

# 15-462 Computer Graphics I

## Final Examination

May 6, 2003

Name: \_\_\_\_\_

Andrew User ID: \_\_\_\_\_

- This is an open book, open notes exam.
- Write your answer legibly in the space provided.
- There are 16 pages in this exam, including 5 worksheets.
- It consists of 4 questions worth a total of 250 points.
- You have 3 hours for this exam.

| Problem 1 | Problem 2 | Problem 3 | Problem 4 | Total |
|-----------|-----------|-----------|-----------|-------|
|           |           |           |           |       |
| 70        | 60        | 50        | 70        | 250   |

## 1. Clipping (70 points)

The Sutherland-Hodgman clipping algorithm in two dimensions was described in lecture and in the textbook as an algorithm for clipping an arbitrary polygon against a clipping rectangle. In this problem you are asked to generalize the algorithm to clip an arbitrary (convex or concave) polygon against a convex polygonal clipping region, both still considered in two dimensions.

Assume a simple, convex, polygonal clipping region  $C$  is given by a sequence of vertices  $c_0, \dots, c_n$  where  $c_0 = c_n$ . Further assume the edges are enumerated in a clockwise order.

1. (50 points) Describe an algorithm derived from the Sutherland-Hodgman algorithm that clips a given arbitrary polygon with vertices  $v_0, \dots, v_k$  with  $v_0 = v_k$  against  $C$ . Use pseudo-code if it helps to clarify the description. You may assume basic geometric functions, such as calculating intersections between two lines, or testing whether a point lies on the right or left side of a vector.

2. (10 points) Give a counterexample showing that the algorithm in part 1 does not always work correctly for concave clipping regions.

3. (10 points) How would you implement clipping against a concave region?

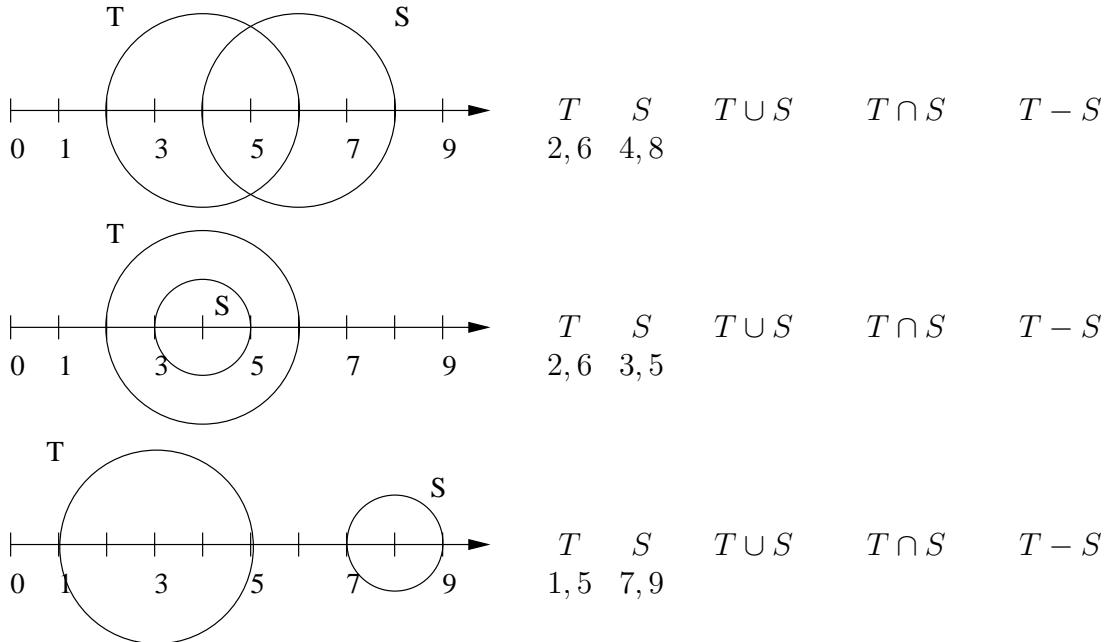
## 2. Ray Tracing (60 points)

Ray tracing works well with constructive solid geometry (CSG). In this problem we explore how to perform the necessary ray/object intersection calculations.

We assume that a ray is given as  $\mathbf{p}(\alpha) = \mathbf{p}_0 + \alpha \mathbf{v}$  for  $\alpha \geq 0$ . For a set of basic objects we already have implemented functions that take  $\mathbf{p}_0$  and  $\mathbf{v}$  as arguments and compute an *ordered intersection list*  $\alpha_1, \dots, \alpha_n$  such that  $\alpha_1 < \dots < \alpha_n$  of parameter values such that the ray intersects the surface of the object at all  $\alpha_i$ . If there is no intersection, the list is empty (that is,  $n = 0$ ).

For simplicity we assume the ray originates outside all objects and ignore singularities, so the ray is inside the object between  $\alpha_1$  and  $\alpha_2$ , outside the object between  $\alpha_2$  and  $\alpha_3$ , inside between  $\alpha_3$  and  $\alpha_4$ , etc. This should be the case for any ordered intersection list you calculate.

1. (25 points) For each of the following situations, show the intersection lists for  $T \cup S$ ,  $T \cap S$  and  $T - S$ .



2. (35 points) Show how to compute the intersection list for  $T - S$  from the intersection lists  $\alpha_1, \dots, \alpha_n$  for  $T$  and  $\beta_1, \dots, \beta_k$  for  $S$ . You may assume all  $\alpha_i$  and  $\beta_j$  are distinct. You may use pseudo-code to help give a complete and unambiguous description of your algorithm.

### 3. Image Processing (50 points)

In this problem we consider edge detection in an image by filtering. We can approximate  $\frac{\partial f}{\partial y}$  with the so-called Sobel operator, written here in matrix form:

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

1. (10 points) Give the Sobel operator that approximates  $\frac{\partial f}{\partial x}$ .

2. (20 points) We can use the magnitude of the gradient vector as an edge filter, approximating it as

$$|\nabla f| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \approx \left|\frac{\partial f}{\partial x}\right| + \left|\frac{\partial f}{\partial y}\right|.$$

Apply this technique to the following image.

|   |   |   |   |   |
|---|---|---|---|---|
| 0 | 1 | 1 | 1 | 0 |
| 1 | 4 | 4 | 4 | 1 |
| 1 | 4 | 4 | 4 | 1 |
| 1 | 4 | 4 | 4 | 1 |
| 0 | 1 | 1 | 1 | 0 |

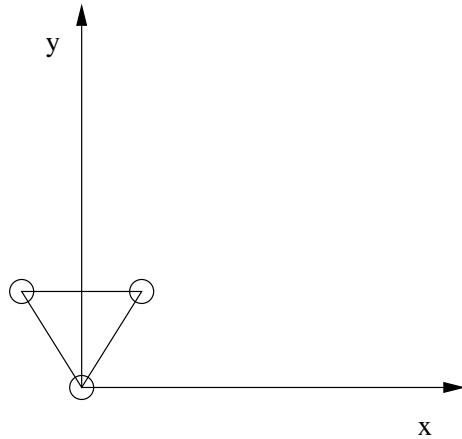
|   |   |   |   |   |
|---|---|---|---|---|
| × | × | × | × | × |
| × |   |   |   | × |
| × |   |   |   | × |
| × |   |   |   | × |
| × | × | × | × | × |

3. (20 points) In non-photorealistic rendering, we often want to enhance edges or draw outlines over a given image. Consider the case where we have rendered an image in OpenGL and now want to draw over edges with a specified color. Sketch in some detail how you could use the above edge filter together with OpenGL's blending facilities for this purpose.

#### 4. Scientific Visualization (70 points)

In this problem you are asked to design and analyse a *marching triangles* algorithm for drawing contour lines in analogy with the marching cubes algorithm.

Assume we use only equilateral triangles where the length of every side is  $h$ , and the first one is placed as shown. Draw in at least 6 additional triangles to show your method of subdividing the plane.



1. (10 points) Devise a system of addressing the grid points with pairs of integer indices  $(i, j)$  and show how to compute the  $x$  and  $y$  coordinate of an arbitrary grid point  $p_{ij}$ .

2. (5 points) Assume we are given a function  $f(x, y)$  and we are trying to draw the contour line  $f(x, y) = c$ . Describe how you would color each grid point either black or white as in the marching squares algorithm.
3. (15 points) Show all the possibilities for coloring the vertices of a triangle and indicate how the contour line crosses the edge of the triangle in each case. Up to symmetry, how many different situations are there?





## Worksheet

## Worksheet

## Worksheet

## Worksheet

## Worksheet