Re2: A Type System for Refinements and Resources

Tristan Knoth 1 Di Wang 2 Nadia Polikarpova 1 Jan Hoffmann 2

1University of California, San Diego

2Carnegie Mellon University
Refinements: Functional Specification

Dependent Types

- Martin-Löf’s Type Theory (underlying NuPRL)
- Calculus of Inductive Constructions (underlying Coq)

Some Restricted Forms of Dependent Types

<table>
<thead>
<tr>
<th>Reference</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>[FP91]</td>
<td>Regular-tree based refinements for datatypes.</td>
</tr>
<tr>
<td>[HPS96]</td>
<td>Sized types. Only support “primitive” recursion.</td>
</tr>
<tr>
<td>[XP99]</td>
<td>Dependent ML. Indexed types with refinement sorts.</td>
</tr>
<tr>
<td>[CW00]</td>
<td>Indexed types with inductive kinds and type-level computation.</td>
</tr>
<tr>
<td>[RKJ08]</td>
<td>Liquid types. Predicate-abstraction refinements for base types.</td>
</tr>
</tbody>
</table>
Refinements: Functional Specification

Dependent Types

- Martin-Löf’s Type Theory (underlying NuPRL)
- Calculus of Inductive Constructions (underlying Coq)

Some Restricted Forms of Dependent Types

<table>
<thead>
<tr>
<th>Features</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular-tree based refinements for datatypes.</td>
<td>[FP91]</td>
</tr>
<tr>
<td>Sized types. Only support “primitive” recursion.</td>
<td>[HPS96]</td>
</tr>
<tr>
<td>Dependent ML. Indexed types with refinement sorts.</td>
<td>[XP99]</td>
</tr>
<tr>
<td>Indexed types with inductive kinds and type-level computation.</td>
<td>[CW00]</td>
</tr>
<tr>
<td>Sized types. Support general recursion.</td>
<td>[VH04]</td>
</tr>
<tr>
<td>Liquid types. Predicate-abstraction refinements for base types.</td>
<td>[RKJ08]</td>
</tr>
<tr>
<td>TiML. Indexed types with refinement kinds. Proved in Coq.</td>
<td>[WWC17]</td>
</tr>
</tbody>
</table>
Resources: Complexity Specification

Automatic Amortized Resource Analysis (AARA)

- Introduced by Hofmann and Jost in 2003 [HJ03].
- Extended to OCaml by Hoffmann et al. in 2017 [HDW17].

Some Restricted Forms of Dependent Types

<table>
<thead>
<tr>
<th>Reference</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>[FP91]</td>
<td>Regular-tree based refinements for datatypes.</td>
</tr>
<tr>
<td>[HPS96]</td>
<td>Sized types. Only support “primitive” recursion.</td>
</tr>
<tr>
<td>[XP99]</td>
<td>Dependent ML. Indexed types with refinement sorts.</td>
</tr>
<tr>
<td>[CW00]</td>
<td>Indexed types with inductive kinds and type-level computation.</td>
</tr>
<tr>
<td>[RKJ08]</td>
<td>Liquid types. Predicate-abstraction refinements for base types.</td>
</tr>
</tbody>
</table>
Resources: Complexity Specification

Automatic Amortized Resource Analysis (AARA)

- Introduced by Hofmann and Jost in 2003 [HJ03].
- Extended to OCaml by Hoffmann et al. in 2017 [HDW17].

Some Restricted Forms of Dependent Types

<table>
<thead>
<tr>
<th>Reference</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>[FP91]</td>
<td>Regular-tree based refinements for datatypes.</td>
</tr>
<tr>
<td>[HPS96]</td>
<td>Sized types. Only support “primitive” recursion.</td>
</tr>
<tr>
<td>[XP99]</td>
<td>Dependent ML. Indexed types with refinement sorts.</td>
</tr>
<tr>
<td>[CW00]</td>
<td>Indexed types with inductive kinds and type-level computation.</td>
</tr>
<tr>
<td>[RKJ08]</td>
<td>Liquid types. Predicate-abstraction refinements for base types.</td>
</tr>
</tbody>
</table>
Re2: Liquid Types + AARA

Features

- Polymorphic refinement types over logical qualifiers.
- Affine types with linear potential annotations.
- Potentials are expressed in the same refinement language.

Limitations

- Limited by the capability of liquid types and AARA.
- Liquid types: Rely on decidable refinement logic.
- AARA: Currently limited to polynomial (and exponential) complexity.
Re²: Liquid Types + AARA

Features

- Polymorphic refinement types over logical qualifiers.
- Affine types with linear potential annotations.
- Potentials are expressed in the same refinement language.

Limitations

- Limited by the capability of liquid types and AARA.
- Liquid types: Rely on decidable refinement logic.
- AARA: Currently limited to polynomial (and exponential) complexity.
A Running Example: List Append

\[
\text{append} \equiv \forall \alpha. L(\alpha) \to L(\alpha) \to L(\alpha)
\]

\[
\text{append } \ell_1 \ell_2 = \text{match } \ell_1 \text{ with }
\]
\[
| [] \rightarrow \ell_2 \\
| x :: xs \rightarrow \text{let } ys = \text{append } xs \ell_2 \text{ in } (x :: ys)
\]

- Functionality: size of \(\text{append}(\ell_1)(\ell_2)\) is the sum of sizes of \(\ell_1\) and \(\ell_2\)
- Complexity: \(\text{append}(\ell_1)(\ell_2)\) makes \(2 \cdot |\ell_1|\) function calls
Review of Liquid Types

\[
B ::= \text{bool} \quad \text{base type of Booleans} \\
L(T) \quad \text{base type of lists} \\
\alpha \quad \text{type variable} \\
T ::= \{v : B \mid \psi\} \quad \text{refinement type} \\
x : T_x \to T \quad \text{dependent arrow type} \\
S ::= T \quad \text{monomorphic type} \\
\forall \alpha. S \quad \text{polymorphic type} \\
\psi ::= \star \leq v \mid v < \star \mid v < \text{size}(\star) \mid \cdots \\
\psi_1 \land \psi_2 \quad \text{conjunction}
\]
Review of Liquid Types

\[
append :: \forall \alpha. \ell_1 : L(\alpha) \to \ell_2 : L(\alpha) \to \{ v : L(\alpha) \mid \text{size}(v) = \text{size}(\ell_1) + \text{size}(\ell_2) \}
\]

\[
append \ \ell_1 \ \ell_2 = \text{match} \ \ell_1 \ \text{with}
\]

\[
\mid [] \to \{ \ell_2 : L(\alpha); \text{size}(\ell_1) = 0 \}
\]

\[
\ell_2
\]

\[
\{ v : L(\alpha) \mid \text{size}(v) = \text{size}(\ell_2) \} <: \{ v : L(\alpha) \mid \text{size}(v) = \text{size}(\ell_1) + \text{size}(\ell_2) \}
\]

\[
\mid x :: xs \to \{ \ell_2 : L(\alpha), x : \alpha, xs : L(\alpha); \text{size}(\ell_1) = \text{size}(xs) + 1 \}
\]

\[
\text{let} \ ys = append \ xs \ \ell_2 \ \text{in}
\]

\[
\{ x : \alpha, ys : \{ v : L(\alpha) \mid \text{size}(v) = \text{size}(xs) + \text{size}(\ell_2) \}; \text{size}(\ell_1) = \text{size}(xs) + 1 \}
\]

\[
(x :: ys)
\]

\[
\{ v : L(\alpha) \mid \text{size}(v) = \text{size}(ys) + 1 \}
\]

\[
<: \{ v : L(\alpha) \mid \text{size}(v) = \text{size}(xs) + \text{size}(\ell_2) + 1 \}
\]

\[
<: \{ v : L(\alpha) \mid \text{size}(v) = \text{size}(\ell_1) + \text{size}(\ell_2) \}
\]
Review of AARA

\[
\begin{align*}
B & ::= \text{bool} & \text{base type of Booleans} \\
L(R) & \text{base type of lists} \\
T & ::= B & \text{base type} \\
R_1 & \rightarrow R_2 & \text{arrow type} \\
R & ::= T^q & \text{resource-annotated type}
\end{align*}
\]
Review of AARA

\[append \colon L(\text{bool}^2) \to L(\text{bool}^0) \to L(\text{bool}^0)\]

\[append \ell_1 \ell_2 = \text{match } \ell_1 \text{ with}\]

\[\begin{array}{ll}
| \; [] & \to \\
& \{\ell_2 : L(\text{bool}^0); 0\}
\end{array}\]

\[\ell_2\]

\[L(\text{bool}^0)\]

\[| \; x :: xs & \to \\
& \{\ell_2 : L(\text{bool}^0), x : \text{bool}, xs : L(\text{bool}^2); 2\}
\]

\[\text{let } ys = append xs \ell_2 \text{ in}\]

\[\{x : \text{bool}, ys : L(\text{bool}^0); 0\}\]

\[(x :: ys)\]

\[L(\text{bool}^0)\]
Liquid Types + AARA

<table>
<thead>
<tr>
<th>Liquid Types</th>
<th>AARA</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B ::= \text{bool}$</td>
<td>$B ::= \text{bool}$</td>
</tr>
<tr>
<td>$L(T)$</td>
<td>$L(R)$</td>
</tr>
<tr>
<td>α</td>
<td></td>
</tr>
<tr>
<td>$T ::= {v : B \mid \psi}$</td>
<td>$T ::= B$</td>
</tr>
<tr>
<td>$x : T_x \rightarrow T$</td>
<td>$R_1 \rightarrow R_2$</td>
</tr>
<tr>
<td>$S ::= T$</td>
<td>$R ::= T^q$</td>
</tr>
<tr>
<td>$\forall \alpha. S$</td>
<td></td>
</tr>
<tr>
<td>$\psi ::= \cdots$</td>
<td></td>
</tr>
<tr>
<td>$\psi_1 \land \psi_2$</td>
<td></td>
</tr>
</tbody>
</table>
\(\mathbb{R}^2: \) Liquid Types + AARA

\[
\begin{align*}
B & ::= \text{bool} & & \text{base type of Booleans} \\
L(R) & & & \text{base type of lists} \\
\alpha & & & \text{type variable} \\
T & ::= \{v : B \mid \psi\} & & \text{refinement type} \\
x : \ R_x \to R & & & \text{dependent arrow type} \\
R & ::= T^\phi & & \text{resource-annotated type} \\
S & ::= R & & \text{monomorphic type} \\
\forall \alpha. S & & & \text{polymorphic type} \\
\psi & ::= \star \leq v \mid v < \star \mid v < \text{size}(\star) \mid \cdots \\
\psi_1 \land \psi_2 & & & \text{conjunction} \\
\phi & ::= v \mid \star \mid \text{size}(\star) \mid \cdots \\
\phi_1 + \phi_2 & & & \text{addition}
\end{align*}
\]
Re²: Liquid Types + AARA

\[\text{append} :: \forall \alpha. \ell_1 : L(\alpha^2) \rightarrow \ell_2 : L(\alpha^0) \rightarrow \{\nu : L(\alpha^0) \mid \text{size}(\nu) = \text{size}(\ell_1) + \text{size}(\ell_2)\}\]

\[\text{append } \ell_1 \ell_2 = \text{match } \ell_1 \text{ with}
\]

\[
\mid [] \rightarrow
\quad \{\ell_2 : L(\alpha^0); \text{size}(\ell_1) = 0; 0\}
\]

\[
\ell_2
\quad \{\nu : L(\alpha^0) \mid \text{size}(\nu) = \text{size}(\ell_2)\} \triangleleft \{\nu : L(\alpha^0) \mid \text{size}(\nu) = \text{size}(\ell_1) + \text{size}(\ell_2)\}
\]

\[
\mid x :: xs \rightarrow
\quad \{\ell_2 : L(\alpha^0), x : \alpha, xs : L(\alpha^2); \text{size}(\ell_1) = \text{size}(xs) + 1; 2\}
\]

\[\text{let } ys = \text{append } xs \ell_2 \text{ in}
\]

\[
\{x : \alpha, ys : \{\nu : L(\alpha^0) \mid \text{size}(\nu) = \text{size}(xs) + \text{size}(\ell_2)\}; \text{size}(\ell_1) = \text{size}(xs) + 1; 0\}\]

\[(x :: ys)
\quad \{\nu : L(\alpha^0) \mid \text{size}(\nu) = \text{size}(ys) + 1\}
\]

\[\triangleleft \{\nu : L(\alpha^0) \mid \text{size}(\nu) = \text{size}(xs) + \text{size}(\ell_2) + 1\}
\]

\[\triangleleft \{\nu : L(\alpha^0) \mid \text{size}(\nu) = \text{size}(\ell_1) + \text{size}(\ell_2)\}\]
Re²: Liquid Types + AARA

\[
\text{append} :: \forall \alpha. \ell_1 : L(\alpha^2) \rightarrow \ell_2 : L(\alpha^0) \rightarrow \{ v : L(\alpha^0) \mid \text{size}(v) = \text{size}(\ell_1) + \text{size}(\ell_2) \}
\]

\[
\text{append} :: \forall \alpha. \ell_1 : L(\alpha)^2 \cdot \text{size}(\nu) \rightarrow \ell_2 : L(\alpha) \rightarrow \{ v : L(\alpha) \mid \text{size}(v) = \text{size}(\ell_1) + \text{size}(\ell_2) \}
\]

\[
\text{append} :: \forall \alpha. \ell_1 : L(\alpha) \rightarrow \ell_2 : L(\alpha)^2 \cdot \text{size}(\ell_1) \rightarrow \{ v : L(\alpha) \mid \text{size}(v) = \text{size}(\ell_1) + \text{size}(\ell_2) \}
\]
Dynamic Semantics: Resource-Aware, Small-Step

\[\langle e, p \rangle \rightarrow \langle e', p' \rangle\]

(E:Tick)

\[
\begin{align*}
p & \geq 0 \\
p - c & \geq 0
\end{align*}
\]

\[\langle \text{tick } c \text{ in } e, p \rangle \rightarrow \langle e, p - c \rangle\]
Dynamic Semantics: Resource-Aware, Small-Step

\[\langle e, p \rangle \mapsto \langle e', p' \rangle \]

(E:Tick)

\[
\begin{align*}
p & \geq 0 \\
p - c & \geq 0
\end{align*}
\]

\[\langle \text{tick } c \text{ in } e, p \rangle \mapsto \langle e, p - c \rangle \]
Expressions in Re^2 are in A-Normal-Form, i.e., syntactic forms in non-tail positions allow only variables and values.

\[
\Gamma; \Psi; \Phi \vdash e : S
\]

\[\begin{align*}
(\text{T:TRUE}) & \quad (\text{T:NIL}) \\
\Gamma; \Psi; \Phi \vdash \text{true} : \{ v : \text{bool} \mid v = T \} & \quad \Gamma \vdash R \text{ type} \\
& \quad \Gamma; \Psi; \Phi \vdash \text{nil} : \{ v : L(R) \mid \text{size}(v) = 0 \}
\end{align*}\]
Static Semantics

Language Design

Expressions in Re^2 are in A-Normal-Form, i.e., syntactic forms in non-tail positions allow only variables and values.

\[\Gamma; \Psi; \Phi \vdash e : S \]

\[\frac{\text{(T:True)}}{\Gamma; \Psi; \Phi \vdash \text{true} : \{ \nu : \text{bool} | \nu = \top \}} \]

\[\frac{\text{(T:Nil)}}{\Gamma; \Psi; \Phi \vdash \text{nil} : \{ \nu : L(R) | \text{size}(\nu) = 0 \}} \]
Expressions in Re^2 are in A-Normal-Form, i.e., syntactic forms in non-tail positions allow only variables and values.

\[
\Gamma; \Psi; \Phi \vdash e : S
\]

\(\text{(T:TRUE)}\)
\[
\Gamma; \Psi; \Phi \vdash \text{true} : \{v : \text{bool} \mid v = \top\}
\]

\(\text{(T:NIL)}\)
\[
\Gamma; \Psi; \Phi \vdash \text{nil} : \{v : L(R) \mid \text{size}(v) = 0\}
\]

\(\Gamma \vdash R \text{ type}\)
Static Semantics

(T:Cond)
\[
\begin{align*}
\Gamma(x) &= \text{bool} & \Gamma; \Psi \land x; \Phi \vdash e_1 : R \\
\Gamma; \Psi \land \neg x; \Phi \vdash e_2 : R \\
\hline
\Gamma; \Psi; \Phi \vdash \textbf{if } x \textbf{ then } e_1 \textbf{ else } e_2 : R
\end{align*}
\]

(T:AppFO)
\[
\begin{align*}
\Gamma(x_1) &= x : \{v : B \mid \psi\}^\phi \rightarrow R & \Gamma(x_2) &= \{v : B \mid \psi\} \\
\hline
\Gamma; \top; [x_2/v] \phi \vdash x_1(x_2) : R
\end{align*}
\]

(T:MatL)
\[
\begin{align*}
\Gamma(x) &= L(T^\phi) & \Gamma; \Psi \land \text{size}(x) = 0; \Phi \vdash e_1 : R' \\
\Gamma, x_1 : T, x_2 : L(T^\phi); \Psi \land \text{size}(x) = \text{size}(x_2) + 1; \Phi + [x_1/v] \phi \vdash e_2 : R' \\
\hline
\Gamma; \Psi; \Phi \vdash \textbf{match } x \textbf{ with } \{[] \rightarrow e_1 \mid x_1 :: x_2 \rightarrow e_2\} : R'
\end{align*}
\]
Static Semantics

(T:Cond)
\[
\begin{align*}
\Gamma(x) &= \text{bool} & \Gamma; \Psi \land x; \Phi \vdash e_1 : R \\
\Gamma; \Psi \land \neg x; \Phi \vdash e_2 : R
\end{align*}
\]
\[
\Gamma; \Psi; \Phi \vdash \text{if } x \text{ then } e_1 \text{ else } e_2 : R
\]

(T:AppFO)
\[
\begin{align*}
\Gamma(x_1) &= x : \{v : B | \psi\}^\phi \rightarrow R & \Gamma(x_2) &= \{v : B | \psi\} \\
\Gamma; \Psi \land \text{size}(x) = 0; \Phi \vdash e_1 : R' \\
\Gamma, x_1 : T, x_2 : L(T^\phi); \Psi \land \text{size}(x) = \text{size}(x_2) + 1; \Phi + [x_1/v]\phi \vdash e_2 : R'
\end{align*}
\]
\[
\Gamma; \Psi; \Phi \vdash \text{match } x \text{ with } \{ [] \mapsto e_1 \mid x_1 :: x_2 \mapsto e_2 \} : R'
\]
Static Semantics

(T:Cond)
\[\begin{array}{llll}
\Gamma(x) = \text{bool} & \Gamma; \Psi \land x; \Phi \vdash e_1 : R & \Gamma; \Psi \land \neg x; \Phi \vdash e_2 : R \\
\hline
\Gamma; \Psi; \Phi \vdash \text{if } x \text{ then } e_1 \text{ else } e_2 : R
\end{array} \]

(T:AppFO)
\[\begin{array}{ll}
\Gamma(x_1) = x : \{v : B | \psi\}^\phi \rightarrow R & \Gamma(x_2) = \{v : B | \psi\} \\
\hline
\Gamma; \top; [x_2/v] \phi \vdash x_1(x_2) : R
\end{array} \]

(T:MatchL)
\[\begin{array}{llll}
\Gamma(x) = L(T^\phi) & \Gamma; \Psi \land \text{size}(x) = 0; \Phi \vdash e_1 : R' \\
\Gamma, x_1 : T, x_2 : L(T^\phi); \Psi \land \text{size}(x) = \text{size}(x_2) + 1; \Phi + [x_1/v] \phi \vdash e_2 : R' \\
\hline
\Gamma; \Psi; \Phi \vdash \text{match } x \text{ with } \{[] \leftarrow e_1 \mid x_1 :: x_2 \leftarrow e_2\} : R'
\end{array} \]
Meta Theory

Progress

If $q \vdash e : S$ and $p \geq q$, then either e is a value or there exist e' and p' such that $\langle e, p \rangle \mapsto \langle e', p' \rangle$.

Preservation

If $q \vdash e : S$, $p \geq q$, and $\langle e, p \rangle \mapsto \langle e', p' \rangle$, then $\vdash p' \vdash e' : S$.

Consistency

If $q \vdash e : S$ and e is a value, then e satisfies the conditions indicated by S and q is greater than or equal to the potential stored in ν with respect to S.
Meta Theory

Progress

If \(\cdot; \cdot; q \vdash e : S \) and \(p \geq q \), then either \(e \) is a value or there exist \(e' \) and \(p' \) such that \(\langle e, p \rangle \mapsto \langle e', p' \rangle \).

Preservation

If \(\cdot; \cdot; q \vdash e : S \), \(p \geq q \), and \(\langle e, p \rangle \mapsto \langle e', p' \rangle \), then \(\cdot; \cdot; p' \vdash e' : S \).

Consistency

If \(\cdot; \cdot; q \vdash e : S \) and \(e \) is a value, then \(e \) satisfies the conditions indicated by \(S \) and \(q \) is greater than or equal to the potential stored in \(v \) with respect to \(S \).
Meta Theory

Progress

If \(q \vdash e : S \) and \(p \geq q \), then either \(e \) is a value or there exist \(e' \) and \(p' \) such that \(\langle e, p \rangle \mapsto \langle e', p' \rangle \).

Preservation

If \(q \vdash e : S \), \(p \geq q \), and \(\langle e, p \rangle \mapsto \langle e', p' \rangle \), then \(q \vdash e' : S \).

Consistency

If \(q \vdash e : S \) and \(e \) is a value, then \(e \) satisfies the conditions indicated by \(S \) and \(q \) is greater than or equal to the potential stored in \(v \) with respect to \(S \).
Interpretation into Refinement Logic

Ideas

• Reflect interpretable values in the refinement logic.
• Boolean values are interpreted as \{\top, \bot\}. Lists are interpreted as sizes.
• Develop a denotational semantics for the refinement and resource annotations.
Interpretation into Refinement Logic

\[\mathcal{I}(\text{true}) = \top \]
\[\mathcal{I}(\text{false}) = \bot \]
\[\mathcal{I}(\text{nil}) = 0 \]
\[\mathcal{I}(\text{cons}(v_1, v_2)) = \mathcal{I}(v_2) + 1 \]

- \(\vdash b : \{ v : \text{bool} \mid \psi \} \) indicates that \(\models [\mathcal{I}(b)/v] \psi \).
- \(\vdash [b_1, \ldots, b_n] : \{ v : L(\{ v : \text{bool} \mid \psi' \}) \mid \psi \} \) indicates that \(\models [n/\text{size}(v)] \psi \wedge \bigwedge_{i=1}^{n}[\mathcal{I}(b_i)/v] \psi' \).
Interpretation into Refinement Logic

\[\mathcal{I}(\text{true}) = \top \quad \mathcal{I}(\text{false}) = \bot \quad \mathcal{I}(\text{nil}) = 0 \quad \mathcal{I}(\text{cons}(v_1, v_2)) = \mathcal{I}(v_2) + 1 \]

- \(\vdash b : \{ v : \text{bool} \mid \psi \} \) indicates that \(\models [\mathcal{I}(b)/v] \psi \).
- \(\vdash [b_1, \ldots, b_n] : \{ v : L(\{ v : \text{bool} \mid \psi' \}) \mid \psi \} \) indicates that \(\models [n/\text{size}(v)] \psi \land \bigwedge_{i=1}^{n} [\mathcal{I}(b_i)/v] \psi' \).
Interpretation into Refinement Logic

Consistency: Intuition

If $\cdot ; \cdot ; q \vdash e : S$ and e is a value, then ν satisfies the conditions indicated by S and q is greater than or equal to the potential stored in ν with respect to S.

Consistency: Formalization

If $\cdot ; \cdot ; q \vdash e : S$ and e is a value, the logical refinement of S is ψ, and the resource annotation of S is ϕ, then $\models [\mathcal{I}(e)/\nu] \psi$ and also $\models q \geq [\mathcal{I}(e)/\nu] \phi$.
Interpretation into Refinement Logic

Consistency: Intuition

If ·; ·; q ⊨ e : S and e is a value, then v satisfies the conditions indicated by S and q is greater than or equal to the potential stored in v with respect to S.

Consistency: Formalization

If ·; ·; q ⊨ e : S and e is a value, the logical refinement of S is ψ, and the resource annotation of S is φ, then \(\models [\mathcal{I}(e)/v]\psi \) and also \(\models q \geq [\mathcal{I}(e)/v]\phi \).