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Abstract

Many recent papers address reading compre-
hension, where examples consist of (ques-
tion, passage, answer) tuples. Presumably, a
model must combine information from both
questions and passages to predict correspond-
ing answers. However, despite intense inter-
est in the topic, with hundreds of published
papers vying for leaderboard dominance, ba-
sic questions about the difficulty of many
popular benchmarks remain unanswered. In
this paper, we establish sensible baselines for
the bAbI, SQuAD, CBT, CNN, and Who-
did-What datasets, finding that question- and
passage-only models often perform surpris-
ingly well. On 14 out of 20 bAbI tasks,
passage-only models achieve greater than 50%
accuracy, sometimes matching the full model.
Interestingly, while CBT provides 20-sentence
passages, only the last is needed for com-
parably accurate prediction. By comparison,
SQuAD and CNN appear better-constructed.

1 Introduction

Recently, reading comprehension (RC) has
emerged as a popular task, with researchers
proposing various end-to-end deep learning
algorithms to push the needle on a variety of
benchmarks. As characterized by Hermann et al.
(2015); Onishi et al. (2016), unlike prior work
addressing question answering from general
structured knowledge, RC requires that a model
extract information from a given, unstructured
passage. It’s not hard to imagine how such
systems could be useful. In contrast to generic
text summarization, RC systems could answer
targeted questions about specific documents,
efficiently extracting facts and insights.

While many RC datasets have been proposed
over the years (Hirschman et al., 1999; Breck
et al., 2001; Peñas et al., 2011; Peñas et al., 2012;

Sutcliffe et al., 2013; Richardson et al., 2013; Be-
rant et al., 2014), more recently, larger datasets
have been proposed to accommodate the data-
intensiveness of deep learning. These vary both
in the source and size of their corpora and in
how they cast the prediction problem—as a clas-
sification task (Hill et al., 2016; Hermann et al.,
2015; Onishi et al., 2016; Lai et al., 2017; We-
ston et al., 2016; Miller et al., 2016), span selec-
tion (Rajpurkar et al., 2016; Trischler et al., 2017),
sentence retrieval (Wang et al., 2007; Yang et al.,
2015), or free-form answer generation (Nguyen
et al., 2016).1 Researchers have steadily advanced
on these benchmarks, proposing myriad neural
network architectures aimed at attending to both
questions and passages to produce answers.

In this paper, we argue that amid this rapid
progress on empirical benchmarks, crucial steps
are sometimes skipped. In particular, we demon-
strate that the level of difficulty for several of these
tasks is poorly characterized. For example, for
many RC datasets, it’s not reported, either in the
papers introducing the datasets, or in those propos-
ing models, how well one can perform while ig-
noring either the question or the passage. In other
datasets, although the passage might consist of
many lines of text, it’s not clear how many are
actually required to answer the question, e.g., the
answer may always lie in the first or the last sen-
tence.

We describe several popular RC datasets and
models proposed for these tasks, analyzing their
performance when provided with question-only
(Q-only) or passage-only (P-only) information.
We show that on many tasks, the results obtained
are surprisingly strong, outperforming many base-

1 We note several other QA datasets (Yang et al., 2015;
Miller et al., 2016; Nguyen et al., 2016; Paperno et al., 2016;
Clark and Etzioni, 2016; Lai et al., 2017; Trischler et al.,
2017; Joshi et al., 2017) not addressed in this paper.



lines, and sometimes even surpassing the same
models, supplied with both questions and pas-
sages.

We note that similar problems were shown for
datasets in visual question answering by Goyal
et al. (2017) and for natural language inference
by Gururangan et al. (2018); Poliak et al. (2018);
Glockner et al. (2018). Several other papers have
discussed the weaknesses of various RC bencham-
rks (Chen et al., 2016; Lee et al., 2016). We dis-
cuss these studies in the paragraphs introducing
the corresponding datasets below.

2 Datasets

In the following section, we provide context on
each dataset that we investigate and then describe
our process for corrupting the data as required by
our question- and passage-only experiments.

CBT Hill et al. (2016) prepared a cloze-style (fill
in the blank) RC dataset by using passages from
children’s books. In their dataset, each passage
consists of 20 consecutive sentences, and each
question is the 21st sentence with one word re-
moved. The missing word then serves as the an-
swer. The dataset is split into four categories of
answers: Named Entities (NE), Common Nouns
(CN), Verbs (V) and Prepositions (P). The training
corpus contains over 37, 000 candidates and each
question is associated with 10 candidates, POS-
matched to the correct answer. The authors estab-
lished LSTM/embedding-based Q-only baselines
but did not present the results obtained by their
best model using Q-only or P-only information.

CNN Hermann et al. (2015) introduced the
CNN/Daily Mail datasets containing more than 1
million news articles, each associated with sev-
eral highlight sentences. Also adopting the cloze-
style dataset preparation, they remove an en-
tity (answer) from a highlight (question). They
anonymize all entities to ensure that models rely
on information contained in the passage, vs mem-
orizing characteristics of given entities across ex-
amples, and thus ignoring passages. On average,
passages contain 26 entities, with over 500 total
possible answer candidates. Chen et al. (2016) an-
alyzed the difficulty of the CNN and Daily Mail
tasks. They hand-engineered a set of eight fea-
tures for each entity e (does e occur in the ques-
tion, in the passage, etc.), showing that this simple
classifier outperformed many earlier deep learning

results.

Who-did-What Onishi et al. (2016) extracted
pairs of news articles, each pair referring to the
same events. Adopting the cloze-style, they re-
move a person’s name (the answer) from the first
sentence of one article (the question). A model
must predict the answer based on the question, to-
gether with the other article in the pair (passage).
Unlike CNN, Who-did-What does not anonymize
entities. On average, each question is associated
with 3.5 candidate answers. The authors removed
several questions from their dataset to thwart sim-
ple strategies such as always predicting the name
that occurs most (or first) in the passage.

bAbI Weston et al. (2016) presented a set of
20 tasks to help researchers identify and rectify
the failings of their reading comprehension sys-
tems. Unlike the datasets discussed so far, the
questions in this task are not cloze-style and are
synthetically generated using templates. This re-
stricts the diversity in clauses appearing in the
passages. Further, this also restricts the dataset
vocabulary to just 150 words, in contrast, CNN
dataset has a vocabulary made of close to 120, 000
words. Memory Networks with adaptive memory,
n-grams and non-linear matching were shown to
obtain 100% accuracy on 12 out of 20 bAbI tasks.
We note that Lee et al. (2016) previously identi-
fied that bAbI tasks might fall short as a measure
of “AI-complete question answering”, proposing
two models based on tensor product representa-
tions that achieve 100% accuracy on many bAbI
tasks.

SQuAD More recently, Rajpurkar et al. (2016)
released the Stanford Question Answering Dataset
(SQuAD) containing over 100, 000 crowd-sourced
questions addressing 536 passages. Each question
is associated with a paragraph (passage) extracted
from an article. These passages are shorter than
those in CNN and Who-did-What datasets. Mod-
els choose answers by selecting (varying-length)
spans from these passages.

Generating Corrupt Data To void any infor-
mation in either the questions or the passages,
while otherwise leaving each architecture intact,
we create corrupted versions of each dataset by
assigning either questions randomly, while pre-
serving the correspondence between passage and
answer, or by randomizing the passage. For



tasks where question-answering requires selecting
spans or candidates from the passage, we create
passages that contain the candidates in random lo-
cations but otherwise consist of random gibberish.

3 Models

In our investigations of the various RC bench-
marks, we rely upon the following three recently-
proposed models: key-value memory networks,
gated attention readers, and QA nets. Although
space constraints preclude a full discussion of each
architecture, we provide references to the source
papers and briefly discuss any implementation de-
cisions necessary to reproduce our results.

Key-Value Memory Networks We implement
a Key-Value Memory Network (KV-MemNet)
(Miller et al., 2016), applying it to bAbI and CBT.
KV-MemNets are based on Memory Networks
(Sukhbaatar et al., 2015), shown to perform well
on both datasets. For bAbI tasks, the keys and
values both encode the passage as a bag-of-words
(BoW). For CBT, the key is a BoW-encoded 5-
word window surrounding a candidate answer and
the value is the candidate itself. We fixed the num-
ber of hops to 3 and the embedding size to 128.

Gated Attention Reader Introduced by Dhin-
gra et al. (2017), the Gated Attention Reader
(GAR)2 performs multiple hops over a passage,
like MemNets. The word representations are
refined over each hop and are mapped by an
attention-sum module (Kadlec et al., 2016) to a
probability distribution over the candidate answer
set in the last hop. The model nearly matches best-
reported results on many cloze-style RC datasets,
and thus we apply it to Who-did-What, CNN, CBT-
NE and CBT-CN.

QA Net Recently introduced by (Yu et al.,
2018), the QA-Net3 was recently demonstrated to
outperform all previous models on the SQuAD
dataset4. Passages and questions are passed as in-
put to separate encoders consisting of depth-wise
separable convolutions and global self-attention.
This is followed by a passage-question attention
layer, followed by stacked encoders. The outputs

2https://github.com/bdhingra/ga-reader
3We use the implementation available at

https://github.com/NLPLearn/QANet
4At the time of publication, an ensemble of QA-Net mod-

els was at the top of the leader board. A single QA-Net was
ranked 4th.

from these encoders are used to predict an answer
span inside the passage.

4 Experimental Results

bAbI tasks Table 1 shows the results obtained
by a Key-Value Memory Network on bAbI tasks
by nullifying the information present in either
questions or passages. On tasks 2, 7, 13 and 20, P-
only models obtain over 80% accuracy with ques-
tions randomly assigned. Moreover, on tasks 3,
13, 16, and 20, P-only models match performance
of those trained on the full dataset. On task 18, Q-
only models achieve an accuracy of 91%, nearly
matching the best performance of 93% achieved
by the full model. These results show that some of
bAbI tasks are easier than one might think.

Children’s Books Test On the NE and CN CBT
tasks, Q-only KV-MemNets obtain an accuracy
close to the full accuracy and on the Verbs (V)
and Prepositions (P) tasks, Q-only models outper-
form the full model (Table 2). Q-only Gated atten-
tion readers reach accuracy of 50.6% and 54% on
Named Entities (NE) and Common Nouns (CN)
tasks, respectively, while P-only models reach ac-
curacies of 40.8% and 36.7%, respectively. We
note that our models can outperform 16 of the 19
reported results on the NE task in Hill et al. (2016)
using Q-only information. Table 3 shows that if
we make use of just last sentence instead of all
20 sentences in the passage, our sentence memory
based KV-MemNet achieve comparable or better
performance w.r.t the full model on most subtasks.

CNN Table 2, shows the performance of Gated
Attention Reader on the CNN dataset. Q-only
and P-only models obtained 25.6% and 38.3% ac-
curacies respectively, compared to 77.8% on the
true dataset. This drop in accuracy could be due
to the anonymization of entities which prevents
models from building entity-specific information.
Notwithstanding the deficiencies noted by Chen
et al. (2016), we found that out CNN, out all the
cloze-style RC datasets that we evaluated, appears
to be the most carefully designed.

Who-did-What P-only models achieve greater
than 50% accuracy in both the strict and relaxed
setting, reaching within 15% of the accuracy of
the full model in the strict setting. Q-only models
also achieve 50% accuracy on the relaxed setting
while achieving an accuracy of 41.8% on the strict
setting. Our P-only model also outperforms all the



bAbI Tasks 1-10
Dataset 1 2 3 4 5 6 7 8 9 10

True dataset 100% 100% 39% 100% 99% 100% 94% 97% 99% 98%
Question only 18% 17% 22% 22% 34% 50% 48% 34% 64% 44%

Passage only 53% 86% 60% 59% 31% 48% 85% 79% 63% 47%

∆(min) −47 −14 +21 −41 −65 −52 −9 −18 −35 −51

bAbI Tasks 11-20
11 12 13 14 15 16 17 18 19 20

True dataset 94% 100% 94% 96% 100% 48% 57% 93% 30% 100%
Question only 17% 15% 18% 18% 34% 26% 48% 91% 10% 70%

Passage only 71% 74% 94% 50% 64% 47% 48% 53% 21% 100%
∆(min) −23 −26 0 −46 −36 −1 −9 −2 −9 0

Table 1: Accuracy on bAbI tasks using our implementation of the Key-Value Memory Networks

Task Full Q-only P-only ∆(min)

Key-Value Memory Networks

CBT-NE 35.0% 29.1% 24.1% −5.9

CBT-CN 37.6% 32.4% 24.4% −5.2

CBT-V 52.5% 55.7% 36.0% +3.2

CBT-P 55.2% 56.9% 30.1% +1.7

Gated Attention Reader

CBT-NE 74.9% 50.6% 40.8% −17.5

CBT-CN 70.7% 54.0% 36.7% −16.7

CNN 77.8% 25.6% 38.3% −39.5

WdW 67.0% 41.8% 52.2% −14.8

WdW-R 69.1% 50.0% 50.6% −15.6

Table 2: Accuracy on various datasets using KV-
MemNets (window memory) and GARs

Task Complete passage Last sentence

CBT-NE 22.6% 22.8%
CBT-CN 31.6% 24.8%

CBT-V 48.8% 45.0%

CBT-P 34.1% 37.9%

Table 3: Accuracy on CBT tasks using KV-MemNets
(sentence memory) varying passage size.

suppressed baselines and 5 additional baselines re-
ported by Onishi et al. (2016). We suspect that

Metric Full Q-only P-only ∆(min)

EM 70.7% 0.6% 10.9% −59.8

F1 79.1% 4.0% 14.8% −64.3

Table 4: Performance of QANet on SQuAD

the models memorize attributes of specific entities,
justifying the entity-anonymization used by Her-
mann et al. (2015) to construct the CNN dataset.

SQuAD Our results suggest that SQuAD is an
unusually carefully-designed and challenging RC
task. The span selection mode of answering re-
quires that models consider the passage thus the
abysmal performance of the Q-only QANet (Table
4). Since SQuAD requires answering by span se-
lection, we construct Q-only variants here by plac-
ing answers from all relevant questions in random
order, filling the gaps with random words. More-
over, Q-only and P-only models achieve F1 scores
of only 4% and 14.8% resp. (Table 4), signifi-
cantly lower than 79.1 on the proper task.

5 Discussion

We briefly discuss our findings, offer some guid-
ing principles for evaluating new benchmarks and
algorithms, and speculate on why some of these
problems may have gone under the radar. Our goal
is not to blame the creators of past datasets but in-
stead to support the community by offering practi-
cal guidance for future researchers.



Provide rigorous RC baselines Published RC
datasets should contain reasonable baselines that
characterize the difficulty of the task, and specif-
ically, the extent to which questions and passages
are essential. Moreover, follow-up papers report-
ing improvements ought to report performance
both on the full task and variations omitting ques-
tions and passages. While many proposed techni-
cal innovations purportedly work by better match-
ing up information in questions and passages, ab-
sent these baselines one cannot tell whether gains
come for the claimed reason or if the models just
do a better job of passage classification (disregard-
ing questions).

Test that full context is essential Even on tasks
where both questions and passages are required,
problems might appear harder than they really are.
On first glance the the length-20 passages in CBT,
might suggest that success requires reasoning over
all 20 sentences to identify the correct answer to
each question. However, it turns out that for some
models, comparable performance can be achieved
by considering only the last sentence. We rec-
ommend that researchers provide reasonable ab-
lations to characterize the amount of context that
each model truly requires.

Caution with cloze-style RC datasets We note
that cloze-style datasets are often created progra-
matically. Thus it’s possible for a dataset to be
produced, published, and incorporated into many
downstream studies, all without many person-
hours spent manually inspecting the data. We
speculate that, as a result, these datasets tend be
subject to less contemplation of what’s involved in
answering these questions and are therefore espe-
cially susceptible to the sorts of overlooked weak-
nesses described in our study.

A note on publishing incentives We express
some concern that the recommended experimen-
tal rigor might cut against current publishing in-
centives. We speculate that papers introducing
datasets may be more likely to be accepted at con-
ferences by omitting unfavorable ablations than by
including them. Moreover, with reviewers often
demanding architectural novelty, methods papers
may find an easier path to acceptance by provid-
ing unsubstantiated stories about the reasons why
a given architecture works than by providing rigor-
ous ablation studies stripping out spurious expla-
nations and unnecessary model components. For

more general discussions of misaligned incentives
and empirical rigor in machine learning research,
we point the interested reader to Lipton and Stein-
hardt (2018) and Sculley et al. (2018).
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