple, for “Ice Age”, the model identifies “Shrek 2”,
“Shrek”, “Monsters Inc.”, and “Finding Nemo” as
close.

B Data Collection: Full Description

In our annotation interface, we provide action but-
tons for workers to click on in order to interact
with the system. When a button is clicked, the
corresponding system message is shown. For ex-
ample, if an expert clicks on a movie button to rec-
ommend that movie, the system displays a recom-
mendation message to the seeker, using a simple
template. Similarly, if a seeker clicks to accept or
reject the recommendation, a templated message
with the decision is automatically delivered to the
expert.

If an expert recommends the correct movie, a
seeker accepts the correctly recommended movie,
or a seeker rejects an incorrectly recommended
movie, they receive a reward (points, which can
translate into bonus money if enough points are
earned); otherwise, the system encourages them
to focus more on the task and get more points.
The amount of reward points awarded is calculated

based on the similarities between the average of
the seeker’s movie set and each candidate movie
in the expert’s set, using a softmax. The similar-
ity scores are calculated using the euclidean dis-
tance between movie embedding vectors (see Sec-
tion C).

Overall, a total of 1,034 unique workers created
9,125 dialogues, over a duration of 2.5 weeks.

C Supervised training: Details

This section gives more details about the super-
vised training phase.

Encoding textual inputs: Textual inputs are en-
coded differently for the dialogue context and for
the movie descriptions. The dialogue history con-
text ht for predicting utterance xt+1 comprises the
history of all previous utterances x1; · · · ; xt. Each
utterance is encoded with an LSTM (Hochreiter
and Schmidhuber, 1997). The dialogue context is
then obtained by averaging over all utterances:

ht = AVG (LSTM(x1); : : : ; LSTM(xt)) (9)

For the movies, we found that using bags of
words instead worked better. We encode each sen-
tence of a movie description as a bag of words,
and then average all the resulting representations
to obtain m j, the representation of the j-th movie:

E(m j) = AVG (BOW(m j)) for j ∈ 1::K (10)

Aligning dialogue context and movie descrip-
tions: we use dot-product attention(Chen et al.,
2017) between the dialogue context and each of
the movie descriptions:

c j = ht � m j for j ∈ 1::K (11)

Generating utterances: Generate The expert
can produce two types of utterances, according
to whether it is recommending a movie or asking
for more input from the seeker. For Recommend,
the response is produced by a template: “How
about this movie, [MOVIE]?” where [MOVIE] is
the movie that the expert is recommending. For
Speak, the next utterance is generated by taking
the dialogue context history ht and the average of
all movie representations M = AVG(m1; ::;mK), and
inputting them into a seq2seq generative model
with attention (Bahdanau et al., 2015). The model
is then trained to minimize the negative log like-
lihood of the true next utterance xt+1 according to



Figure 7: Interface of our data collection (1): task description page.

the model distribution pgen:

Lgen = − log pgen(xt+1|ht; M);where (12)

M = AVG(m1; ::;mK) (13)

We include Recommend utterances in the Lgen cal-
culation; as a result, the generation loss is also a
partial indicator of other aspects such as Decide
and Predict, in addition to the corresponding spe-
cific losses (see below).

Predicting the correct movie to recommend:
Predict Let y denote the correct movie. The pre-
diction module is trained by minimizing the neg-
ative log likelihood of y according to the distri-
bution of a softmax predictor over the c j inputs
described above:

Lpredict = − log p(y|c1; · · · ; cK); where (14)

c j = ht � m j for j ∈ 1::K (15)

When making a recommendation, the expert
recommends the top candidate: arg maxc{r1::rK}.
We also experimented with using a soft represen-
tation for the target movie distribution, for exam-
ple through a softmax over similarities. For in-
stance, in Figure 2, the hard ground-truth movie
distribution is {1; 0; 0; 0; 0}, and the soft version is
{0:37; 0:15; 0:16; 0:16; 0:15}. But the hard version
always outperformed the soft version in our exper-
iments.

Deciding when to recommend: Decide The ex-
pert needs to decide whether to to recommend a
movie or speak to elicit more information. We
model this using a two-layer perceptron that takes
the movie prediction distribution scores and the di-
alogue context as input, and predicts whether to
make a recommendation or not. Training is con-
ducted by minimizing the negative log likelihood
of the ground truth decision:

Ldecide = pMLP(dt+1|ht; c1; · · · ; cK) (16)

We also experimented with other functions of
the movie prediction distribution (e.g., skewness
and kurtosis (Mardia, 1970)), but the multi-layer
perceptron (MLP) always performed better.

Supervised loss of the overall system: The
overall objective function of the full supervised
system is as follows:

Lsup = �Lgen + �Lpredict + (1−�−�)Ldecide

(17)

where � and � are weight terms that control the
balance between the different objectives and are
empirically optimized on the validation set. For
the predict and decide losses, we use annealing at
the beginning of training, with all the weight being
given to the generate loss, and the weights of the
other two being gradually increased.


