15-462 Computer Graphics I

Midterm Examination

Name:

Andrew User ID:

October 23, 2003

This is a closed-book exam; only one double-sided sheet of notes is permitted.

Write your answer legibly in the space provided.

There are 12 pages in this exam, including 4 worksheets.

It consists of 5 questions worth a total of 100 points.

You have 80 minutes for this exam.

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Total

20

20

20

20

20

100

1. 2D Transformations (20 pts)

Determine a 3x3 homogeneous matrix representation for the 2D affine transformation illustrated
by

Y Y

0. 1) o (L 1) (0.1) (1,1)

(0,0) x (1,0) i
(1,0) (0,0)

<07*1) T T (1171>

Let M represent the 3x3 matrix we wish to determine. Given the action of M on 3 independent
homogeneous points, we can uniquely determine M. Consider the matrix of original points (as columns)

0 0 1
P=|0 -1 0
1 1 1

where we've chosen the three points (0,0), (0,-1) and (1,0). These points are transformed to
1 10
P=MP=|0 11
1 11

Therefore we can determine the transformation by evaluating

-1

110 0 0 1
M = PpPl=1011 0 -1 0
111 1 1 1
11 0 -1 1 1
= o011 0 -1 0
111 1 0 0
-1 0 1
= 1 -1 0
I 0 1

We can verify the result on one of the other points. For example, we can correctly verify (1,1) maps
to (0,0) as follows:

1 0 1 1 0
Mp=| 1 -1 0 1]=1{o0
0 0 1 1 1

A second approach (that many people tried) is to try and guess a sequence of translations, rotations,
shears, etc., that when multiplied will produce the correction transformation, M. While this is possible
in this simple example, it is not always clear how to do this.

2. Weird Projections (20 pts)

We’ve considered one point perspective transformations, but it is also useful, e.g., in architectural
drawings, to have multiple points of perspective. Recall that an example of a one point perspective
transformation (in which one principle axis (z) pierces the projection plane) is

Plpt —

o o o o

SO O -
O O = O
Q= O O

The following projection matrix provides a two point perspective transformation,

1 0
0 0
2pt __
PT=1 1

=}

cos(q)

d

I~

sin(g)
d

O O = O
o O O O

Describe with words and a diagram what this particular projection does. Why is it called a two
point perspective transformation? What is the effect of the ¢ parameter?

The usual perspective has one vanishing point, and the transformation PPt can be used to produce
images such images. The following image shows (left) a one-point perspective scenario similar to P1Pt,
and (right) a projected image with a vanishing point at (0,0).

a) b)
VP

>
\
\
\
\
\
A\
\
N
N
NN
&
oM
NEAY
N\
N
“
i/
/s
V4
]

One the other hand P2Pt produces a scenario similar to the following image:

.\‘

Note the two finite perspective vanishing points, and hence the name "“two point perspective.”
Historically, perspective projections are categorized by the number of finite vanishing points. Alternately,

you can categorize them by the number of principal projection axes that are not perpendicular to the
view direction vector, n, which is the same as the number of principal perspective axes that pierce the
view plane.

The effect of the ¢ parameter is to transition between one- and two-point perspective, by effectively
“rotating the perspective effect.” Note that if ¢ = 0, then P2P*(q = 0) = PPt, so we're back to one-
point perspective. By increasing ¢ from zero, we gain the two-point perspective by effectively moving
the x-axis vanishing point in from infinity to a finite location. In fact, P2Pt is just a rotated version of
plpt.

P?Pt — Ry (—q)P'P*Ry(q).

The following figure illustrates the camera direction n whose angle 6 is akin to our g angle:

s

n

You can also compute the location of the vanishing points by taking points at infinity on the X, Y,
and Z axes, and see how they are mapped when P2?Pt is applied. In homogeneous coordinates, a point
at infinity is represented by placing zero in the W coordinate of a point vector. So, a point at infinity on
the X axis is represented as (1,0,0,0)’. When we apply P2P* to this point, we get (1,0,0, sin(q)/d)’.
In non-homogeneous coordinates, this point becomes (d/sin(q),0,0). So, the vanishing point for X
lies at the above coordinates. Similarily, the vanishing point for the Z axis lies at (0,0,d/cos(q))’.
However, when we apply P?Pt to a point at infinity on the Y axis we get (in homogeneous coordinates)
(0,1,0,0)’, and so this point remains at infinity. Since we are in a two-point projection system, it makes
sense that only two axes (X and Z) map to vanishing points, while one still approaches infinity.

Further information on multi-point perspective can be found on Brian Barsky's page:
http://wuw.cs.berkeley.edu/ barsky/perspective.html

3. OpenGL & Hierarchies (20 pts)

Describe what you think the following piece of display() code does. Feel free to mark up the code

and place coherent comments in the right margin. (Hint: It’s a classic hierarchical system.):
The example animates an Earth/Moon/Sun system. Commented code follows:

// Clear the current matrix (Modelview)
glloadIdentity();

// Back off eight units to be able to view from the origin.
glTranslatef (0.0, 0.0, -8.0);

// Rotate the plane of the elliptic
// (rotate the model’s plane about the x axis by fifteen degrees)
glRotatef(15.0, 1.0, 0.0, 0.0);

// Draw the sun-- as a yellow, wireframe sphere
glColor3f(1.0, 1.0, 0.0);
glutWireSphere(1.0, 15, 15);

// Draw the Earth

// First position it around the sun

//Use Day0fYear to determine its position
glRotatef (360.0*Day0fYear/365.0, 0.0, 1.0, 0.0);
glTranslatef(4.0, 0.0, 0.0);

glPushMatrix();// Save matrix state

// Second, rotate the earth on its axis.

//Use HourOfDay to determine its rotation.
glRotatef (360.0*Hour0OfDay/24.0, 0.0, 1.0, 0.0);
// Third, draw the earth as a wireframe sphere.
glColor3f(0.2, 0.2, 1.0);

glutWireSphere(0.4, 10, 10);

glPopMatrix() ;// Restore matrix state

// Draw the moon.

//Use Day0OfYear to control its rotation around the earth
glRotatef (360.0%12.0*Day0fYear/365.0, 0.0, 1.0, 0.0);
glTranslatef(0.7, 0.0, 0.0);

glColor3f(0.3, 0.7, 0.3);

glutWireSphere(0.1, 5, 5);

One snapshot of rendered animation is

4. Appearance Modeling (20 pts)
1. Mipmapping (6 pts): Derive the maximum amount of additional memory required to
mipmap a very large square image?

Mipmapping recursively blurs and downsamples an image so that in addition to the original image,
we must also store images that are one quarter the size of the image they were generated from.
The total memory required (in units of the original image's memory size) is

1+1+<1>2+ =il
4 \4) 7 1-4 773

so that no more than % additional memory is required.

2. Shading (7 pts): Describe the difference between Gouraud shading and Phong shading?

Gouraud shading computes vertex lighting using the Phong lighting equation and a normal com-
puted by averaging the normals of all adjacent faces, and then interpolates vertex colors accross
the polygon in the raster stage. On the other hand, Phong shading interpolates vertex normals
across the polygon, and then uses these normalized normal values to evaluate the Phong lighting
model at the per-pixel level. (Note that Phong shading is more expensive than Gouraud shading.)

3. Frequency-dependent lighting (7 pts): Our textbook Phong lighting model includes
several user-specified constant parameters, e.g., diffuse reflectance, k;. However, it can be
useful to allow these parameters to have frequency dependence. Describe one visual effect
this might afford?

SKIPPED. (Everyone given 7/7.)

5. Kochanek-Bartels Splines (20 points)

In 1984 D. Kochanek and R. Bartels introduced a new type of spline to give animators more control
over keyframe animation. These popular splines are nothing more than Hermite curves and a hand-

ful of formulas to calculate the tangents. Given a sequence of points, ..., P,_1, P, Pi+1, Pita, . . .,
the Hermite spline P(u) connecting the two points P; and P;;1 can be written as
2 -2 1 1 P;
-3 3 -2 -1 P;
_ 3,2 i+1
P(u) = (v u“ul) 0o 0o 1 0 T
1 0 0 O Tit1

where T; and T are the tangent vectors at the points. The two tangents that they chose on either
side of a point (for each adjacent spline) were as follows: the incoming (left) tangent to a point was

(1—a)(1-=0b)(1+c¢) (1-a)(14+0b)(1—c)
2 2

and the outgoing (right) tangent to a point was

(1—a)(1—2|—b)(1+c) (1_a)(1;b>(1_c)(Pz’+1—P¢)-

These splines are also referred to as TCB-Splines because they provide control over three impor-
tant behaviors:

TS; =

(P — Pi—1) +

(Piy1— F)

TD; = (P — Po1) +

e Tension: How sharply does the curve bend?
e Continuity: How rapid is the change in speed and direction?

e Bias: What is the direction of the curve as it passes through the keypoint?

Po e e Pé

The effects of the tension parameter.

Po e e Pg

The effects of the continuity parameter.

Po e e Pg

The effects of the bias parameter.

1. TCB Matching (10 pts): Match the above parameters to the TCB properties, and provide
some brief evidence (e.g., words, or using a diagram).

The parameters match in order: a=Tension, b=Continuity, c=Bias. Their effects are illustrated

with numbers here:
t= 12 t=—1/2
Po e ® P

P1 Ps
t=20

Figure VII1.26. The effects of the tension parameter.

o= —1/2 c=—1
Po e e D6

P1 Ps
=0

Figure VI1.27. The effects of the continuity parameter.

b:1/2 b:—1/2
Po e e Ps

P Ps
b=20

Figure VII.28. The effects of the bias parameter.

What follows is a very detailed discussion taken from 3D Computer Graphics: A mathematical
approach with OpenGL, by Sam Buss, Cambridge University Press, 2003.

The tension parameter, denoted #, adjusts the tightness or looseness of the curve. The default
value is ¢ = 0; positive values should be less than | and make the curve tighter, and negative
values make the curve looser. Mathematically, this has the effect of setting

Dq; = Dq; = (I : :
q = Dq; = (-1 EVF%‘*‘EVMQ g

that is, of multiplying the derivative by (1 — 7). Positive values of make the derivative smaller:
this has the effect of making the curve’s segments between points p; straighter and making
the velocity of the curve closer to zero at the points p;. Negative values of 1 make the curve
looser and can cause it to take bigger swings around interpolation points. The effect of setting
tension to 1/2 and to —1/2 is shown in Figure VII.26.

The continuity parameter is denoted c. If ¢ = 0, then the curve is C''-continuous; otherwise,
the curve has a corner at the control point p; and thus a discontinuous first derivative. The
mathematical effect of the continuity parameter 1s to set

1 —c¢ l +c¢
Dq, = v._1 + A\
qI 2 = 2 I+2
l+c¢ l1—c¢
Dq/ = D) Vit + B Vigl

Typically, —1 < ¢ < 0, and values ¢ < 0 have the effect of turning the slope of the curve
towards the straight line segments joining the interpolation points. Setting ¢ = —1 would
make the curve’s left and right first derivatives at p; match the slopes of the line segments
joining p; to p;—1 and p;+;.

The effect of ¢ = —1/2 and ¢ = —1 is shown in Figure VI1.27. The effect of c = —1/2
in this figure looks very similar to the effect of tension # = 1/2 in Figure VII.26; however,
the effects are not as similar as they look. With # = 1/2, the curve still has a continuous first
derivative, and the velocity of a particle following the curve with ¥ measuring time will be
slower near the point where r = 1/2. On the other hand, with ¢ = —1/2, the curve has a
“corner”’ where the first derivative is discontinuous, but there is no slowdown of velocity in the
vicinity of the corner.

The bias parameter b weights the two average velocities v, _
either undershoot or overshoot. The mathematical effect is

and v, : differently to cause

ral—

IL+b 1-5b
ql 2 vl7§+ 2 I+§

Dq;

The curve will have more tendency to overshoot p; if & > 0 and to undershoot it if 6 < 0. The
effect of bias b = 1/2 and bias b = —1/2 is shown in Figure VIL.28.

The tension, continuity, and bias parameters can be set independently to individual interpo-

lation points or uniformly applied to an entire curve. This allows the curve designer to modify

the curve either locally or globally. The effects of the three parameters can be applied together.

2. Convex hull (10 pts): Do TCB-Splines have the convex hull property?

No. Hermite splines do not lie inside their control polygon, and therefore the TCB-Splines do not
have the convex hull property. This is somewhat of a trick question because Hermite splines have
user-specified tangents that do not contribute to the control polygon; unlike Bezier splines which
have 4 points per spline segment (and use points to approximate tangents), Hermite splines only
have two points (and two tangents). Note that the only way for a single cubic Hermite segment
to lie within it’s two control points is if it is a straight line, i.e., a linear curve.

You could also see that TCB-Splines from the “bias figure” do not even lie within the convex hull
of the set of all control points, so certainly TCB-Splines do not have the convex hull property.

10

