15-462 Computer Graphics I

Final Examination

Name:

May 6, 2003

Andrew User ID:

This is an open book, open notes exam.

Write your answer legibly in the space provided.

There are 16 pages in this exam, including 5 worksheets.

It consists of 4 questions worth a total of 250 points.

You have 3 hours for this exam.

Problem 1

Problem 2

Problem 3

Problem 4

Total

70

60

50

70

250

1. Clipping (70 points)

The Sutherland-Hodgman clipping algorithm in two dimensions was described in lecture and
in the textbook as an algorithm for clipping an arbitrary polygon against a clipping rectangle.
In this problem you are asked to generalize the algorithm to clip an arbitrary (convex or
concave) polygon against a convex polygonal clipping region, both still considered in two
dimensions.

Assume a simple, convex, polygonal clipping region C' is given by a sequence of vertices
o, - - -, Cp, Where ¢g = ¢,,. Further assume the edges are enumerated in a clockwise order.

1. (50 points) Describe an algorithm derived from the Sutherland-Hodgman algorithm
that clips a given arbitrary polygon with vertices vy, ..., v, with vy = v against C.
Use pseudo-code if it helps to clarify the description. You may assume basic geometric
functions, such as calculating intersections between two lines, or testing whether a
point lies on the right or left side of a vector.

2. (10 points) Give a counterexample showing that the algorithm in part 1 does not always
work correctly for concave clipping regions.

3. (10 points) How would you implement clipping against a concave region?

2. Ray Tracing (60 points)

Ray tracing works well with constructive solid geometry (CSG). In this problem we explore
how to perform the necessary ray/object intersection calculations.

We assume that a ray is given as p(«a) = pg + av for a > 0. For a set of basic objects
we already have implemented functions that take py and v as arguments and compute an
ordered intersection list aq,...,a, such that a; < --- < «,, of parameter values such that
the ray intersects the surface of the object at all a;. If there is no intersection, the list is
empty (that is, n = 0).

For simplicity we assume the ray originates outside all objects and ignore singularities,
so the ray is inside the object between «a; and as, outside the object between as and ag,
inside between a3 and ay, etc. This should be the case for any ordered intersection list you
calculate.

1. (25 points) For each of the following situations, show the intersection lists for 7"U S,
TNnSand T - S.

T S

T S TuS TnS T-8
2,6 4,8

\J

o
=
w
ol
~
©

—

- T S TuS TnS T-S
2,6 3,5

B

ol
\‘
©

S
' —+— ' m‘ T S TUS TNns T-S

| I | I I =
0 3 5 ¥V/9 1,5 7,9

2. (35 points) Show how to compute the intersection list for 7' — S from the intersection
lists oy, ..., a, for T"and i, ..., B for S. You may assume all o; and 3; are distinct.
You may use pseudo-code to help give a complete and unambiguous description of your

algorithm.

3. Image Processing (50 points)

In this problem we consider edge detection in an image by filtering. We can approximate %
with the so-called Sobel operator, written here in matrix form:

1 2 1
0O 0 O
-1 -2 -1

1. (10 points) Give the Sobel operator that approximates %.

2. (20 points) We can use the magnitude of the gradient vector as an edge filter, approx-
imating it as

of* _(of* _|of| |of

'Vf':J(aJ +(5) =[od -3
Apply this technique to the following image.

O/1]1]11]0 X | X | X |X]|X
1(41414]|1 X X
11414141 X X
11414141 X X
O/1]1]11]0 X | X | X |X]|X

3. (20 points) In non-photorealistic rendering, we often want to enhance edges or draw
outlines over a given image. Consider the case where we have rendered an image in
OpenGL and now want to draw over edges with a specified color. Sketch in some detail
how you could use the above edge filter together with OpenGL’s blending facilities for

this purpose.

4. Scientific Visualization (70 points)

In this problem you are asked to design and analyse a marching triangles algorithm for
drawing contour lines in analogy with the marching cubes algorithm.

Assume we use only equilateral triangles where the length of every side is h, and the
first one is placed as shown. Draw in at least 6 additional triangles to show your method of
subdividing the plane.

-
!

X

1. (10 points) Devise a system of addressing the grid points with pairs of integer indices
(i,7) and show how to compute the z and y coordinate of an arbitrary grid point p;;.

2. (5 points) Assume we are given a function f(x,y) and we are trying to draw the contour
line f(x,y) = ¢. Describe how you would color each grid point either black or white
as in the marching squares algorithm.

3. (15 points) Show all the possibilities for coloring the vertices of a triangle and indicate
how the contour line crosses the edge of the triangle in each case. Up to symmetry,
how many different situations are there?

4. (15 points) Give the formula for interpolation if we have determined that the contour
line crosses the edge between two adjacent grid points (x1,y1) and (x2,y2).

5. (10 points) Explain how and when you would adaptively subdivide the grid in order to
obtain a more accurate approximation of the contour line. Use pictures for illustration.

10

6. (5 points) Does the marching triangles algorithm you developed above have an inherent
ambiguity problem as the marching squares algorithm? Briefly explain your answer.

7. (10 points) Assume we want to generalize our algorithm to three dimensions and use
marching tetrahedrons (with 4 vertices) instead of marching cubes in order to draw
isosurfaces of a function f(z,y,z). How many possible vertex colorings are there?
How many unique cases remain once we account for symmetries?

11

Worksheet

12

Worksheet

13

Worksheet

14

Worksheet

15

Worksheet

16

