
A Better Global
Progressive Register
Allocator
David Koes∗

Seth Copen Goldstein∗

∗ School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

ABSTRACT

We present an improvement to the simultaneous heuristic allocator component of the global pro-
gressive register allocator described in our previous work [Koes06]. Our improved allocator de-
composes the control flow graph into linear traces which are allocated in the same manner as a
single basic block. We investigate two methods for handling the control flow within the traces
both of which produce better quality allocations than the simultaneous heuristic allocator.

KEYWORDS: Register Allocation; Progressive Solver

1 Introduction

A global progressive register allocator, as described in [Koes06], uses an expressive model of
the register allocation problem to quickly find a good allocation and then progressively find
better allocations until a provably optimal solution is found or a compilation time limit
is reached. Our global progressive allocator uses a global multi-commodity network flow
(GMCNF) model to explicitly capture the important components of register allocation such
as spill code optimization, register preferences, coalescing, and rematerialization. Our pro-
gressive solution technique utilizes the theory of Lagrangian relaxation to compute a lower
bound on solution quality and to calculate Lagrangian prices on constrained nodes in the
GMCNF model which are used to push heuristic allocators closer to the optimal solution.

In the GMCNF model of register allocation an allocation of a variable within a basic block
exactly corresponds to a path in a constrained network. At each iteration of our progressive
algorithm, we update the Lagrangian prices on each node in the network. Then a heuristic
allocator constructs an allocation where the priced cost of each variable’s allocation is as
close as possible to the priced cost of allocating that variable irrespective of the other vari-
ables. As the prices converge, allocations that meet this criteria are likely to be optimal. We
have developed a heuristic simultaneous allocator that attempts to achieve this goal. In this
paper we describe an improvement to this simultaneous allocator that performs better in the
presence of control flow.

1E-mail: {dkoes,seth}@cs.cmu.edu

1

2

3

4

5

86

7

1

2

3

4

5

86

7

Figure 1: A example control flow graph (left) decomposed into traces (right). The bold edge
is an example of control flow internal to a trace that complicates allocation.

The simultaneous allocator functions similarly to a second-chance binpacking allocator
[Trau98] but uses the priced GMCNF model to guide eviction decisions. The allocator tra-
verses the control flow graph in depth first order. For each block, it computes both a for-
wards and backwards shortest-path for every variable. These paths take into account that
the entry and exit allocations of a variable may have been fixed by an allocation of a previous
block. After computing the shortest paths, the allocator scans through the block, maintain-
ing an allocation for every live variable. At each program point (a level in the network), the
allocation of every live variable is updated to follow the previously computed shortest path
(the common case is for a variable to remain in its current location). If necessary, variables
may be evicted. The cost of evicting a variable from its current location is computed by find-
ing the shortest path in the network to a valid eviction edge. When a variable is defined, the
minimum cost allocation is computed using the shortest path information and the cost of
any necessary eviction.

The simultaneous allocator is effective at minimizing the total priced cost of the final
solution, in large part because the eviction mechanism allows it to undo poor previous allo-
cation decisions. However, allocation decisions become fixed at basic block boundaries. The
simultaneous allocator relies on prices on nodes at block boundaries to avoid locally good,
globally poor, allocation decisions.

2 Trace-Based Allocation

In an attempt to improve upon the simultaneous allocator we have developed a trace-
based simultaneous allocator. Instead of processing each basic block independently, the
trace-based allocator decomposes the control flow graph into linear traces of basic blocks,
which may contain internal and external control flow, and allocates each trace similarly to
how a single basic block is allocated by the simultaneous allocator. To construct our traces
we simply find the longest possible traces using depth first search while ensuring that loop
headers start a new trace (as in the example in Figure 1).

The presence of control flow within each trace creates some complications. When com-
puting shortest paths care must be taken to take the correct edge spanning basic blocks
within a trace (there may be holes in a trace where a variable is not live). When an allocation
decision is made at a block boundary, that decision must be propagated to all connected

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80 90

be
tte

r !
 P

er
ce

nt
 fr

om
 o

pt
im

al
 "

 w
or

se

Time (s)

Original Simultaneous
Easy-Update Trace-Based

Full-Update Trace-Based

Figure 2: The performance of trace based al-
locators compared to the original simultane-
ous allocator when compiling the function
quicksort.

0%

1%

2%

3%

4%

5%

6%

7%

8%

1 iteration 10 iterations 100 iterations 1000 iterations gcc default

allocator

P
er

ce
n

t
C

o
d

e
S

iz
e

Im
p

ro
ve

m
en

t
o

ve
r

G
ra

p
h

 A
llo

ca
to

r

original simultaneous easy-update full-update

Figure 3: Average code size improvement rel-
ative to a graph coloring allocator. Measure-
ments are taken immediately after allocation
to eliminate downstream noise.

blocks within the trace. For example, the exit allocation of block 1 in Figure 1 fixes the start-
ing allocation of both blocks 5 and 7 and the exit allocation of block 6 in the same trace.
Similarly, it may not be straightforward to evict a variable across block boundaries if doing
so affects other blocks in the trace.

We consider two techniques for propagating boundary allocation decisions within a
trace. The first, easy-update, does the minimal amount of recomputation necessary for cor-
rectness. Only blocks directly effected by the boundary allocation have their shortest path
computations redone. For example, in Figure 1, after allocating block 1, only block 6 would
have to be recomputed as its exit allocations have changed. Although these recomputations
result in extra work compared to the original simultaneous allocator, they are necessary for
the correct allocation of the trace. The second technique, full-update, recomputes the shortest
paths for all unallocated blocks prior to and including the blocks effected by the bound-
ary allocation. The full-update technique is computationally more expensive (potentially
quadratically more updates) but provides more up-to-date information for the simultane-
ous allocator in blocks not immediately affected by the boundary allocation. For example,
in Figure 1, if a variable were to spill to memory and then be loaded back into a register
in block 5, it would likely be best for the variable to be loaded into the same register it was
allocated to at the exit of block 1 (to avoid a move into that register before the exit of block 6).
With full-update the allocator would be aware of this cost since both blocks 5 and 6 would
have been recomputed after the allocation of block 1.

3 Results

We compare the two trace-based allocators and the original simultaneous allocator on a rep-
resentative function in Figure 2. The trace-based allocators are clearly better than the original
allocator despite requiring more computation per an iteration. The easy-update technique
takes 26% longer than the simultaneous allocator and the full-update technique takes 71%
longer for this function. On a per-iteration basis the full-update technique outperforms easy-
update, but because easy-update is much faster the actual benefit is less pronounced.

We evaluated our allocators by compiling a large selection of benchmarks from the SPEC-
2000, SPEC95, MediaBench, and MiBench benchmark suits using our allocator implemented
in gcc 3.4.4. We choose to optimize for code size since this metric, in addition to being im-
portant in the embedded community, can be exactly represented and measured statically. As
expected, the trace-based allocators outperform the original simultaneous allocator when
compared on a per-iteration basis (Figure 3). After only 10 iterations, the full-update tech-
nique gets an additional .55% average code size improvement over the original allocator. As
more time is permitted for compilation and the Lagrangian prices converge, the difference
between the trace-based allocators and the original allocator decreases, most likely because
the more accurate prices push the original allocator closer towards the optimal solution
(which the trace-based allocators may have already found).

Although slower than the original allocator, the traced-based allocators find better solu-
tions in less time. When compiling for 10 iterations the easy-update and full-update alloca-
tors take 18% and 60% longer overall than the original allocator. After 12 and 16 iterations the
original allocator has achieved an average code size improvement of 3.98% and 4.18% com-
pared to improvements of 4.06% and 4.40% for the easy-update and full-update techniques
after only 10 iterations implying that the benefits of the trace-based allocators outweigh the
cost.

4 Future Work

We have presented an extension to prior work that allows a fundamentally local register
allocator to better incorporate global information into its allocation decisions. The use of
traces instead of basic blocks allows the allocator to perform well despite the initially ap-
proximate nature of the Lagrangian pricesin the GMCNF model. In addition to exploring
other techniques for finding better allocations, future work will need to focus on reducing
the computational overhead of these allocators. Some possible directions include: simplify-
ing the GMCNF model (for example, reducing the amount of detail at points without regis-
ter pressure), constructing traces that are informative but require less recomputation during
allocation, and investigating more efficient methods of recomputation.

It is hopeful that with further algorithmic and code improvements register allocation
based on a GMCNF model coupled with a Lagrangian solver will be both compile-time
and code-quality competitive with current allocators while also being progressive, allowing
users to trade compile-time for optimal or near-optimal solutions.

References

[Koes06] D. KOES AND S. GOLDSTEIN. A Global Progressive Register Allocator. In Pro-
ceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). ACM Press, June 2006.

[Trau98] O. TRAUB, G. HOLLOWAY, AND M. SMITH. Quality and speed in linear-scan
register allocation. In Proceedings of the ACM SIGPLAN 1998 Conference on Pro-
gramming Language Design and Implementation (PLDI), pages 142–151, New York,
NY, USA, 1998. ACM Press.

	Introduction
	Trace-Based Allocation
	Results
	Future Work

