
Register Allocation: A Lagrangian Approach

David Koes
dkoes@cs.cmu.edu

Carnegie Mellon University

1 Motivation

Register allocation is one of the most important optimizations a compiler performs. Traditional register allocators
were designed for regular, RISC-like architectures with large uniform register sets. Embedded architectures, such as
the 68k, ColdFire, x86, ARM Thumb, MIPS16, and NEC V800 architectures, tend to be irregular, CISC architectures.
These architectures may have small registers sets, restrictions on how and when registers can be used, support for
memory operands within arbitrary instructions, variable sized instructions or other features that complicate register
allocation. The objective of this research is to formulate a new type of allocator that is tailored towards the demands
of embedded architectures and is a more formal and lessad hocapproach then the current state of the art.

2 State of the Art: Graph Coloring

Traditional register allocators use a graph coloring model [7, 8]. These allocators construct an interference graph in
which each node represents a variable and an edge indicates that two variables interfere (they cannot be allocated to
the same register). The allocator then uses heuristic methods to color this graph with register “colors” so no node
shares its color with any neighboring node. If the graph cannot be colored, heuristics are used to select a variable to
spill to memory and the processes is repeated until a valid coloring (register assignment) is found.

Although the graph coloring representation of register allocation is a success for regular architectures, it is a
poor representation of the register allocation problem for irregular architectures. The graph coloring model solves
the register sufficiency problem, not the register allocation problem itself. That is, the algorithm determines if there
are enough registers to allocate all the variables to registers; there is no explicit optimization of spill code. Since
irregular architectures have few registers, variables are frequently spilled increasing the importance of good spill code
generation. Graph allocators optimize spill code using simple heuristics [4] and through the use of a preconditioning
passes that splits a variable into multiple variables [9, 3].

Irregular architectures typically have restrictions on where and how registers can be used. Although graph coloring
can be modified to support these restrictions [5, 6, 18], the underlying problem representation is incapable of fully
representing them. For example, although it is straightforward to model that a variable requires a particular type of
register, it isn’t clear how to precisely model the case where a variable can be validly allocated to any type of register
but with different costs. Another deficiency of graph coloring allocation is that it assigns a single register to each
variable. This can be undesirable if a variable’s register preferences change or if allocating the variable to multiple
registers would result in less spill code.

The deficiencies of the graph coloring model can be partially addressed byad hocmodifications of the heuristics
guiding the coloring and spilling decisions, but there are no principled extensions of the model that fully represent and
exploit the features of irregular architectures.

3 Objective: A Principled Approach

A principled approach to register allocation for irregular architectures requires an underlying problem formulation
that is capable of explicitly representing architectural irregularities and costs. In addition to being expressive, such
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an approach must also be proper and progressive. The optimal solution to a proper problem formulation directly
maps to an optimal register allocation. This is in contrast to the graph coloring approach where an optimal graph
coloring does not necessarily result in an optimal register allocation since spill decisions are heuristic driven. Since
optimal register allocation is NP-complete[17, 14], it is unlikely that efficient algorithms will exist for solving a proper
problem formulation optimally. However, progressive algorithms might exist. Ideally, these algorithms should be able
to quickly find a feasible solution and, as they are allowed more time for computation, converge on an optimal solution.
Finally, in addition to being expressive, proper and progressive, a principled approach to register allocation for irregular
architectures should also have a code quality to compile time ratio that is competitive with existing allocators.

Representing the problem as an integer linear programming problem, an approach that has been done before
[11, 10] even for irregular architectures [16, 2, 13] is unfruitful. This approach, while both expressive and proper, is
not progressive and has poor real world performance. Representing the problem as a multi-commodity network flow
(MCNF) problem results in a more limited problem formulation that is still capable of representing the features of an
irregular architecture but which allows for a more flexible solution procedure.

The MCNF model is described in Section 4. Several solution procedures are discussed in Section 5. The details of
thegcc implementation are provided in Section 6. Results are given in Section 7 and Section 8 concludes.

4 Multi-commodity Network Flow

The multi-commodity network flow (MCNF) problem is to find the total minimum cost flow of commodities through a
constrained network. The network is defined by nodes and edges where each edge has a cost and a capacity. The costs
and capacities can be specific to each commodity, but edges also have bundle constraints which constrain the total
capacity the edge. Each commodity has a source and sink such that the outflow of the source must equal the inflow of
the sink. Although finding the minimum cost flow of a single commodity is readily solved in polynomial time, finding
an solution to the multi-commodity network flow problem where all flows are integer is NP-complete [1].

Formally the MCNF problem is specified:
min

∑
k

ckxk

subject to ∑
k

xk
ij ≤ uij

Nxk = bk

0 ≤ xk
ij ≤ vk

ij

wherexk
ij is the flow of commodityk along edge(i, j), ck is the cost vector containing the cost of each edge for

commodityk, uij is the bundle constraint for edge(i, j), vk
ij is an individual constraint on commodityk over edge

(i, j), andN andbk represent the network topology, sources and sinks.
In our MCNF representation of register allocation, the commodities represent variables. The design of the network

and individual commodity constraints is dictated by the way in which variables are used. The bundle constraints
enforce the limited number of registers available, and the edge costs are used to model the cost of spilling and register
preferences. A node in the network represents an allocation class: a register, register class, or memory space that
a variable can be allocated to. Nodes are grouped into instruction and crossbar groups. There is an instruction
group for every instruction in the program and a crossbar group for every point between instructions. The nodes in
instruction groups constrain what allocation classes are legal for the variables used by that instruction. For example, if
an instruction does not support memory operands no variables are allowed to flow through the memory allocation class
node. Variables used by an instruction must flow through the nodes of the corresponding instruction group. Crossbar
groups are inserted between every instruction and allow variables to change allocation groups. For example, the ability
to store a variable to memory is represented by an edge from a register allocation class node to a memory allocation
class node. Variables which are not used by an instruction bypass the corresponding instruction group and must flow
through edges directly connecting crossbars.
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A source node of a variable connects into the network at the defining instruction and the sink node of a variable
removes the variable from the network at the last instruction to use the variable.

A simplified example of a register allocation MCNF problem is shown in Figure 1. In this example there are two
registers,r0 andr1 , and a memory allocation class. The cost of moving between registers is 2 and the cost of moving
between registers and memory is 4. The argumentsa andb are passed on the stack and so are initially in memory.
The SUB instruction can only support a single memory operand and the cost of using a memory operand is 2.

The cost of an operation, such as a move, can usually be represented by a cost on the edge that represents the move
between allocation classes. However, this is not the correct model for storing to memory. If a variable has already
been stored to memory and its value has not changed it is not necessary to pay the cost of an additional store. That
is, values in memory are persistent unlike those in registers which are assumed to get overwritten. In order to model
the persistence of data in memory, anti-variables are used as shown in Figure 2. An anti-variable is restricted to the
memory subnetwork and is constrained such that it cannot coexist with its corresponding variable along any memory
edge. An anti-variable can be either leave the memory sub-network when the variable itself exits the network or the
cost of a store can be paid to leave the memory sub-network early. There is no cost associated with edges from registers
to memory, but in order for these edges to be usable, the anti-variable must be evicted. This way a variable may flow
from registers to memory multiple times and pay only the cost of a single store.

The MCNF formulation of register allocation is proper, expressive, and has potentially progressive solution proce-
dures.

4.1 Properness

An optimal solution of the register allocation problem finds the assignment of registers and memory to variables at
every program point for a given instruction stream that results in the minimum cost. The cost is a function of what
the user wishes to optimize for. In this paper we measure cost strictly in terms of program size as this metric is
straightforward to define and measure.

It is important to note that our definition of optimality is restricted by the instruction stream provided to the register
allocator and the limited types of operations the allocator is allowed to perform, such as moves, loads and stores. In
some cases it is desirable for instruction selection decisions to be made during register allocation. It is possible to
model these decisions, but the register allocation represented by the optimal solution to the corresponding MCNF
problem is only optimal with respect to those instruction selection decisions we choose to model.

It is clear to see that if the MCNF problem is designed properly the optimal solution will correspond to the
optimal register allocation attainable using our restricted set of operations (inserting moves, loads, and stores between
instructions and some limited local instruction selection decisions) as long as in the optimal solution no variable is
allocated to multiple registers at the same program point. This is the case because there is a direct correspondence
between the flow of a variable through the MCNF problem and a variable’s allocation at each program point. The
assumption that it will not be beneficial to allocate a variable to multiple registers at the same program point seems
reasonable for architectures with few registers, but can be removed by using a technique similar to the anti-variables
used to model stores.

4.2 Expressiveness

The MCNF model is capable of expressing the pertinent features of irregular architectures. Since movement among
registers and memory is precisely and flexibly modeled, spill code placement is explicitly optimized. Requirements
on what types of registers an instruction can support and whether or not memory operands can be supported are also
straightforward to model. If a variable must reside in a certain register class in an instruction, only edges to that register
class node in the instruction group have any capacity for that variable. If an instruction can only support a certain
number of memory operands, then the bundle constraint for the edge entering the memory node of the instruction
group is set to limit the number of variables that can be in memory when the instruction is executed. In addition, if
using an operand in memory rather than a register has some cost associated with it (for example, if it increases the size
of the instruction) this can be modeled with a cost along this edge. For example, the SUB instruction in Figure 1 has a
cost of 2 associated with using a memory operand.
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SUB a,b -> c

a b

c

r0 r1 mem

r0 r1 mem

b

r0 r1 mem

MOVE c -> r0

r0 r1 mem

b: 2

c: -2

a: 0

a

c

b

c

a: 4

ba

int example(int a, int b)
{
  int c = a - b;
  return c;
}

Figure 1: A simplified example register allocation formulated as a multi-commodity network flow problem. Thin
edges have a capacity of one (as only one variable can be allocated to a register and the SUB instruction supports only
a single memory operand). The thick arc indicates that memory is uncapacitated. For clarity, edges not used by the
displayed solution are in gray. For the displayed solution, the cost of each used arc along with the commodity using it
is displayed if the cost is nonzero. In this example the cost of a load is 4, the cost of using a memory operand in the
SUB instruction is 2, and the benefit of allocatingc to r0 in the MOVE instruction is 2 since the move can be deleted
in that case. The total cost of this solution is 4.
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Figure 2: The anti-variable ofa, a′ is restricted to the memory subnetwork (dashed edges). A variable and its anti-
variable are constrained such that only one or the other can use a memory edge. The cost of a variable flowing from a
register to memory is zero, but in order for the variable to occupy the memory node the anti-variable must be evicted.
The cost of doing so is simply the cost of performing a store. Once the ant-variable has been evicted there is no
additional cost for the variable to be moved from a register to memory (although every flow back from memory to
register must pay the cost of a load).

The MCNF model is also capable of modeling register preferences. If an instruction can use any register, but some
are more expensive than others (for example, several x86 instructions are only one byte if one of the operands is in
eax ) this can be represented with costs along the edges leading into those register nodes in the instruction group.

In some cases, instruction selection is influenced by register allocation. For example, in the 68k architecture a move
with sign extend is implemented with two instructions if the destination is in a data register but can be implemented
with a single move if the destination is an address register. A MCNF allocator can represent this decision as a simple
preference for an address register where the cost of using a data register is equal to the cost of using the larger
instruction sequence.

The MCNF model does not model the benefits of copy coalescing, where the source and destination of a move
instruction can be allocated to the same register allowing for the deletion of the move. Instead, the allocator should
be provided an instruction stream with all possible moves coalesced. It will then insert splitting moves at the optimal
places. Rematerialization of loads can be modeled by assigning a negative cost equal in magnitude to the cost of the
load instruction when a variable enters the memory network at its definition point (a load instruction).

4.3 Progressiveness

In order to be useful, it must be possible to find a solution to the MCNF model quickly. Ideally, it would be possible
to steadily improve upon this solution until eventually an optimal solution is found. Such a solution procedure would
allow the user to consciously trade compile time for code quality. Existing integer linear programming solvers do not
have this property since they do not immediately find a feasible solution and only search for integer, as opposed to
fractional, solutions at the end of the solution procedure.

The MCNF-based solution procedures evaluated combine the Lagrangian relaxation method of solving MCNF
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problems with algorithms for finding feasible solutions to our MCNF problems. These methods immediately find a
feasible solution and then attempt to improve upon it as the Lagrangian relaxation converges to optimal. This method
is not guaranteed to converge to an optimal solution but does establish a lower bound upon the optimal solution cost.

5 Solution Procedures

The specific form of our MCNF representation allows us to quickly find a feasible, if possibly very poor, solution.
We build up a solution to the multi-commodity flow problem by solving the single commodity flow problem for each
variable. This is a simple shortest path computation. Because the memory network is uncapacitated, if we every get
stuck and can’t find a path for a variable because the edges it needs to use are blocked by other variables, it will
always be possible to locally evict another variable to memory (or another register) and continue to make progress.
Alternatively, we can constrain our shortest path finding algorithm to conservatively ignore paths that potentially will
make the network infeasible for the variables that still need to be allocated. For example, if an instruction requires
its operand to be in a register and that operand has not yet been allocated and there is only one register left that is
available for allocation, all other variables would be required to be in memory at that point.

Although we can always find a feasible solution this way, it is unlikely that we will find a very good solution. The
variables we allocate first will stay in registers the longest. The shortest path computations we perform have no way
of being influenced by the costs to other variables. Ideally, it would be possible to build up a solution from a series of
simple shortest path computations. Each individual variable’s shortest path would somehow need to take into account
not only the immediate costs for that variable, but also the marginal cost of that specific allocation with respect to all
the other variables. Lagrangian relaxation provides a formal way of computing these marginal costs.

5.1 Lagrangian Relaxation

Lagrangian relaxation is a general solution technique[1]. It works by removing one or more constraints from the
problem and integrating them into the objective function using Lagrangian multipliers resulting in a more easily solved
Lagrangian subproblem. In the case of MCNF, the Lagrangian subproblem is:

L(w) = min
∑

k

ckxk +
∑
(i,j)

wij

(∑
k

xk
ij − uij

)
(1)

L(w) = min
∑

k

∑
(i,j)

(
ck
ij + wij

)
xk

ij −
∑
(i,j)

wijuij (2)

subject to
xk

ij ≥ 0

Nxk = bk

The bundle constraints have been integrated into the objective function. If the an edgexij is over-allocated then
the term

∑
k xk

ij − uij will increase the value of the objective function making it less likely that an over-allocated
edge will exist in the solution that minimizes the objective function. Thewij terms are the Lagrangian multipliers,
called prices in the context of MCNF. The prices,w, are arguments to the subproblem and it is the flow vectors,xk,
that are being minimized over. The subproblem is still subject to the network and individual flow constraints as in the
MCNF problem. As shown by 2, the minimum solution to the Lagrangian subproblem decomposes into the minimum
solutions of the individual single commodity problems.

The functionL(w) has several useful properties:

• Lagrangian Bounding Principle. For any set of pricesw, the value ofL(w) is a lower bound on the optimal
value of the objective function of the original MCNF problem.

• Weak Duality. Let L∗ = maxwL(w). L∗ is always a lower bound on the optimal objective function of the
original MCNF problem.
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• Optimality Test . Letx∗ be a solution toL∗. If x∗ is also a feasible solution to the original MCNF problem (does
not violate the bundle constraints) and satisfies the complementary slackness condition thenx∗ is an optimal
solution to the MCNF problem. The complementary slackness condition is necessary because of the inequalities
in our MCNF formulations and requires thatwij

(∑
k x∗kij − uij

)
= 0. That is, any edge which is not at full

capacity in the solution should have a price of 0 inL∗.

In short, the Lagrangian relaxation provides a strong theoretical lower bound for the optimal solution value. Solu-
tions to the relaxed subproblem which are feasible in the original MCNF problem are likely to be optimal and, under
certain conditions, can be proven optimal. A reasonable solution procedure is to find the price vector which maximizes
L(w) and then construct a feasible solution that is also a solution toL∗ (or at least close to it).

First we must solve forL∗ using an iterative subgradient optimization algorithm. At a stepq in the algorithm,
we start with a prices vector,wq, and solveL(wq) for xk to get an optimal flow vector,yk, by performing a multiple
shortest paths computation. We then updatew using the rule:

wq+1
ij = max

(
wq

ij + θq

(∑
k

yk
ij − uij

)
, 0

)

whereθ is the current step size. This algorithm is guaranteed to converge ifθq satisfies the conditions:

lim
q→∞

θq = 0

lim
q→∞

q∑
i=1

= ∞

We evaluate two methods which meet these conditions for calculating the step size:

• Ratio Method The step size at iterationq is simplyθq = 1/q. To void large initial step sizes, different starting
points can be considered, such asθq = 1/(q + 10).

• Newton’s MethodA variation of Newton’s method is used to chooseθ with the formula:

θq =
δq[UB − L(wq

ij)]∑
i,j

(∑
k x∗kij − uij

)2
whereUB is an upper bound on the value of the objective function. An upper bound can be calculated using
any feasible solution finder.

a b c wSUBmem
L(w)

2 2 -2 0 2
3 3 -2 1 3
4 4 -2 2 4

Table 1: The costs of the shortest paths for each variable (including prices), the price of the edge entering the SUB
instruction’s memory node, andL(w) for each iteration of the iterative subgradient optimization algorithm. The step
size is fixed to 1 for this example and prices are all initialized to 0.

As an example, consider the simple network in Figure 1. The allocator would first find a feasible solution. As-
suming we process the variables in the order (c,b,a) we first find the shortest path for c, which is for it to be allocated
to r0 , then the shortest path for b, which leaves b in memory, and then the shortest path for a, which would require
a load since b has saturated the edge into the memory node of the SUB instruction (this is the solution shown in the
figure). The total cost of this solution is 4, which is optimal in this case. However, the algorithm has not yet proven
that this result is optimal.
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In the next step, the solution to the Lagrangian subproblem is found by finding the shortest paths ignoring the
bundle constraints. We initialize our prices to be zero. As a result, the paths for a and b both have a cost of 2 and
the path for c has a cost of -2. This gives us a total cost forL(w0) of 2. The prices are then updated. Since only one
edge (the memory to memory edge into the SUB instruction) is overconstrained, this is the only edge to have its price
change. For this example we use a fixed step size of 1 resulting in a new edge price of 1 for that edge. The algorithm
is then repeated with the results shown in Table 1. We stop the algorithm whenL(w) = 4 since this certifies that the
first feasible solution we found was, in fact, optimal.

Notice that there are multiple solutions to the Lagrangian subproblem which have the optimal value 4 but not all
of these solutions are feasible.

5.2 Feasible Solution Finding

The feasible solution finder step of the solution method constructs a feasible solution by allocating variables individ-
ually (using a simple shortest paths computation). As each variable is allocated, the shortest paths of the remaining
variables are constrained, but care is taken to ensure there will always be some (possibly very expensive) allocation
available for the remaining variables. The order in which variables are allocated is therefore important.

Several different heuristics for constructing a good feasible solution were considered:

• Greedy Shortest: The shortest path through the priced graph is computed simultaneously for all variables.
Variables are inspected starting with the variables with the most expensive paths. If the variable’s path would
not make further allocation infeasible and does not overlap with an already allocated variable that path is chosen.
Once as many variables are allocated as possible, the procedure is repeated with the shortest paths step avoiding
already allocated edges. The assumption behind this heuristic is that it is beneficial to allocate as many variables
as possible to paths that are identical to the paths in the relaxed solution. If the relaxed solution is feasible or
very close to being feasible then this heuristic should do well.

• Iterative Shortest: This heuristic allocates the variables with the most expensive allocations first. Because
every allocation modifies the network (by reducing the availability of registers), an all-variable shortest paths
computation is performed after every allocation to calculate the next most expensive variable.

• Fixed Iterative Shortest: Similar to Iterative Shortest, but the ordering variables are allocated in is fixed by a
single all-variables shortest paths computation at the onset, removing the need for further expensive all-variable
computations.

• k-Choice: Similar in structure to Fixed Iterative Shortest, but a k-shortest paths computation is performed. A
heuristic is used to choose among the k paths whose price is within a threshold of the shortest path. Especially
since the prices are only converging to the optimum values and are not actually optimal, paths with costs close
to the shortest are likely to be good choices. Two heuristics were evaluated for choosing among paths:

– Lowest Cost:Of the possible paths, the one with the lowest unpriced cost is chosen.

– Cost/History: A history of the results of previous path choices is maintained. For each path the average
and best result achieved using that path is calculated. When selecting a path, both the lowest cost and pre-
vious history are considered, with more weight given to the previous history as the best solution gets closer
to the lower bound. The rational for this approach is that good solutions are expected to be incrementally
similar to other good solutions and the history bias will exploit this property.

An alternative to the heuristic based feasible solution finders is to exhaustively search the space of allocations with
good prices. The exhaustive search procedure fixes an order of variables (based on their unconstrained shortest paths
cost). The k-shortest priced paths are computed for a variable, then for each of these paths the remaining variables
are recursively allocated. Thus the Lagrangian prices are used to narrow the search space of allocations of variables.
Instead of considering all possible allocations of each variable, only a maximum of k allocations are considered.
Although the search is exponential, if an upper bound is known then it is possible to avoid visiting the entire search
tree.
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6 Implementation

An MCNF allocation framework has been implemented as a replacement for the local register allocator ingcc 3.4.
The gcc register allocator divides the register allocation process into local and global passes. In the local pass,
only variables that are used in a single basic block are allocated. After local allocation any remaining variables are
allocated using a single pass graph coloring algorithm. Because we are only performing local register allocation, we do
not need a separate allocation class for every register. Instead we can have an allocation class for every register class.
Unfortunately, this distinction is meaningless for the x86 architecture. A preconditioning pass fixes poorly formed
instructions (such as a two operand instruction which is internally being represented as a three operand instruction
where all three operands are live out of the instruction) and coalesces moves. The solver finds the optimal spill code
and register class assignments for each variable and inserts the appropriate moves, stores, and loads. Registers are then
assigned to variables.

The MCNF model we implement uses a simple crossbar structure. This structure allows two register classes to
both be saturated and swap the contents of two registers. Since a swap is not possible using just moves unless an
additional temporary register is available, this crossbar representation does not exactly model the underlying architec-
ture. Fortunately, both architectures we evaluate support a register exchange instruction. A single exchange instruction
usually has a cheaper cost than two moves, a fact which is not modeled by our crossbar. Although it would be possible
to make the crossbar more complicated in order to model only having moves or explicitly supporting the register ex-
change instruction, we prefer to keep the model simple and potentially under-utilize the register exchange instruction.

The MCNF model is simplified without loss of generality by only allowing loads of a variable before instructions
that use the variable and only allowing stores after instructions that define it.

7 Results

7.1 Example

Throughout this section, unless otherwise stated, the results are for the same small example compiling for the x86
architecture. The code for this example was isolated from a much larger example (thesquareEncrypt function in
thepegwit d benchmark) and provides a reasonable register usage pattern that is complex enough to be interesting
but simple enough to understand. The example has 60 instructions and 26 variables, six of which have long lifetimes.
The minimum amount of overhead from register allocation in this example is five bytes. The register usage pattern is
displayed graphically in Figure 3.

7.2 Convergence

In order for the solution procedure to be effective, the value of the Lagrangian subproblemL(w) should converge
quickly to the actual optimal solution. The convergence properties of the ratio method for determining the step size in
each iteration are shown in Figure 4. The relatively large step sizes of this method allow for significant progress, but
also result in a large amount of oscillation. Large initial step sizes result in very poor initial performance, so multiple
starting points are evaluated.

The two delayed starting point methods perform similarly and significantly better than the undelayed method.
Using a step size of1/(k + 100), a solutionL(w) larger than 14 is found after 396 iterations (at which point, if a
feasible solution of cost 15 has been found, there is proof of the optimality of the solution). After 3000 iterations, both
delayed starting point methods have found a lower bound larger than 14.90.

The convergence properties of Newton’s method are shown in Figure 5. The known optimal value is used as an
upper bound in the step calculation and various values ofδ are evaluated. Values larger than two are not guaranteed
to converge, but are since they result in larger steps still manage to outperform the smallerδ values in this example.
Largerδs result in a less stable convergence. Reasonable values ofδ result in a fairly stable convergence that slows
as the optimal solution is approached. Using aδ of two, a value ofL(w) larger than 14 is not obtained until iteration
1170 and the largest value obtained in 3000 iterations is 14.597.
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Figure 3: A graphical representation for a small but interesting function. Each column represents a variable and each
row a program point (before and after an instruction). A block is colored in a column if the variable is live at that
point. Red and green blocks indicate where a variable is defined or used with red indicating the variable must be in a
register at that point and green that the variable can still be accessed even if it is in memory.
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Figure 6: The convergence of the Lagrangian subprob-
lem with the step size of thekth iteration being1/(k +
10) evaluated with two different initialization schemes.
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Figure 8: An evaluation of two techniques for speeding
up convergence when the ratio method is used to deter-
mine step size.
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Figure 9: An evaluation of two techniques for speeding
up convergence when Newton’s method is used to deter-
mine step size.

Initially all prices are set to zero. If instead they were initialized to be close to the final prices the subproblem would
converge faster. Two initialization strategies are shown in Figures 6 and 7. The random strategy simply initializes the
prices to a random number between 0 and 1. The selective initialization strategy initializes the prices of edges going
into memory nodes so that a variable pays a price for a store (the actual cost of which is absorbed by the anti-variable).
This technique is successful, particularly with Newton’s method.

Two attempts to speed up the convergence are shown in Figures 8 and 9. Both approaches keep a history of the
direction that each price has been taking (increasing or decreasing). The trending approach doubles the step size if the
price has been monotonically increasing or decreasing for the last 4 iterations. The damping method takes an average
of old and new price if the price has been flip flopping between increasing and decreasing in an attempt to dampen
oscillations. The trending technique is effective with Newton’s method, but this gain is less than the gain of using
selective initialization and the effects are not additive.

7.3 Heuristics

The purpose of the Lagrangian subproblem converging towards the optimum is to guide feasible solution finders. The
1/(k + 10) ratio step selection and selective initialization techniques are used for evaluating all the solution finders.

The results of applying the Greedy Shortest, Iterative Shortest, and Fixed Iterative Shortest heuristics are shown
in Figure 10. All these solutions consider only the shortest feasible path of each variable through the priced network.
The quality of the the Fixed Iterative solution does not seem to suffer from not recalculating the next most expensive
variable as in the Iterative Shortest solution. Figure 11 is a histogram of the number of times each procedure found a
solution of a given cost. The iterative solutions perform significantly better than the simple greedy solution.

Thek-Choice solution finders consider the k-shortest paths through the priced network when choosing an alloca-
tion for a variable. Of the k-shortest paths, only those with prices within a threshold, in this case the current step size
multiplied by the lifetime of the variable, of the shortest path are considered. The lowest cost heuristic simply selects
the path with the lowest unpriced cost. Its performance is shown in Figures 12 and 13. Having more paths to select
from increases the effectiveness of the heuristic up to a point. As more paths are made available to choose from, the
likelihood of the heuristic choosing poorly increases resulting in the decreased effectiveness of the 16-choice case.

The cost/history heuristic is evaluated in Figures 14 and 15. The addition of history information seems to have the
largest effect on the 8-choice and 16-choice cases. While the heuristic is successful in increasing the effectiveness in
the 8-choice case, it has a dramatic negative impact on the 16-choice case.
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Figure 10: The results of three feasible solution finders
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Performance of k-Choice Lowest Cost Heuristic

0

500

1000

1500

2000

2500

3000

15 17 18 19 20 >20

Cost of Feasible Solution

C
o

u
n

t

fixed iterative

2-choice

4-choice

8-choice

16-choice

Figure 13: The number of times (out of 3000 iterations)
each k-choice solution procedure found a solution of a
given cost using the low cost heuristic.

13



0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500 3000

C
os

t

Iteration

L(w)
fixed iterative

2-choice cost/history
4-choice cost/history
8-choice cost/history

16-choice cost/history
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7.4 Exhaustive Search

An exhaustive search of all possible allocations would be computationally intractable, even for a small example, but
the priced network produced by the Lagrangian subproblem solution can be used to substantially prune this search.
For a given branching factorb the search considers only theb shortest paths of each variable in the pruned network. If
the Lagrangian approach is effective, then asL(w) converges to the optimal solution a smaller and smaller branching
factor should be necessary to find the optimal solution. The results of searches with different branching factors for
every three iterations up to 2000 iterations are shown in Figure 16. AsL(w) converges, the optimal solution is
increasingly likely to exist for smaller branching factors. Figure 17 shows how the percentage of iterations where an
optimal solution exists increases asL(w) converges.

Although the exhaustive search method is not always successful at finding an optimal solution, it does substantially
better than the single path heuristic methods as shown in Figure 18. The fixed iterative search method is essentially
an exhaustive search with a branching factor of one. The exhaustive search results can be viewed as an upperbound
bound on the performance of k-choice heuristics.

7.5 Running Times

Technique Small Example Time (s) Large Example Time (s)
L(w) maximization .019 .28

Greedy Shortest .52 3.7
Iterative Shortest 3.1 215
Fixed Iterative .06 .90

2-Choice .07 1.1
4-Choice .08 1.2
8-Choice .10 1.4
16-Choice .14 1.8

Table 2: The time, in seconds, of performing a single iteration of Lagrangian maximization and of each feasible
solution finder for both a small and large example.
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Figure 20: The behavior of the Lagrangian solution finder on a large example using the ratio
method (1/(k + 10)) and a fixed iterative solver.

In order for the Lagrangian approach to be useful for register allocation, it must offer performance competitive
with traditional allocators and scale well as the problem size increases. We evaluate the performance of the various al-
gorithms operating on both the small example from the previous sections and a larger function, thesquareEncrypt
function of pegwit d benchmark. This function has 412 instructions and 150 variables. The value of the optimal
solution is 477. The convergence properties and behavior of the fixed iterative feasible solution finder for this example
are shown in Figure 20. After 5000 iterations, a solution of cost 510 that is guaranteed to be within 8.1% of optimal is
found, but the slow rate of convergence at this point makes it unlikely that a much better solution will be found.

The running times of the various techniques per a single iteration are shown in Table 2. Using the 2-choice solution
finder an optimal solution for the small example is found in iteration 216 (after about 15 seconds), but it isn’t proven
to be optimal until iteration 486 (about 35 seconds). The large example does not find an optimal solution within 5000
iterations, but will be able to provide a solution that is guaranteed to be within 15% of optimal at iteration 745 (about
879 seconds). Although the cost of the Lagrangian maximization is necessary and unavoidable, the cost of the feasible
solution finders can be mitigated by waiting until after a ramp up period to run them and running them less frequently

gcc Register Allocator Small Example Time (s) Large Example Time (s)
Local/Global (default) .0085 .091

Briggs/Chaitin (-fnew-ra) .065 .2

Table 3: The total time, in seconds, of the full register allocation pass for both ofgcc ’s allocators when run on a
1.8Ghz Pentium 4 system
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Solver Small Example Time (s) Large Example Time (s)
glpk 553 ∞

CPLEX 7.1 107 (191) 4653 (8295)

Table 4: The total time, in seconds, to determine the optimal solution to the MCNF register allocation problem
formulation using the open-sourceglpk 4.4 solver[15] and the much more powerful commercial solver, CPLEX
7.1[12]. The CPLEX solver was run on a 1Ghz Pentium 3 and theglpk solver on a 1.8Ghz Pentium 4. To make a
more accurate comparison the CPLEX times were extrapolated to the expected values on the faster system using the
bogomips ratio of the two machines. The original times are shown in parentheses. Theglpk solver was not capable
of solving the large example as it encountered unrecoverable instability after running for more than 10 days.

than once an iteration.
To put these times in perspective, the total register allocation times for both ofgcc ’s allocators are shown in

Table 3. These allocators can produce decent allocations well before the Lagrangian approach has had a chance
to ramp up, but make no claims to optimality. Traditional integer linear program solvers can be used to solve for
the MCNF formulation of the register allocation problem. The solution times for the GNU Linear Programming
Kit (glpk )[15] and the powerful commercial CPLEX[12] solver are shown in Table 4. The Lagrangian approach
compares favorably with the optimal solvers and has the added advantage of being progressive (capable of producing
a suboptimal solution with optimality bounds guarantees at any point).

The times of performing exhaustive searches with various branching factors are shown in Figure 19. Once the
ramp up period is over, the times are more or less stable. The relatively good performance of the exhaustive searches
is due to the ability to stop searching once an upper bound is exceeded. For these searches an upper bound equal to the
optimal solution was used as the goal was just to establish the existence of the optimal solution in the pruned search
space, rather than to time to the cost of a full exhaustive search with no known previous upper bound.

7.6 Code Quality

Small Example Large Example
Theoretical Overhead 15 510

Actual Overhead 4 781
gcc Overhead 26 946

Table 5: The theoretical and actual overheads for the Lagrangian approach and the measured overhead of the default
gcc allocator. The overheads include the cost of the preconditioning pass, which is not included in the optimum
solution cost found by the solver.

The solutions found by these procedures are, at best, only optimal in the narrowly defined context of the MCNF
formulation of the register allocation problem. Because not all possible register related transformations are modeled
in the MCNF formulation, the actual overhead of register allocation might be different than the theoretical overhead.
Errors in the interface between the Lagrangian solver andgcc ’s register allocator may also distort the results. Over-
head is measured by taking the difference in code size from before and after register allocation. Some x86 instructions
are difficult to size before register allocation as their size depends on which registers are allocated to what operands
and in these cases the pre-register allocation tends to be conservative resulting in negative overhead.

The theoretical and actual overheads for the large and small example are shown in Table 5 along with the overheads
incurred by the defaultgcc allocator. Since the optimal result for the large example is unknown, the best result found
after 5000 iterations using the fixed iterative solver is shown. The large difference in theoretical and actual overheads
for the large example is because the MCNF formulation currently does not correctly model the cost of stack accesses.
All accesses to the stack are assumed to only cost one byte which is only true if fewer than 32 variables are spilled to
the stack.
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Figure 21: The progressive nature of the Lagrangian solution approach. The optimality per-
centage is the percent increase in overhead from the theoretical optimal solution. As the algo-
rithm computes, a better solution and a better optimality bound on the solution are found.

Lagrangian relaxation is an effective way to guide heuristics and prune the search space of difficult multi-commodity
flow problems. As currently implemented, this approach neither finds a decent solution as quickly as traditional allo-
cator nor is guaranteed to find an optimal solution as with ILP-based allocators. However, as Figure 21 shows, this
approach offers a compromise between those two allocators. A solution with provable optimality guarantees that is
significantly better than traditional allocator solutions can be found substantially faster than with the ILP techniques.
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