
PMAF: An Algebraic Framework for Static Analysis
of Probabilistic Programs

Di Wang1, Jan Hoffmann1, and Thomas Reps2,3

1Carnegie Mellon University
2University of Wisconsin

3GrammaTech, Inc.

Abstract
Automatically establishing that a probabilistic program satisfies some property 𝜙 is a

challenging problem. While a sampling-based approach—which involves running the
program repeatedly—can suggest that 𝜙 holds, to establish that the program satisfies 𝜙,
analysis techniques must be used. Despite recent successes, probabilistic static analyses
are still more difficult to design and implement than their deterministic counterparts.
This paper presents a framework, called PMAF, for designing, implementing, and proving
the correctness of static analyses of probabilistic programs with challenging features such
as recursion, unstructured control-flow, divergence, nondeterminism, and continuous
distributions. PMAF introduces pre-Markov algebras to factor out common parts of
different analyses. To perform interprocedural analysis and to create procedure summaries,
PMAF extends ideas from non-probabilistic interprocedural dataflow analysis to the
probabilistic setting. One novelty is that PMAF is based on a semantics formulated in
terms of a control-flow hyper-graph for each procedure, rather than a standard control-
flow graph. To evaluate its effectiveness, PMAF has been used to reformulate and
implement existing intraprocedural analyses for Bayesian-inference and the Markov
decision problem, by creating corresponding interprocedural analyses. Additionally,
PMAF has been used to implement a new interprocedural linear expectation-invariant
analysis. Experiments with benchmark programs for the three analyses demonstrate that
the approach is practical.

Keywords— Program analysis, probabilistic programming, expectation invariant, pre-Markov
algebra

1 Introduction
Probabilistic programming is becoming increasingly popular because it provides a rich framework
for implementing randomized algorithms [Barthe et al. 2016b], cryptography protocols [Barthe et al.
2009], cognitive [Gordon et al. 2014] models, and machine learning [Ghahramani 2015] algorithms.
Static analysis of probabilistic programs has received a lot of attention [Brázdil et al. 2014, 2015;
Chakarov and Sankaranarayanan 2013, 2014; Chatterjee et al. 2016a,b, 2017; Claret et al. 2013;
Cousot and Monerau 2012; Etessami et al. 2008; Etessami and Yannakakis 2005, 2015; Ferrer Fioriti
and Hermanns 2015; Gehr et al. 2016; Kaminski et al. 2016; Katoen et al. 2010; Kattenbelt et al. 2009;

1

Olmedo et al. 2016; Sankaranarayanan et al. 2013]. Unfortunately, analyses of probabilistic programs
have usually been standalone developments, and it is not immediately clear how different techniques
relate.

This paper presents a framework, which we call PMAF (for Pre-Markov Algebra Framework), for
designing, implementing, and proving the correctness of static analyses of probabilistic programs.
We show how several analyses that may appear to be quite different, can be formulated—and
generalized—using PMAF. Examples include Bayesian inference [Claret et al. 2013; Etessami and
Yannakakis 2005, 2015], Markov decision problem with rewards [Puterman 1994], and probabilistic-
invariant generation [Chakarov and Sankaranarayanan 2013; Chatterjee et al. 2016a; Katoen et al.
2010].

New constructs in probabilistic programs are of two kinds, to express data randomness (e.g., sam-
pling) and control-flow randomness (e.g., probabilistic choice). To express both features, we introduce a
new algebraic structure, called a pre-Markov algebra, which is equipped with operations corresponding
to control-flow actions in probabilistic programs: sequencing, conditional-choice, probabilistic-choice,
and nondeterministic-choice. PMAF is based on a new fixed-point semantics that models challenging
features such as divergence, unstructured control-flow, nondeterminism, and continuous distri-
butions. To establish correctness, we introduce probabilistic abstractions between two pre-Markov
algebras that represent the concrete and abstract semantics.

Our work shows how, with suitable extensions, a blending of ideas from prior work on (i) static
analysis of single-procedure probabilistic programs, and (ii) interprocedural dataflow analysis of
standard (non-probabilistic) programs can be used to create a framework for interprocedural analysis
of multi-procedure probabilistic programs. In particular,

• The semantics on which PMAF is based is an interpretation of the control-flow graphs (CFGs)
for a program’s procedures. One insight is to treat each CFG as a hyper-graph rather than a
standard graph.

• The abstract semantics is formulated so that the analyzer can obtain procedure summaries.

Hyper-graphs contain hyper-edges, each of which consists of one source node and possibly several
destination nodes. Conditional-branching, probabilistic-branching, and nondeterministic-branching
statements are represented by hyper-edges. In ordinary CFGs, nodes can also have several successors;
however, the operator applied at a confluence point 𝑞 when analyzing a CFG is join (⊔), and the
paths leading up to 𝑞 are analyzed independently. For reasons discussed in §2.3, PMAF is based
on a backward analysis, so the confluence points represent the program’s branch points (i.e., for
if-statements and while-loops). If the CFG is treated as a graph, join would be applied at each
branch-node, and the subpaths from each successor would be analyzed independently. In contrast,
when the CFG is treated as a hyper-graph, the operator applied at a probabilistic-choice node with
probability 𝑝 is 𝜆𝑎.𝜆𝑏.𝑎 𝑝⊕ 𝑏—where 𝑝⊕ is not join, but an operator that weights the two successor
paths by 𝑝 and 1− 𝑝. For instance, in Fig. 2(b), the hyper-edge ⟨𝑣0, {𝑣1,𝑣5}⟩ generates the inequality
A [𝑣0] ⊒ A [𝑣1] 0.75⊕A [𝑣5], for some analysis A . This approach allows the (hyper-)subpaths from
the successors to be analyzed jointly.

To perform interprocedural analyses of probabilistic programs, we adopt a common practice
from interprocedural analysis of standard non-probabilistic programs: the abstract domain is a
two-vocabulary domain (each value represents an abstraction of a state transformer) rather than a
one-vocabulary domain (each value represents an abstraction of a state). In the algebraic approach, an
element in the algebra represents a two-vocabulary transformer. Elements can be “multiplied” by
the algebra’s formal multiplication operator, which is typically interpreted as (an abstraction of) the
reversal of transformer composition. The transformer obtained for the set of hyper-paths from the
entry of procedure 𝑃 to the exit of 𝑃 is the summary for 𝑃 .

In the case of loops and recursive procedures, PMAF uses widening to ensure convergence. Here
our approach is slightly non-standard: we found that for some instantiations of the framework, we
could improve precision by using different widening operators for loops controlled by conditional,

2

1 INTRODUCTION 3

probabilistic, and nondeterministic branches.
The main advantage of PMAF is that instead of starting from scratch to create a new analysis,

you only need to instantiate PMAF with the implementation of a new pre-Markov algebra. To
establish soundness, you have to establish some well-defined algebraic properties, and can then
rely on the soundness proof of the framework. To implement your analysis, you can rely on PMAF
to perform sound interprocedural analysis, with respect to the abstraction that you provided. The
PMAF implementation supplies common parts of different static analyses of probabilistic programs,
e.g., efficient iteration strategies with widenings and interprocedural summarization. Moreover, any
improvements made to the PMAF implementation immediately translate into improvements to all of
its instantiations.

To evaluate PMAF, we created a prototype implementation, and reformulated two existing intrapro-
cedural probabilistic-program analyses—the Bayesian-inference algorithm proposed by Claret et al.
[Claret et al. 2013], and Markov decision problem with rewards [Puterman 1994]—to fit into PMAF:
Reformulation involved changing from the one-vocabulary abstract domains proposed in the original
papers to appropriate two-vocabulary abstract domains. We also developed a new program analysis:
linear expectation-invariant analysis (LEIA). Linear expectation-invariants are equalities involving
expected values of linear expressions over program variables.

A related approach to static analysis of probabilistic programs is probabilistic abstract interpretation
(PAI) [Cousot and Monerau 2012; Monniaux 2000, 2001, 2003], which lifts standard program analysis
to the probabilistic setting. PAI is both general and elegant, but the more concrete approach developed
in our work on PMAF has a couple of advantages. First, PMAF is algebraic and provides a simple
and well-defined interface for implementing new abstractions. We provide an actual implementation
of PMAF that can be easily instantiated to specific abstract domains. Second, PMAF is based on
a different semantic foundation, which follows the standard interpretation of non-deterministic
probabilistic programs in domain theory [den Hartog and de Vink 1999; Jones 1989; Jones and
Plotkin 1989; Mislove 2000; Mislove et al. 2004; Tix et al. 2009].

The concrete semantics of PAI isolates probabilistic choices from the non-probabilistic part of
the semantics by interpreting programs as distributions 𝑃 : Ω→ (𝐷→𝐷), where Ω is a probability
space and 𝐷→𝐷 is the space of non-probabilistic transformers. As a result, the PAI interpretation
of the following non-deterministic program is that with probability 1

2 , we have a program that
non-deterministically returns 1 or 2; with probability 1

4 , we have a program that returns 1; and with
probability 1

4 , a program that returns 2.

if ⋆ then if prob(1
2) then return 1 else return 2

else if prob(1
2) then return 1 else return 2 fi

In contrast, the semantics used in PMAF resolves non-determinism on the outside, and thus the
semantics of the program is that it returns 1 with probability 1

2 and 2 with 1
2 . As a result, one can

conclude that the expected return value 𝑟 is 1.5. However, PAI—and every static analysis based on
PAI—can only conclude 𝑟 ∈ {1.25,1.5,1.75}.
Contributions. Our work makes five main contributions:

• We present a new denotational semantics for probabilistic programs, which is capable of
expressing several nontrivial features of probabilistic-programming languages.

• We develop PMAF, an algebraic framework for static analyses of probabilistic programs. PMAF
provides a novel approach to analyzing probabilistic programs with non-deterministic choice
(§4.1 and §4.2) and general recursion (§4.3) (as well as continuous sampling and unstructured
control-flow).

• We show that two previous intraprocedural probabilistic program analyses can be reformulated
to fit into PMAF, thereby creating new interprocedural analyses for such previous work.

𝑏1 ∼ Bernoulli(0.5);
𝑏2 ∼ Bernoulli(0.5);
while (¬𝑏1 ∧¬𝑏2) do
𝑏1 ∼ Bernoulli(0.5);
𝑏2 ∼ Bernoulli(0.5)

od

while prob(3
4) do

𝑧 ∼ Uniform(0,2);
if ⋆ then 𝑥 := 𝑥+ 𝑧
else 𝑦 := 𝑦 + 𝑧
fi

od
(𝑎) (𝑏)

Fig. 1: (a) Boolean probabilistic program; (b) Arithmetic probabilistic program

• We develop a new program analysis, linear expectation-invariant analysis, by means of a
suitable instantiation of PMAF. This analysis is more general than previous approaches to
finding expectation invariants.

• We report on experiments with PMAF that show that the framework is easy to instantiate and
works effectively. The experiments also show that linear expectation-invariant analysis can
derive nontrivial invariants.

2 Overview
In this Section, we familiarize the reader with probabilistic programming, and briefly introduce two
different static analyses of probabilistic programs: Bayesian inference and linear expectation invariant
analysis. We then informally explain the main ideas behind our algebraic framework for analyzing
probabilistic programs and show how it generalizes the aforementioned analyses.

2.1 Probabilistic Programming
Probabilistic programs contain two sources of randomness: (i) data randomness, i.e., the ability to
draw random values from distributions, and (ii) control-flow randomness, i.e., the ability to branch
probabilistically. A variety of probabilistic programming languages and systems has been proposed
[Carpenter et al. 2017; Goodman et al. 2008; Kok et al. 2007; Milch et al. 2005; Minka et al. 2014;
Pfeffer 2005]. In this paper, our prototypical language is imperative.

We use the Boolean program in Fig. 1a to illustrate data randomness. In the program, 𝑏1 and 𝑏2 are
two Boolean-valued variables. The sampling statement 𝑥 ∼ Dist(𝜃̄) draws a value from a distribution
Dist with a vector of parameters 𝜃̄, and assigns it to the variable 𝑥, e.g., 𝑏1 ∼ Bernoulli(0.5) assigns
to 𝑏1 a random value drawn from a Bernoulli distribution with mean 0.5. Intuitively, the program
tosses two fair Boolean-valued coins repeatedly, until one coin is true.

We introduce control-flow randomness through the arithmetic program in Fig. 1b. In the program,
𝑥, 𝑦, and 𝑧 are real-valued variables. As in the previous example, we have sampling statements,
and Uniform(𝑙, 𝑟) represents a uniform distribution on the interval (𝑙, 𝑟). The probabilistic choice
prob(𝑝) returns true with probability 𝑝 and false with probability 1− 𝑝. Moreover, the program also
exhibits nondeterminism, as the symbol ⋆ stands for a nondeterministic choice that can behave like
standard nondeterminism, as well as an arbitrary probabilistic choice [McIver and Morgan 2005,
§6.6]. Intuitively, the program describes two players 𝑥 and 𝑦 playing a round-based game that ends
with probability 1

4 after each round. In each round, either player 𝑥 or player 𝑦 gains some reward
that is uniformly distributed on [0,2].

2.2 Two Static Analyses

Bayesian inference (BI). Probabilistic programs can be seen as descriptions of probability distribu-
tions [Carpenter et al. 2017; Goodman et al. 2008; Minka et al. 2014]. For a Boolean probabilistic pro-

4

2.3 The Algebraic Framework 5

𝑣0 𝑣1 𝑣2

𝑣3

𝑏1,𝑏2 ∼ B(0.5)

𝑓 𝑎𝑙𝑠𝑒

𝑡𝑟𝑢𝑒¬𝑏1 ∧¬𝑏2

𝑏1,𝑏2 ∼ B(0.5)
𝑣4

𝑣5
𝑣0

𝑣1 𝑣2

𝑣3

𝑡𝑟𝑢𝑒
𝑧 ∼ U(0,2)

𝑝𝑟𝑜𝑏[3
4] 𝑓 𝑎𝑙𝑠𝑒

𝑥 := 𝑥+ 𝑧

𝑦 := 𝑦 + 𝑧

𝑛𝑑𝑒𝑡

(a) (b)

Fig. 2: (a) Control-flow hyper-graph of the program in Fig. 1a. (b) Control-flow hyper-graph of the program
in Fig. 1b.

gram, such as the one in Fig. 1a, Bayesian-inference analysis [Claret et al. 2013] calculates the distribu-
tion over variable valuations at the end of the program, conditioned on the program terminating. The
inferred probability distribution is called the posterior probability distribution. The program in Fig. 1a
specifies the posterior distribution over the variables (𝑏1,𝑏2) given by: P[𝑏1 = 𝑓 𝑎𝑙𝑠𝑒,𝑏2 = 𝑓 𝑎𝑙𝑠𝑒] = 0,
and P[𝑏1 = 𝑓 𝑎𝑙𝑠𝑒,𝑏2 = 𝑡𝑟𝑢𝑒] = P[𝑏1 = 𝑡𝑟𝑢𝑒,𝑏2 = 𝑓 𝑎𝑙𝑠𝑒] = P[𝑏1 = 𝑡𝑟𝑢𝑒,𝑏2 = 𝑡𝑟𝑢𝑒] = 1

3 . This distribu-
tion also indicates that the program terminates almost surely, i.e., the probability that the program
terminates is 1.1

Linear expectation invariant analysis (LEIA). Loop invariants are crucial to verification of imperative
programs [Dijkstra 1976; Floyd 1967; Hoare 1969]. Although loop invariants for traditional programs
are usually Boolean-valued expressions over program variables, real-valued invariants are needed to
prove the correctness of probabilistic loops [Kozen 1981; McIver and Morgan 2005]. Such expectation
invariants are usually defined as random variables—specified as expressions over program variables—
with some desirable properties [Chakarov and Sankaranarayanan 2013, 2014; Katoen et al. 2010]. In
this paper, we work with a more general kind of expectation invariant, defined as follows:

Definition 2.1. For a program 𝑃 , E[ℰ2] ◁▷ ℰ1 is called an expectation invariant if ℰ1 and ℰ2 are real-
valued expressions over 𝑃 ’s program variables, ◁▷ is one of {=,<,>,≤,≥}, and the following property
holds: For any initial valuation of the program variables, the expected value of ℰ2 in the final valuation
(i.e., after the execution of 𝑃) is related to the value of ℰ1 in the initial valuation by ◁▷.

We typically use variables with primes in ℰ2 to denote the values in the final valuation. For
example, for the program in Fig. 1b, E[𝑥′ + 𝑦′] = 𝑥 + 𝑦 + 3, E[𝑧′] = 1

4 𝑧 + 3
4 , E[𝑥′] ≤ 𝑥 + 3, E[𝑥′] ≥ 𝑥,

E[𝑦′] ≤ 𝑦 + 3, and E[𝑦′] ≥ 𝑦 are several linear expectation invariants, and our analysis can derive all of
these automatically! The expectation invariant E[𝑥′ + 𝑦′] = 𝑥+ 𝑦 + 3 indicates that the expected value
of the total reward that the two players would gain is exactly 3.

2.3 The Algebraic Framework
This section explains the main ideas behind PMAF, which is general enough to encode the two
analyses from §2.2.

Data Randomness vs. Control-Flow Randomness. Our first principle is to make an explicit separation
between data randomness and control-flow randomness. This distinction is intended to make the
framework more flexible for analysis designers by providing multiple ways to translate the constructs
of their specific probabilistic programming language into the constructs of PMAF. Analysis designers
may find it useful to use the control-flow-randomness construct directly (e.g., “if prob(0.3) . . .”), rather
than simulating control-flow randomness by data randomness (e.g., “𝑝 ∼ Uniform(0,1); if (𝑝 < 0.3) . . .”).
For program analysis, such a simulation can lead to suboptimal results if the constructs used in the
simulation require properties to be tracked that are outside the class of properties that a particular
analysis’s abstract domain is capable of tracking. For example, if an analysis domain only keeps track

1In general, we work with with subprobability distributions, where the probabilities add up to strictly less than
1. In the case of a program that diverges with probability 𝑝 > 0, the posterior distribution is a subprobability
distribution in which the probabilities of the states sum up to 1− 𝑝.

of expectations, then analysis of “𝑝 ∼ Uniform(0,1)” only indicates that E[𝑝] = 0.5, which does not
provide enough information to establish that P[𝑝 < 0.3] = 0.3 in the then-branch of “if (𝑝 < 0.3) . . .”. In
contrast, when “prob(0.3) . . .” is analyzed in the fragment with the explicit control-flow-randomness
construct (“if prob(0.3) . . .”) the analyzer can directly assign the probabilities 0.3 and 0.7 to the
outgoing branches, and use those probabilities to compute appropriate expectations in the respective
branches.

We achieve the separation between data randomness and control-flow randomness by capturing
the different types of randomness in the graphs that we use for representing programs. In contrast to
traditional program analyses, which usually work on control-flow graphs (CFGs), we use control-flow
hyper-graphs to model probabilistic programs. Hyper-graphs are directed graphs, each edge of which
(i) has one source and possibly multiple destinations, and (ii) has an associated control-flow action—
either sequencing, conditional-choice, probabilistic-choice, or nondeterministic-choice. A traditional CFG
represents a collection of execution paths, while in probabilistic programs, paths are no longer
independent, and the program specifies probability distributions over the paths. It is natural to treat a
collection of paths as a whole and define distributions over the collections. These kinds of collections
can be precisely formalized as hyper-paths made up of hyper-edges in hyper-graphs.

Fig. 2 shows the control-flow hyper-graphs of the two programs in Fig. 1. Every edge has an
associated action, e.g., the control-flow actions 𝑐𝑜𝑛𝑑[¬𝑏1 ∧¬𝑏2], 𝑝𝑟𝑜𝑏[3

4], and 𝑛𝑑𝑒𝑡 are conditional-
choice, probabilistic-choice, and nondeterministic-choice actions. Data actions, like 𝑥 := 𝑥+𝑧 and 𝑏1 ∼
Bernoulli(0.5), also perform a trivial control-flow action to transfer control to their one destination
node.

Just as the control-flow graph of a procedure typically has a single entry node and a single exit
node, a procedure’s control-flow hyper-graph also has a single entry node and a single exit node. In
Fig. 2a, the entry and exit nodes are 𝑣0 and 𝑣3, respectively; in Fig. 2b, the entry and exit nodes are 𝑣0
and 𝑣5, respectively.
Backward Analysis. Traditional static analyses assign to a CFG node 𝑣 either backward assertions—
about the computations that can lead up to 𝑣—or forward assertions—about the computations
that can continue from 𝑣 [Cousot and Cousot 1977, 1979]. Backward assertions are computed via
a forward analysis (in the same direction as CFG edges); forward assertions are computed via a
backward analysis (counter to the flow of CFG edges).

Because we work with hyper-graphs rather than CFGs, from the perspective of a node 𝑣, there is a
difference in how things “look” in the backward and forward direction: hyper-edges fan out in the
forward direction. Hyper-edges can have two destination nodes, but only one source node.

The second principle of the framework is essentially dictated by this structural asymmetry: the
framework supports backward analyses that compute a particular kind of forward assertion. In particular,
the property to be computed for a node 𝑣 in the control-flow hyper-graph for procedure 𝑃 is (an
abstraction of) a transformer that summarizes the transformation carried out by the hyper-graph
fragment that extends from 𝑣 to the exit node of 𝑃 . It is possible to reason in the forward direction—
i.e., about computations that lead up to 𝑣—but one would have to “break” hyper-paths into paths and
“relocate” probabilities, which is more complicated than reasoning in the backward direction. The
framework interprets an edge as a property transformer that computes properties of the edge’s source
node as a function of properties of the edge’s destination node(s) and the edge’s associated action.
These property transformers propagate information in a hypergraph-leaf-to-hypergraph-root manner,
which is natural in hyper-graph problems. For example, standard formulations of interprocedural
dataflow analysis [Knoop and Steffen 1992; Lal et al. 2005; Müller-Olm and Seidl 2004; Sharir and
Pnueli 1981] can be viewed as hyper-graph analyses, and propagation is performed in the leaf-to-root
direction there as well.

Recall the Boolean program in Fig. 1a. Suppose that we want to perform BI to analyze P[𝑏1 =
𝑡𝑟𝑢𝑒,𝑏2 = 𝑡𝑟𝑢𝑒] in the posterior distribution. The property to be computed for a node will be a
mapping from variable valuations to probabilities, where the probability reflects the chance that a
given state will cause the program to terminate in the post-state (𝑏1 = 𝑡𝑟𝑢𝑒,𝑏2 = 𝑡𝑟𝑢𝑒). For example, the

6

2.3 The Algebraic Framework 7

property that we would hope to compute for node 𝑣1 is the function 𝜆(𝑏1,𝑏2).[𝑏1∧𝑏2]+[¬𝑏1∧¬𝑏2] · 13 ,
where [𝜙] is an Iverson bracket, which evaluates to 1 if 𝜙 is true, and 0 otherwise.

Two-Vocabulary Program Properties. In the example of BI above, we observe that the property
transformation discussed above is not suitable for interprocedural analysis. Suppose that (i) we want
analysis results to tell us something about P[𝑏1 = 𝑡𝑟𝑢𝑒,𝑏2 = 𝑡𝑟𝑢𝑒] in the posterior distribution of
the main procedure, but (ii) to obtain the answer, the analysis must also analyze a call to some
other procedure 𝑄. In the main procedure, the analysis is driven by the posterior-probability query
P[𝑏1 = 𝑡𝑟𝑢𝑒,𝑏2 = 𝑡𝑟𝑢𝑒]; in general, however, 𝑄 will need to be analyzed with respect to some other
posterior probability (obtained from the distribution of valuations at the point in main just after the
call to 𝑄). One might try to solve this issue by analyzing each procedure multiple times with different
posterior probabilities. However, in an infinite state space, this approach is no longer feasible.

Following common practice in interprocedural static analysis of traditional programs, the third
principle of the framework is to work with two-vocabulary program properties. The property sketched
in the BI example above is actually one-vocabulary, i.e., the property assigned to a control-flow
node only involves the state at that node. In contrast, a two-vocabulary property at node 𝑣 (in the
control-flow hyper-graph for procedure 𝑃) should describe the state transformation carried out by
the hyper-graph fragment that extends from 𝑣 to the exit node of 𝑃 .

For instance, LEIA assigns to each control-flow node a conjunction of expectation invariants, which
relate the state at the node to the state at the exit node; consequently, LEIA deals with two-vocabulary
properties. In §5, we show that we can reformulate BI to manipulate two-vocabulary properties. As
in interprocedural dataflow analysis [Cousot and Cousot 1978; Sharir and Pnueli 1981], procedure
summaries are used to interpret procedure calls.

Separation of Concerns. Our fourth principle—which is common to most analysis frameworks—is
separation of concerns, by which we mean

Provide a declarative interface for a client to specify the program properties to be tracked by a desired
analysis, but leave it to the framework to furnish the analysis implementationby which the analysis is
carried out.

We achieve this goal by adopting (and adapting) ideas from previous work on algebraic program
analysis [Farzan and Kincaid 2015; Ramalingam 1996; Tarjan 1981]. Algebraic program analysis is
based on the following idea:

Any static analysis method performs reasoning in some space of program properties and property
transformers; such property transformers should obey algebraic laws.

For instance, the data action skip, which does nothing, can be interpreted as the identity element in
an algebra of program-property transformers.

Concretely, our fourth principle has three aspects:

1. For our intended domain of probabilistic programs, identify an appropriate set of algebraic
laws that hold for useful sets of property transformers.

2. Define a specific algebra𝒜 for a program-analysis problem by defining a specific set of property
transformers that obey the laws identified in item 1. Give translations from data actions and
control-flow actions to such property transformers. (When such a translation is applied to a
specific program, it sets up an equation system to be solved over 𝒜.)

3. Develop a generic analysis algorithm that solves an equation system over any algebra that
satisfies the laws identified in item 1.

Items 1 and 3 are tasks for us, the framework designers; they are the subjects of §3 and §4. Item 2 is a
task for a client of the framework: examples are given in §5.

A client of the framework must furnish an interpretation—which consists of a semantic algebra and a
semantic function—and a program. The semantic algebra consists of a universe, which defines the space

𝒮(𝑣0)⊒𝑝𝑟𝑜𝑏[3
4](𝒮(𝑣1),𝒮(𝑣5)) 𝒮(𝑣3)⊒𝑠𝑒𝑞[𝑥 := 𝑥+ 𝑧](𝒮(𝑣0))

𝒮(𝑣1)⊒𝑠𝑒𝑞[𝑧 ∼ Uniform(0,2)](𝒮(𝑣2)) 𝒮(𝑣4)⊒𝑠𝑒𝑞[𝑦 := 𝑦 + 𝑧](𝒮(𝑣0))
𝒮(𝑣2)⊒𝑛𝑑𝑒𝑡(𝒮(𝑣3),𝒮(𝑣4)) 𝒮(𝑣5)⊒1

Fig. 3: The system of inequalities corresponding to Fig. 2b

of possible program-property transformers, and sequencing, conditional-choice, probabilistic-choice,
and nondeterministic-choice operators, corresponding to control-flow actions. The semantic function
is a mapping from data actions to the universe. (An interpretation is also called a domain.)

To address Item 3, our prototype implementation follows the standard iterative paradigm of static
analysis [Cousot and Cousot 1977; Kildall 1973]: We first transform the control-flow hyper-graph
into a system of inequalities, and then use a chaotic-iteration algorithm to compute a solution to it
(e.g., [Bourdoncle 1993]), which repeatedly applies the interpretation until a fixed point is reached
(possibly using widening to ensure convergence). For example, the control-flow hyper-graph in Fig. 2b
can be transformed into the system shown in Fig. 3, where 𝒮(𝑣) ∈ℳ are elements in the semantic
algebra; ⊑ is the approximation order onℳ; J·K is the semantic function, which maps data actions to
ℳ; and 1 is the transformer associated with the exit node.

The soundness of the analysis (with respect to a concrete semantics) is proved by (i) establishing an
approximation relation between the concrete domain and the abstract domain; (ii) showing that the
abstract semantic function approximates the concrete one; and (iii) showing that the abstract operators
(sequencing, conditional-choice, probabilistic-choice, and nondeterministic-choice) approximate the
concrete ones.

For BI, we instantiate our framework to give lower bounds on posterior distributions, using with
an interpretation in which state transformers are probability matrices (see §5.1). For LEIA, we
design an interpretation using a Cartesian product of polyhedra (see §5.3). Once the functions of the
interpretations are implemented, and a program is translated into the appropriate hyper-graph, the
framework handles the rest of the work, namely, solving the equation system.

3 Probabilistic Programs
In this Section, we first review the concepts of hyper-graphs [Gallo et al. 1993] and introduce a
probabilistic-program model based on them. Then we briefly sketch a new denotational semantics
for our hyper-graph based imperative program model.

3.1 A Hyper-Graph Model of Probabilistic Programs

Definition 3.1 (Hyper-graphs). A hyper-graph 𝐻 is a quadruple ⟨𝑉 ,𝐸,𝑣entry,𝑣exit⟩, where 𝑉 is a
finite set of nodes, 𝐸 is a set of hyper-edges, 𝑣entry ∈ 𝑉 is a distinguished entry node, and 𝑣exit ∈ 𝑉 is a
distinguished exit node. A hyper-edge is an ordered pair ⟨𝑥,𝑌 ⟩, where 𝑥 ∈ 𝑉 is a node and 𝑌 ⊆ 𝑉 is an
ordered, non-empty set of nodes. For a hyper-edge 𝑒 = ⟨𝑥,𝑌 ⟩ in 𝐸, we use 𝑠𝑟𝑐(𝑒) to denote 𝑥 and 𝐷𝑠𝑡(𝑒)
to denote 𝑌 . Following the terminology from graphs, we say that 𝑒 is an outgoing edge of 𝑥 and an
incoming edge of each of the nodes 𝑦 ∈ 𝑌 . We assume that 𝑣entry has no incoming edges, and 𝑣exit has
no outgoing edges.

Definition 3.2 (Probabilistic programs). A probabilistic program contains a finite set of procedures
{𝐻𝑖 }1≤𝑖≤𝑛, where each procedure𝐻𝑖 = ⟨𝑉𝑖 ,𝐸𝑖 ,𝑣

entry
𝑖 ,𝑣exit𝑖 ⟩ is a control-flow hyper-graph in which each

node except 𝑣exit𝑖 has exactly one outgoing hyper-edge. We assume that the nodes of each procedure
are pairwise disjoint. To assign meanings to probabilistic programs modulo data actions 𝒜 and logical
conditions ℒ, we associate with each hyper-edge 𝑒 ∈ 𝐸 =

⋃︀
1≤𝑖≤𝑛𝐸𝑖 a control-flow action 𝐶𝑡𝑟𝑙(𝑒), where

8

3.2 Background from Measure Theory 9

𝒜 ::= 𝑥 := 𝑒 | 𝑥 ∼D | skip | observe(𝜙)
𝜙 ∈ ℒ ::= true | false | 𝑒 ◁▷ 𝑢,where ◁▷ ∈ {=,≤,≥} | ¬𝜙
𝑒,𝑢 ∈ Exp ::= 𝑥 | 𝑐,where 𝑐 ∈R | 𝑒 ∙𝑢,where ∙ ∈ {+,−,×, /}
𝑥 ∈ Var ::= 𝑥 | 𝑦 | 𝑧 | · · ·
D ∈ Dist ::= Uniform(𝑒,𝑢) | Gaussian(𝑒,𝑢) | · · ·

Fig. 4: Examples of data actions and logical conditions

𝐶𝑡𝑟𝑙 is
𝐶𝑡𝑟𝑙 ::= 𝑠𝑒𝑞[act] where act ∈ 𝒜 | 𝑐𝑎𝑙𝑙[𝑖] where 1 ≤ 𝑖 ≤ 𝑛

| 𝑐𝑜𝑛𝑑[𝜙] where 𝜙 ∈ ℒ | 𝑝𝑟𝑜𝑏[𝑝] where 0 ≤ 𝑝 ≤ 1
| 𝑛𝑑𝑒𝑡

where the number of destination nodes |𝐷𝑠𝑡(𝑒)| of a hyper-edge 𝑒 is 1 if 𝐶𝑡𝑟𝑙(𝑒) is 𝑠𝑒𝑞[act] or 𝑐𝑎𝑙𝑙[𝑖],
and 2 otherwise.

Fig. 2 shows two examples of hyper-graph–based probabilistic programs. See Fig. 4 for data actions
𝒜 and logical conditions ℒ that would be used for an arithmetic program like the one shown in
Fig. 1b.

3.2 Background from Measure Theory
To define denotational semantics for probabilistic programs modulo data actions 𝒜 and logical
conditionsℒ, we review some standard definitions from measure theory [Billingsley 2012; Panangaden
1999].

A measurable space is a pair ⟨𝑋,Σ⟩ where 𝑋 is a non-empty set called the sample space, and Σ is
a 𝜎 -algebra over 𝑋 (i.e, a set of subsets of 𝑋 which contains ∅ and is closed under complement and
countable union). A measurable function from a measurable space ⟨𝑋1,Σ1⟩ to another measurable
space ⟨𝑋2,Σ2⟩ is a mapping 𝑓 : 𝑋1 → 𝑋2 such that for all 𝐴 ∈ Σ2, 𝑓 −1(𝐴) ∈ Σ1. The measurable
functions from a measurable space ⟨𝑋,Σ⟩ to the Borel space ℬ(R≥0) on nonnegative real numbers
(the smallest 𝜎 -algebra containing all open intervals) is called Σ-measurable.

A measure 𝜇 on a measurable space ⟨𝑋,Σ⟩ is a function from Σ to [0,∞] such that: (i) 𝜇(∅) = 0,
and (ii) for all pairwise-disjoint countable sequences of sets 𝐴1,𝐴2, · · · ∈ Σ (i.e., 𝐴𝑖 ∩𝐴𝑗 = ∅ for all
𝑖 , 𝑗) we have

∑︀∞
𝑖=1𝜇(𝐴𝑖) = 𝜇(

⋃︀∞
𝑖=1𝐴𝑖). The measure 𝜇 is called a (sub-probability) distribution if

𝜇(𝑋) ≤ 1. A measure space is a triple M = ⟨𝑋,Σ,𝜇⟩ where 𝜇 is a measure on the measurable space
⟨𝑋,Σ⟩. The integral of a Σ-measurable function 𝑓 over the measurable space M = ⟨𝑋,Σ,𝜇⟩ can be
defined following Lebesgue’s theory and denoted either by

∫︀
𝑓 𝑑𝜇 or

∫︀
𝑓 (𝑥)𝜇(𝑑𝑥). The Dirac measure

𝛿(𝑥) is defined as 𝜆𝐴.[𝑥 ∈ 𝐴].
A (sub-probability) kernel from a measurable space ⟨𝑋1,Σ1⟩ to a measurable space ⟨𝑋2,Σ2⟩ is a

function 𝜅 : 𝑋1 ×Σ2→ [0,1] such that: (i) for each 𝐴 in Σ2, the function 𝜆𝑥.𝜅(𝑥,𝐴) is Σ1-measurable,

and (ii) for each 𝑥 in 𝑋1, the function 𝜅𝑥
def= 𝜆𝐴.𝜅(𝑥,𝐴) is a distribution on ⟨𝑋2,Σ2⟩. We write

the integral of a measurable function 𝑓 : Σ2 → [0,∞] with respect to the distribution in (ii) as∫︀
𝑓 (𝑦)𝜅(𝑥,𝑑𝑦).

3.3 A Denotational Semantics
The next step is to define semantics based on the control-flow hyper-graphs. We use a denotational
approach because it abstracts away how a program is evaluated and concentrates only on the effect of
the program. This property makes it suitable as a starting point for static analysis, which is aimed at
reasoning about program properties.

We develop a new semantics for probabilistic programming by combining Borgström et al.’s
distribution-based semantics using the concept of kernels from measure theory [Borgström et al.

𝑥 := 𝑒 = 𝜆(𝜔,𝐹).[(𝑥 ↦→ 𝑒(𝜔))𝜔 ∈ 𝐹] ̂︂true = 𝜆𝜔.𝑡𝑟𝑢𝑒
̂𝑥 ∼D = 𝜆(𝜔,𝐹).𝜇D ({𝑣 | (𝑥 ↦→ 𝑣)𝜔 ∈ 𝐹}) ̂false = 𝜆𝜔.𝑓 𝑎𝑙𝑠𝑒

̂observe(𝜙) = 𝜆(𝜔,𝐹).̂︀𝜙(𝜔) · [𝜔 ∈ 𝐹] 𝑒 ◁▷ 𝑢 = 𝜆𝜔.[𝑒(𝜔) ◁▷ 𝑢(𝜔)]
̂skip = 𝜆(𝜔,𝐹).[𝜔 ∈ 𝐹] ̂︁¬𝜙 = 𝜆𝜔.¬̂︀𝜙(𝜔)

Fig. 5: Interpretation of actions and conditions

2016] and existing results on domain-theoretic probabilistic nondeterminism [den Hartog and de Vink
1999; Jones 1989; Jones and Plotkin 1989; Mislove 2000; Mislove et al. 2004; Tix et al. 2009]. This
semantics can describe several nontrivial constructs, including continuous sampling, nondeterministic
choice, and recursion.

Three components are used to define the semantics:

• A measurable space P = ⟨Ω,ℱ ⟩ over program states (e.g., finite mappings from program
variables to values).

• A mapping from data act actions to kernels ̂︁act : Ω × ℱ → R. The intuition to keep in mind
is that ̂︁act(𝜔,𝐹) is the probability that the action, starting in state 𝜔 ∈Ω, halts in a state that
satisfies 𝐹 ∈ ℱ [Kozen 1985].2

• A mapping from logical conditions 𝜙 to measurable functions ̂︀𝜙 : Ω→ {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}.

Example 3.3. For an arithmetic program with a finite set Var of program variables, Ω is defined as
Var → R and P as the Borel space on Ω. Fig. 5 shows interpretation of the data actions and logical
conditions in Fig. 4, where 𝑒(𝜔) evaluates expression 𝑒 in state 𝜔, (𝑥 ↦→ 𝑣)𝜔 updates 𝑥 in 𝜔 with 𝑣, and
𝜇D : ℬ(R) → [0,1] is the measure corresponding to the distribution D on reals. Note that the action
observe(𝜙) performs conditioning on states that satisfy 𝜙.

While distributions can be seen as one-vocabulary specifications, kernels are indeed two-vocabulary
transformers over program states. When there is no nondeterminism, we can assign a kernel to every
control-flow node. We can also define control-flow actions on kernels. A sequence of actions act1;act2
with kernels 𝜅1 and 𝜅2, respectively, is modeled by their composition, denoted by 𝜅1 ⊗ 𝜅2, which
yields a new kernel defined as follows:3

𝜅1 ⊗𝜅2
def= 𝜆(𝑥,𝐴).

∫︁
𝜅1(𝑥,𝑑𝑦)𝜅2(𝑦,𝐴). (1)

The conditional-choice 𝜅1 𝜙^𝜅2 is defined as a new kernel 𝜆(𝑥,𝐴).[̂︀𝜙(𝑥)] ·𝜅1(𝑥,𝐴) + [¬̂︀𝜙(𝑥)] ·𝜅2(𝑥,𝐴).
The probabilistic-choice 𝜅1 𝑝⊕𝜅2 is defined as a new kernel 𝜆(𝑥,𝐴).𝑝 ·𝜅1(𝑥,𝐴) + (1− 𝑝) ·𝜅2(𝑥,𝐴).

Example 3.4. Consider the following program that models a variation on a geometric distribution.

𝑛 := 0;
while prob(0.9) do
𝑛 := 𝑛+ 1;
if 𝑛 ≥ 10 then break else continue fi

od

2 As explained by Kozen [Kozen 1985], for finite or countable Ω, ̂︁act has a representation as a Markov transition
matrix 𝑀̂︁act, in which each entry 𝑀̂︁act(𝜔,𝜔′) for a pair of states ⟨𝜔,𝜔′⟩ gives the probability that 𝜔 transitions to
𝜔′ under action act.

3For finite or countable Ω, and the matrix representation described in footnote 2, the integral in (1) degenerates
to matrix multiplication [Kozen 1985].

10

3.3 A Denotational Semantics 11

Fig. 6 shows its control-flow hyper-graph. The assignment 𝑛 := 𝑛+1 is interpreted as a kernel ̂𝑛 := 𝑛+ 1 =
𝜆(𝜔,𝐹).[(𝑛 ↦→ 𝜔(𝑛) + 1)𝜔 ∈ 𝐹]. The comparison 𝑛 ≥ 10 is interpreted as a measurable function 𝑛 ≥ 10 =
𝜆𝜔.(𝜔(𝑛) ≥ 10). Let 𝐾 stand for 0.3486784401; the semantics assigned to node 𝑣0 is

𝜆(𝜔,𝐹).
9∑︁
𝑘=0

(0.1× 0.9𝑘) · [(𝑛 ↦→ 𝑘)𝜔 ∈ 𝐹] +𝐾 · [(𝑛 ↦→ 10)𝜔 ∈ 𝐹].

When nondeterminism comes into the picture, we need to associate each control-flow node with a
collection of kernels. In other words, we need to consider powerdomains [Gunter et al. 1989] of kernels.
We adopt Tix et al.’s constructions of probabilistic powerdomains [Tix et al. 2009], and extend them
to work on kernels instead of distributions. We denote the set of feasible collections of kernels by PΩ,
and the composition, conditional-choice, probabilistic-choice, and nondeterministic-choice operators
on that by ⊗, 𝜙^, 𝑝⊕, and ⋓. PΩ is also equipped with a partial order ⊑.

We reformulated distributions and kernels in a domain-theoretic way to adopt existing studies on
powerdomains. We discuss the details of the construction of PΩ in a companion paper [Wang et al.
2018]; the focus of this paper is static analysis and we will keep the domain-theoretic terminology to
a minimum.

We adopted Hoare powerdomains and Smyth powerdomains [Abramsky and Jung 1994, §6.2]
over kernels. Kernels are ordered pointwise, i.e., 𝜅1 ≤ 𝜅2 if and only if for all 𝜔 and 𝐹, 𝜅1(𝜔,𝐹) ≤
𝜅2(𝜔,𝐹). The zero kernel 𝜆(𝜔,𝐹).0 is the bottom element of this order. Intuitively, the Hoare
powerdomain is used for partial correctness, in which the order is set inclusion on the lower closures
of the elements—because each downward-closed set contains a kernel that represents nontermination
(i.e., the zero kernel), terminating and nonterminating executions cannot be distinguished. The
Smyth powerdomain is used for total correctness: the order is reverse inclusion on the upper closures
of the elements—nontermination is interpreted as the worst output, and the kernel that represents
nontermination does not occur in an upward-closed set that represents the semantics of a terminating
computation.

Given a probabilistic program 𝑃 = {𝐻𝑖 }1≤𝑖≤𝑛, where 𝐻𝑖 = ⟨𝑉𝑖 ,𝐸𝑖 ,𝑣
entry
𝑖 ,𝑣exit𝑖 ⟩, we want to define

the semantics of each node 𝑣 as a set of kernels that represent the effects from 𝑣 to the exit node of
the procedure that contains 𝑣. Let 𝒮⟨𝑣⟩ ∈ PΩ be the semantics assigned to the node 𝑣; the following
local properties should hold:

• if 𝑒 = ⟨𝑣, {𝑢1, · · · ,𝑢𝑘}⟩ ∈ 𝐸, 𝒮⟨𝑣⟩ = ̂𝐶𝑡𝑟𝑙(𝑒)(𝒮⟨𝑢1⟩, · · · ,𝒮⟨𝑢𝑘⟩), and

• otherwise, 𝒮⟨𝑣⟩ = 1
P

.

The function ̂︁act for the different kinds of control-flow actions is defined as follows:

̂𝑠𝑒𝑞[act](𝑆1) def= {̂︁act}⊗𝑆1 ̂𝑐𝑜𝑛𝑑[𝜙](𝑆1,𝑆2) def= 𝑆1𝜙^𝑆2

̂𝑐𝑎𝑙𝑙[𝑖](𝑆1) def= 𝒮⟨𝑣entry𝑖 ⟩⊗𝑆1 ̂𝑝𝑟𝑜𝑏[𝑝](𝑆1,𝑆2) def= 𝑆1𝑝⊕𝑆2(︀𝑛𝑑𝑒𝑡(𝑆1,𝑆2) def= 𝑆1⋓𝑆2

Lemma 3.5. The function 𝐹𝑃 defined as

𝜆𝒮 .𝜆𝑣.
{︃

̂𝐶𝑡𝑟𝑙(𝑒)(𝒮(𝑢1), · · · ,𝒮(𝑢𝑘)) 𝑒 = ⟨𝑣, {𝑢1, · · · ,𝑢𝑘}⟩ ∈ 𝐸
1
P

otherwise

𝑣4

𝑣0 𝑣1

𝑣2 𝑣3
𝑛 := 𝑛+ 1

𝑛 := 0
prob[0.9]

false

false

true
𝑛 ≥ 10

true

Fig. 6: Control-flow hyper-graph of the program in Ex. 3.4

is 𝜔-continuous on ⟨𝑉 → PΩ, ⊑̇⟩, which is an 𝜔-cpo with the least element 𝜆𝑣.⊥
P

.

A dot over an operator denotes its application pointwise. By Kleene’s fixed-point theorem, we have

Theorem 3.6. lfp⊑̇𝜆𝑣.⊥
P

𝐹𝑃
def= sup𝑛∈N{(𝐹𝑃)𝑛(𝜆𝑣.⊥

P
)} exists for all prob. programs 𝑃 .

Thus, the semantics of a node 𝑣 is defined as (lfp⊑̇𝜆𝑣.⊥
P

𝐹𝑃)(𝑣).

4 Analysis Framework
To aid in creating abstractions of probabilistic programs, we first identify, in §4.1, some algebraic
properties that underlie the mechanisms used in the semantics from §3.3. This algebra will aid
our later definitions of abstractions in §4.2. We then discuss interprocedural analysis (in §4.3) and
widening (§4.4). Proofs are included in appendix A.

4.1 An Algebraic Characterization of Fixpoint Semantics

In the denotational semantics, the concrete semantics is obtained by composing ̂𝐶𝑡𝑟𝑙(𝑒) operations
along hyper-paths. Hence in the algebraic framework, the semantics of probabilistic programs is
denoted by an interpretation, which consists of two parts: (i) a semantic algebra, which defines a
set of possible program meanings, and which is equipped with sequencing, conditional-choice,
probabilistic-choice, and nondeterministic-choice operators to compose these meanings, and (ii) a
semantic function, which assigns a meaning to each basic program action.

The semantic algebras that we use—and the lattices used for abstract interpretation—are Markov
algebras and pre-Markov algebras, respectively:

Definition 4.1 (Markov algebras). A Markov algebra (MA) over a set of logical conditions ℒ is an
8-tupleℳ = ⟨𝑀,⊑,⊗,𝜙^,𝑝⊕,⋓,⊥,1⟩, where ⟨𝑀,⊑⟩ forms an 𝜔-cpo with a least element ⊥; ⟨𝑀,⊗,1⟩
forms a monoid (i.e., ⊗ is an associative binary operator with 1 as its identity element); 𝜙^ is a
binary operator parametrized by 𝜙 which is a condition in ℒ; 𝑝⊕ is a binary operator parametrized by
𝑝 ∈ [0,1]; ⋓ is a binary operator that is idempotent, commutative, associative, and for all 𝑎,𝑏 ∈𝑀 and
𝑝 ∈ [0,1],𝜙 ∈ ℒ we have 𝑎 𝑝⊕ 𝑏 ≤ 𝑎⋓ 𝑏,𝑎𝜙^ 𝑏 ≤ 𝑎⋓ 𝑏 where ≤ is the semilattice ordering induced by ⋓
(i.e., 𝑎 ≤ 𝑏 if 𝑎⋓ 𝑏 = 𝑏); and ⊗, 𝑝⊕, 𝜙^, and ⋓ are 𝜔-continuous.

Definition 4.2 (Pre-Markov algebras). A pre-Markov algebra (PMA) over a set of logical conditions
ℒ is an 8-tupleℳ = ⟨𝑀,⊑,⊗,𝜙^,𝑝⊕,⋓,⊥,1⟩, which is essentially an MA, except that ⟨𝑀,⊑⟩ forms a
complete lattice; ⊗, 𝑝⊕, 𝜙^, and ⋓ are only required to be monotone; and the following properties
hold:

𝑎 ⊑ 𝑎 𝜙^ 𝑎, 𝑎 ⊑ 𝑎 𝑡𝑟𝑢𝑒^ 𝑏, 𝑎 𝜙^ 𝑏 = 𝑏 ¬𝜙^ 𝑎
𝑎 ⊑ 𝑎 𝑝⊕ 𝑎 , 𝑎 ⊑ 𝑎 1⊕ 𝑏 , 𝑎 𝑝⊕ 𝑏 = 𝑏 1−𝑝⊕ 𝑎
𝑎 𝜙^ (𝑏 𝜓^ 𝑐) = (𝑎 𝜙′^ 𝑏) 𝜓′^ 𝑐 where 𝜙 = 𝜙′ ∧𝜓′ ,𝜙 ∨𝜓 = 𝜓′

𝑎 𝑝⊕ (𝑏 𝑞⊕ 𝑐) = (𝑎 𝑝′⊕ 𝑏) 𝑞′⊕ 𝑐 where 𝑝 = 𝑝′𝑞′ ,𝑝 · 𝑞 = 𝑞′

The precedence of the operators is that ⊗ binds tightest, followed by 𝜙^, 𝑝⊕, and ⋓.

Remark 4.3. These algebraic laws are not needed to prove soundness of the framework (stated in Thm. 4.7).
These laws helped us when designing the abstract domains. Exploiting these algebraic laws to design better
algorithms is an interesting direction for future work.

Lemma 4.4. The denotational semantics in §3.3 is an MA 𝒞 = ⟨PΩ,⊑P,⊗,𝜙^,𝑝⊕,⋓,⊥P,1P⟩ (which we
call the concrete domain for our framework).

12

4.2 Abstractions of Probabilistic Programs 13

As is standard in abstract interpretation, the order on the algebra should represent an approx-
imation order: 𝑎 ⊑ 𝑏 iff 𝑎 is approximated by 𝑏 (i.e., if 𝑎 represents a more precise property than
𝑏).

Definition 4.5 (Interpretations). An interpretation is a pair I = ⟨ℳ,J·K⟩, where ℳ is a pre-
Markov algebra, and J·K :𝒜→ℳ, where 𝒜 is the set of data actions for probabilistic programs. We
callℳ the semantic algebra of the interpretation and J·K the semantic function.

Given a probabilistic program 𝑃 and an interpretation I = ⟨ℳ,J·K⟩, we define I [𝑃] to be the
interpretation of the probabilistic program. I [𝑃] is then defined as the least fixed point of the function

𝐹
♯
𝑃 , which is defined as

𝜆𝒮♯.𝜆𝑣.

⎧⎪⎪⎨⎪⎪⎩ ̂𝐶𝑡𝑟𝑙(𝑒)
♯
(𝒮♯(𝑢1), . . . ,𝒮♯(𝑢𝑘)) 𝑒 = ⟨𝑣, {𝑢1, . . . ,𝑢𝑘}⟩ ∈ 𝐸

1 otherwise

where

̂𝑠𝑒𝑞act
♯(𝑎1) def= JactK⊗ 𝑎1 ̂𝑐𝑜𝑛𝑑[𝜙]

♯
(𝑎1, 𝑎2) def= 𝑎1 𝜙^ 𝑎2

̂𝑐𝑎𝑙𝑙[𝑖]
♯
(𝑎1) def= 𝒮♯(𝑣entry𝑖)⊗ 𝑎1 ̂𝑝𝑟𝑜𝑏[𝑝]

♯
(𝑎1, 𝑎2) def= 𝑎1 𝑝⊕ 𝑎2(︀𝑛𝑑𝑒𝑡♯(𝑎1, 𝑎2) def= 𝑎1 ⋓ 𝑎2

By the Knaster-Tarski theorem, we use the least fixed point of 𝐹♯𝑃 to define the interpretation of

a probabilistic program 𝑃 as I [𝑃] = lfp⊑̇𝜆𝑣.⊥𝐹
♯
𝑃 . The interpretation of a control-flow node 𝑣 is then

defined as I [𝑣] =I [𝑃](𝑣).

4.2 Abstractions of Probabilistic Programs
Given an MA 𝒞 and a PMA 𝒜, a probabilistic abstraction is defined as follows:

Definition 4.6 (Probabilistic abstractions). A probabilistic over-abstraction (or under-abstraction,
resp.) from a PMA 𝒞 to a PMA 𝒜 is a concretization mapping, 𝛾 :𝒜→ 𝒞, such that

• 1𝒞 ⊑𝒞 𝛾(1𝒜) (or 𝛾(1𝒜) ⊑𝒞 1𝒞 , resp.),

• for all 𝑄1,𝑄2 ∈ 𝒜, 𝛾(𝑄1)⊗𝒞 𝛾(𝑄2) ⊑𝒞 𝛾(𝑄1 ⊗𝒜𝑄2) (or 𝛾(𝑄1 ⊗𝒜𝑄2) ⊑𝒞 𝛾(𝑄1)⊗𝒞 𝛾(𝑄2), resp.),

• for all 𝑄1,𝑄2 ∈ 𝒜, 𝛾(𝑄1)𝜙^𝒞 𝛾(𝑄2) ⊑𝒞 𝛾(𝑄1 𝜙^𝒜𝑄2) (or 𝛾(𝑄1 𝜙^𝒜𝑄2) ⊑𝒞 𝛾(𝑄1)𝜙^𝒞 𝛾(𝑄2),
resp.),

• for all 𝑄1,𝑄2 ∈ 𝒜, 𝛾(𝑄1) 𝑝⊕𝒞 𝛾(𝑄2) ⊑𝒞 𝛾(𝑄1 𝑝⊕𝒜 𝑄2) (or 𝛾(𝑄1 𝑝⊕𝒜 𝑄2) ⊑𝒞 𝛾(𝑄1) 𝑝⊕𝒞 𝛾(𝑄2),
resp.), and

• for all 𝑄1,𝑄2 ∈ 𝒜, 𝛾(𝑄1)⋓𝒞 𝛾(𝑄2) ⊑𝒞 𝛾(𝑄1 ⋓𝒜𝑄2) (or 𝛾(𝑄1 ⋓𝒜𝑄2) ⊑𝒞 𝛾(𝑄1)⋓𝒞 𝛾(𝑄2), resp.).

A probabilistic abstraction leads to a sound analyses:

Theorem 4.7. Let C and A be interpretations over the MA 𝒞 and the PMA 𝒜; let 𝛾 be a probabilistic
over-abstraction (or under-abstraction, resp.) from 𝒞 to 𝒜; and let 𝑃 be an arbitrary probabilistic pro-
gram. If for all basic actions act, JactKC ⊑𝒞 𝛾(JactKA) (or 𝛾(JactKA) ⊑𝒞 JactKC , resp.), then we have
C [𝑃]⊑̇𝒞 𝛾̇(A [𝑃]) (or 𝛾̇(A [𝑃])⊑̇𝒞C [𝑃], resp.).

4.3 Interprocedural Analysis Algorithm

We are given a probabilistic program 𝑃 and an interpretation A = ⟨𝒜,J·KA ⟩, where 𝒜 = ⟨𝑀𝒜,⊑𝒜
,⊗𝒜,𝜙^𝒜,𝑝⊕𝒜,⋓𝒜,⊥𝒜,1𝒜⟩ is a PMA and J·KA is a semantic function. The goal is to compute (an

overapproximation of) A [𝑃] = lfp⊑̇𝒜𝜆𝑣.⊥𝒜
𝐹
♯
𝑃 . An equivalent way to define A [𝑃] is to specify it as the

least solution to a system of inequalities on {A [𝑣] | 𝑣 ∈ 𝑉 } (where 𝑒 ∈ 𝐸 in each case):

𝑒 𝐶𝑡𝑟𝑙(𝑒)
A [𝑣] ⊒𝒜 JactKA ⊗𝒜A [𝑢1] ⟨𝑣, {𝑢1}⟩ 𝑠𝑒𝑞[act]
A [𝑣] ⊒𝒜 A [𝑢1]𝜙^𝒜A [𝑢2] ⟨𝑣, {𝑢1,𝑢2}⟩ 𝑐𝑜𝑛𝑑[𝜙]
A [𝑣] ⊒𝒜 A [𝑢1] 𝑝⊕𝒜A [𝑢2] ⟨𝑣, {𝑢1,𝑢2}⟩ 𝑝𝑟𝑜𝑏[𝑝]
A [𝑣] ⊒𝒜 A [𝑢1]⋓𝒜A [𝑢2] ⟨𝑣, {𝑢1,𝑢2}⟩ 𝑛𝑑𝑒𝑡
A [𝑣] ⊒𝒜 A [𝑣entry𝑖]⊗𝒜A [𝑢1] ⟨𝑣, {𝑢1}⟩ 𝑐𝑎𝑙𝑙[𝑖]
A [𝑣] ⊒𝒜 1𝒜 if 𝑣 = 𝑣exit𝑖

Note that in line 5 a call is treated as a hyper-edge with the action 𝜆(entry,succ).entry⊗𝒜 succ. There
is no explicit return edge to match a call (as in many multi-procedure program representations, e.g.,
[Reps et al. 1995]); instead, each exit node is initialized with the constant 1𝒜 (line 6).

We mainly use known techniques from previous work on interprocedural dataflow analysis, with
some adaptations to our setting, which uses hyper-graphs instead of ordinary graphs (i.e., CFGs).4

The analysis direction is backward, and the algorithm is similar to methods for computing summary
edges in demand interprocedural-dataflow-analysis algorithms ([Horwitz et al. 1995, Fig. 4], [Sagiv
et al. 1996, Fig. 10]). The algorithm uses a standard chaotic-iteration strategy (except that propagation
is performed along hyper-edges instead of edges); it uses a fair iteration strategy for selecting the next
edge to consider.

4.4 Widening
Widening is a general technique in static analysis to ensure and speed up convergence [Cousot
1981; Cousot and Cousot 1978]. To choose the nodes at which widening is to be applied, we
treat the hyper-graph as a graph—i.e., each hyper-edge (including calls) contributes one or two
ordinary edges. More precisely, we construct a dependence graph 𝐺(𝐻) = ⟨𝑁,𝐴⟩ from hyper-graph

𝐻 = {⟨𝑉𝑖 ,𝐸𝑖 ,𝑣
entry
𝑖 ,𝑣exit𝑖 ⟩}1≤𝑖≤𝑛 by defining 𝑁 def=

⋃︀
1≤𝑖≤𝑛𝑉𝑖 , and

𝐴
def= {⟨𝑢,𝑣⟩ | ∃𝑒 ∈ 𝐸.(𝑣 = 𝑠𝑟𝑐(𝑒)∧𝑢 ∈𝐷𝑠𝑡(𝑒))} ∪ {⟨𝑣entry𝑖 ,𝑣⟩ | ∃𝑒 ∈ 𝐸.(𝑣 = 𝑠𝑟𝑐(𝑒)∧𝐶𝑡𝑟𝑙(𝑒) = 𝑐𝑎𝑙𝑙[𝑖])}. (2)

We then compute a set 𝑊 of widening points for 𝐺(𝐻) via the algorithm of Bourdoncle [Bourdoncle
1993, Fig. 4]. Because of the second set-former in (2), 𝑊 contains widening points that cut each cycle
caused by recursion.

While traditional programs exhibit only one sort of choice operator, probabilistic programs can
have three different kinds of choice operators, and hence loops can exhibit three different kinds of
behavior. We found that if we used the same widening operator for all widening nodes, there could be
a substantial loss in precision. Thus, we equip the framework with three separate widening operators:

4As mentined in §2.3, standard formulations of interprocedural dataflow analysis [Knoop and Steffen 1992;
Lal et al. 2005; Müller-Olm and Seidl 2004; Sharir and Pnueli 1981] can be viewed as hyper-graph analyses.
In that setting, one deals with hyper-graphs with consituent control-flow graphs. With PMAF, because each
procedure is represented as a hyper-graph, one has hyper-graphs of constituent hyper-graphs. Fortunately, each
procedure’s hyper-graph is a single-entry/single-exit hyper-graph, so the basic ideas and algorithms from standard
interprocedural dataflow analysis carry over to PMAF.

14

5 INSTANTIATIONS 15

▽𝑐, ▽𝑝, and ▽𝑛. Let 𝑣 ∈𝑊 be the source of edge 𝑒 ∈ 𝐸. Then the inequalities become

𝑒 𝐶𝑡𝑟𝑙(𝑒)
A [𝑣]⊒𝒜A [𝑣]▽𝑛 (JactKA ⊗𝒜A [𝑢1]) ⟨𝑣, {𝑢1}⟩ 𝑠𝑒𝑞[act]
A [𝑣]⊒𝒜A [𝑣]▽𝑐 (A [𝑢1]𝜙^𝒜A [𝑢2]) ⟨𝑣, {𝑢1,𝑢2}⟩ 𝑐𝑜𝑛𝑑[𝜙]
A [𝑣]⊒𝒜A [𝑣]▽𝑝 (A [𝑢1] 𝑝⊕𝒜A [𝑢2]) ⟨𝑣, {𝑢1,𝑢2}⟩ 𝑝𝑟𝑜𝑏[𝑝]
A [𝑣]⊒𝒜A [𝑣]▽𝑛 (A [𝑢1]⋓𝒜A [𝑢2]) ⟨𝑣, {𝑢1,𝑢2}⟩ 𝑛𝑑𝑒𝑡
A [𝑣]⊒𝒜A [𝑣]▽𝑛 (A [𝑣entry𝑖]⊗𝒜A [𝑢1]) ⟨𝑣, {𝑢1}⟩ 𝑐𝑎𝑙𝑙[𝑖]

Observation 4.8. Recall from Defn. 3.2 that in a probabilistic program each non-exit node has
exactly one outgoing hyper-edge. In each right-hand side above, the second argument to the widening
operator re-evaluates the action of the (one outgoing) hyper-edge. Consequently, during an analysis,
we have the invariant that whenever a widening operation 𝑎▽ 𝑏 is performed, the property 𝑎 ⊑𝒜 𝑏
holds.

The safety properties for the three widening operators are adaptations of the standard stabilization
condition: For every pair of ascending chains {𝑎𝑘}𝑘∈N and {𝑏𝑘}𝑘∈N,

• the chain {𝑐𝑘}𝑘∈N defined by 𝑐0 = 𝑎0 𝜙^𝒜 𝑏0 and 𝑐𝑘+1 = 𝑐𝑘 ▽𝑐 (𝑎𝑘+1 𝜙^𝒜 𝑏𝑘+1) is eventually
stable;

• the chain {𝑐𝑘}𝑘∈N defined by 𝑐0 = 𝑎0 𝑝⊕𝒜 𝑏0 and 𝑐𝑘+1 = 𝑐𝑘 ▽𝑝 (𝑎𝑘+1 𝑝⊕𝒜 𝑏𝑘+1) is eventually
stable; and

• the chain {𝑐𝑘}𝑘∈N defined by 𝑐0 = 𝑎0 ⋓𝒜 𝑏0 and 𝑐𝑘+1 = 𝑐𝑘 ▽𝑛 (𝑎𝑘+1 ⋓𝒜 𝑏𝑘+1) is eventually stable.

5 Instantiations
In this Section, we instantiate the framework to derive three important analyses: Bayesian inference
(BI) (§5.1), computing rewards in Markov decision processes (§5.2), and linear expectation-invariant
analysis (LEIA) (§5.3). Proofs are included in appendix A.

5.1 Bayesian Inference
Claret et al. [Claret et al. 2013] proposed a technique to perform Bayesian inference on Boolean
programs using dataflow analysis. They use a forward analysis to compute the posterior distribu-
tion of a single-procedure, well-structured, probabilistic program. Their analysis is similar to an
intraprocedural dataflow analysis: they use discrete joint-probability distributions as dataflow facts,
merge these facts at join points, and compute fixpoints in the presence of loops. Let Var be the set of
program variables; the set of program states is Ω = Var→B. Note that Ω is isomorphic to B

|Var|, and
consequently, a distribution can be represented by a vector of length 2|Var| of reals in R[0,1]. (Their
implementation uses Algebraic Decision Diagrams [Bahar et al. 1997] to represent distributions
compactly.)

The algorithm by Claret et al. is defined inductively on the structure of programs
[Claret et al. 2013, Alg. 2]—for example, the output distribution of 𝑥 ∼ Bernoulli(𝑟)
from an input distribution 𝜇, denoted by Post(𝜇,𝑥 ∼ Bernoulli(𝑟)), is computed as
𝜆𝜎 ′ .

(︁
𝑟 ·

∑︀
{𝜎 |𝜎 ′=𝜎 [𝑥←𝑡𝑟𝑢𝑒]}𝜇(𝜎) + (1− 𝑟) ·

∑︀
{𝜎 |𝜎 ′=𝜎 [𝑥←𝑓 𝑎𝑙𝑠𝑒]}𝜇(𝜎)

)︁
.

We have used PMAF to extend their work in two dimensions, creating (i) an interprocedural version
of Bayesian inference with (ii) nondeterminism. Because of nondeterminism, for a given input state
the posterior distribution is not unique; consequently, our goal is to compute procedure summaries
that gives lower bounds on posterior distributions.

To reformulate the domain in the two-vocabulary setting needed for computing procedure sum-
maries, we introduce Var′ , primed versions of the variables in Var. Var and Var′ denote the vari-
ables in the pre-state and post-state of a state transformer. A distribution transformer (and there-
fore a procedure summary) is a matrix of size 2|Var| × 2|Var

′ | of reals in R[0,1]. We define a PMA
ℬ = ⟨𝑀ℬ ,⊑ℬ ,⊗ℬ ,𝜙^ℬ ,𝑝⊕ℬ ,⋓ℬ ,⊥ℬ ,1ℬ⟩ as follows:

𝑀ℬ
def= 2|Var| × 2|Var

′ |→R[0,1]

𝑎 ⊑ℬ 𝑏
def= 𝑎 ≤̇𝑏 𝑎⋓ℬ 𝑏

def= ˙min(𝑎,𝑏)

𝑎⊗ℬ 𝑏
def= 𝑎× 𝑏 ⊥ℬ

def= 𝜆(𝑠, 𝑡).0

𝑎 𝑝⊕ℬ 𝑏
def= 𝑝 · 𝑎+ (1− 𝑝) · 𝑏 1ℬ

def= 𝜆(𝑠, 𝑡).[𝑠 = 𝑡])

𝑎𝜙^ℬ 𝑏
def= 𝜆(𝑠, 𝑡).if ̂︀𝜙(𝑠) then 𝑎(𝑠, 𝑡) else 𝑏(𝑠, 𝑡)

The use of pointwise min in the definition of 𝑎 ⋓ℬ 𝑏 causes the analysis to compute procedure
summaries that provide lower bounds on the posterior distributions.

LetB = ⟨ℬ,J·KB ⟩ be the interpretation for Bayesian inference. We define the semantic function
as J𝑥 := ℰKC = 𝜆(𝑠,𝐴).[𝑠[𝑥 ← ℰ(𝑠)] ∈ 𝐴] and J𝑥 := ℰKB = 𝜆(𝑠, 𝑡).[𝑠[𝑥 ← ℰ(𝑠)] = 𝑡], as well as J𝑥 ∼
Bernoulli(𝑝)KC = 𝜆(𝑠,𝐴).𝑝 · [𝑠[𝑥← 𝑡𝑟𝑢𝑒] ∈ 𝐴] + (1 − 𝑝) · [𝑠[𝑥← 𝑓 𝑎𝑙𝑠𝑒] ∈ 𝐴] and J𝑥 ∼ Bernoulli(𝑝)KB =
𝜆(𝑠, 𝑡).𝑝 · [𝑠[𝑥← 𝑡𝑟𝑢𝑒] = 𝑡] + (1− 𝑝) · [𝑠[𝑥← 𝑓 𝑎𝑙𝑠𝑒] = 𝑡]).

We define the concretization mapping 𝛾ℬ : 𝑀ℬ → PΩ as 𝛾ℬ(𝑎) = ⟨⟨{𝜅 | ∀𝑠, 𝑠′ .𝜅(𝑠, {𝑠′}) ≥ 𝑎(𝑠, 𝑠′)}⟩⟩
where ⟨⟨𝐶⟩⟩ denotes the smallest element in PΩ such that contains 𝐶.

Theorem 5.1. 𝛾ℬ is a prob. under-abstraction from 𝒞 to ℬ.

We do not define widening operators for BI, because 𝛾ℬ is an under-abstraction and our algorithm
starts from the bottom element in the abstract domain, the intermediate result at any iteration is a
sound answer.

5.2 Markov Decision Process with Rewards
Analyses of finite-state Markov decision processes were originally developed in the fields of opera-
tional research and finance mathematics [Puterman 1994]. Originally, Markov decision processes
were defined as finite-state machines with actions that exhibit probabilistic transitions. In this paper,
we use a slightly different formalization, using hyper-graphs.

Definition 5.2 (Markov decision process). A Markov decision process (MDP) is a hyper-graph
𝐻 = ⟨𝑉 ,𝐸,𝑣entry,𝑣exit⟩, where every node except 𝑣exit has exactly one outgoing hyper-edge; each
hyper-edge with just a single destination has an associated reward, 𝑠𝑒𝑞[reward(𝑟)], where 𝑟 is a
positive real number; and each hyper-edge with two destinations has either 𝑝𝑟𝑜𝑏[𝑝], where 0 ≤ 𝑝 ≤ 1,
or 𝑛𝑑𝑒𝑡. Note that MDPs are a specialization of single-procedure probabilistic programs without
conditional-choice.

We can also treat the hyper-graph as a graph: each hyper-edge contributes one or two graph edges.
A path through the graph has a reward, which is the sum of the rewards that label the edges of the
path. (Edges from hyper-edges with the actions 𝑝𝑟𝑜𝑏[𝑝] or 𝑛𝑑𝑒𝑡 are considered to have reward 0.) The
analysis problem that we wish to solve is to determine, for each node 𝑣, the greatest expected reward
that one can gain by executing the program from 𝑣.

It is natural to extend MDPs with procedure calls and multiple procedures, to obtain recursive
Markov decision processes. The set of program states is defined to be the set of nonnegative real
numbers: Ω = [0,∞]. To address the maximum-expected-reward problem for a recursive Markov

16

5.3 Linear Expectation-Invariant Analysis 17

decision process, we define a PMA ℛ = ⟨𝑀ℛ,⊑ℛ,⊗ℛ,𝜙^ℛ,𝑝⊕ℛ,⋓ℛ,⊥ℛ,1ℛ⟩ as follows:

𝑀ℛ
def= [0,∞] 𝜙^ℛ

def= max ⊥ℛ
def= 0

⊑ℛ
def= ≤ 𝑎 𝑝⊕ℛ 𝑏

def= 𝑝 · 𝑎+ (1− 𝑝) · 𝑏 1ℛ
def= 0

⊗ℛ
def= + ⋓ℛ

def= max

LetR = ⟨ℛ,J·KR ⟩ be the interpretation for a Markov decision process with rewards. We define the
semantic function as Jreward(𝑟)KC = 𝜆(𝑠,𝐴).[𝑠+ 𝑟 ∈ 𝐴] and Jreward(𝑟)KR = 𝑟.

We define the concretization mapping 𝛾ℛ :𝑀ℛ→ P[0,∞] as follows: 𝛾ℛ(𝑎) = ⟨⟨{𝜅 | ∀𝑠.
∫︀
𝑦 ·𝜅(𝑠,𝑑𝑦) ≤

𝑠+ 𝑎}⟩⟩.

Theorem 5.3. 𝛾ℛ is a prob. over-abstraction from 𝒞 to ℛ.

We use a trivial widening in this analysis: if after some fixed number of iterations the analysis does
not converge, it returns∞ as the result.

5.3 Linear Expectation-Invariant Analysis
Several examples of expectation invariants obtained via linear expectation-invariant analysis (LEIA)
were given in §2.2. This section gives details of the abstract domain for LEIA.

We make use of an existing abstract domain, namely, the domain of convex polyhedra [Cousot
and Halbwachs 1978]. Elements of the polyhedral domain are defined by linear-inequality and
linear-equality constraints among program variables. For LEIA, we use two-vocabulary polyhedra
over nonnegative program variables. Let 𝑥 = (𝑥1, · · · ,𝑥𝑛)𝑇 be a column vector of nonnegative program
variables and 𝑥′ = (𝑥′1, · · · ,𝑥

′
𝑛)𝑇 be a column vector of the “primed” versions of corresponding program

variables. A polyhedron 𝑃 ⊆R
2𝑛
≥0 captures linear-inequality constraints among 𝑥 and 𝑥′ , which can be

interpreted as a relation between pre-state and post-state variable valuations.
A polyhedron 𝑃 = {(𝑥′𝑇 𝑥𝑇)𝑇 ∈R2𝑛

≥0 | 𝐴
′𝑥′+𝐴𝑥 ≤ 𝑏∧𝐷′𝑥′+𝐷𝑥 = 𝑒}, can be encoded as the intersection

of a finite number of closed half spaces and a finite number of subspaces, where 𝐴′ ,𝐴,𝐷′ ,𝐷 are
matrices and 𝑏,𝑒 are vectors. The associated constraint set is defined as 𝒞𝑃 = {𝐴′𝑥′ +𝐴𝑥 ≤ 𝑏,𝐷′𝑥′ +𝐷𝑥 =
𝑒}. Let 𝒫 be the set of polyhedra; 𝒫 is equipped with meet, join, renaming, forgetting, and comparison
operations.

LEIA uses expectation polyhedra. They are actually the same as polyhedra, except that the two vo-
cabularies are 𝑥 = (𝑥1, · · · ,𝑥𝑛)𝑇 and E[𝑥′] = (E[𝑥′1], · · · ,E[𝑥′𝑛])𝑇 . An expectation polyhedron represents
a constraint set of the form

{𝐴′E[𝑥′] +𝐴𝑥 ≤ 𝑏,𝐷′E[𝑥′] +𝐷𝑥 = 𝑒}. (3)

Because of the linearity of the expectation operator E, an equivalent way to express (3) is as follows:

{E[𝐴′𝑥′] +𝐴𝑥 ≤ 𝑏,E[𝐷′𝑥′] +𝐷𝑥 = 𝑒}.

Let ℰ𝒫 be the set of expectation polyhedra. ℰ𝒫 is equipped with the same set of operations as 𝒫 .

We define the state space to be Ω = R
𝑛
≥0. We then define a PMA ℐ with a universe 𝑀ℐ

def= 𝒫 ×ℰ𝒫 .
An element (𝑃 ,𝐸𝑃) ∈ ℐ consists of (i) a set of standard constraints 𝑃 ∈ 𝒫 , and (ii) a set of expectation

constraints 𝐸𝑃 ∈ ℰ𝒫 , such that 0⊔ 𝑃 [E[𝑥′]/𝑥′] ⊒ 𝐸𝑃 holds, where 0 def=
⋀︀𝑛
𝑖=1(E[𝑥′𝑖] = 0). The latter

property means that, if necessary, we can always “rebuild” a pessimistic ℰ𝒫 component from the 𝒫
component as 0⊔ 𝑃 [E[𝑥′]/𝑥′].5

5The intuition is that 𝑃 represents a convex overapproximation to some desired set of points; the expected
value has to lie somewhere inside 0⃗⊔ 𝑃 , where “0⃗⊔ . . .” is needed to account for subprobability distributions. For
instance, for a nonnegative interval [lo,hi], we must have expected ∈ ([0,0]⊔ [lo,hi]); i.e., 0 ≤ expected ≤ hi.

We define the concretization mapping 𝛾ℐ as follows:

𝛾ℐ (𝑃 ,𝐸𝑃) = ⟨⟨
{︃
𝜅 | ∀𝑠.𝜅

(︃
𝑠,

{︃
𝑠′ |

[︃
𝑠′

𝑠

]︃
|= ¬𝑃

}︃)︃
= 0 ∧

[︃ ∫︀
𝑠′𝜅(𝑠,𝑑𝑠′)

𝑠

]︃
|= 𝐸𝑃

}︃
⟩⟩.

Comparison. The comparison operation on ordinary polyhedra can be defined as standard set
inclusion. For expectation polyhedra, taking into account subprobability distributions, we define
𝐸𝑃1 ⊑ 𝐸𝑃2 to be 0⊔𝐸𝑃1 ⊆ 0⊔𝐸𝑃2, so that any element inside or below 𝐸𝑃1 should also be inside or

below 𝐸𝑃2. Consequently, we define (𝑃1,𝐸𝑃1) ⊑ℐ (𝑃2,𝐸𝑃2) def= 𝑃1 ⊆ 𝑃2 ∧ 0⊔𝐸𝑃1 ⊆ 0⊔𝐸𝑃2.

Composition. For ordinary polyhedra, the composition of 𝑃1 and 𝑃2 can be defined as

(∃𝑥′′ .𝒞𝑃1 [𝑥′′/𝑥′]∧𝒞𝑃2 [𝑥′′/𝑥])⇒𝒞𝑃1⊗𝑃2 ,

where we introduce an intermediate vocabulary 𝑥′′ = (𝑥′′1 , · · · ,𝑥
′′
𝑛)𝑇 , and use it to connect 𝑃1 and 𝑃2.

Consequently, we define 𝑃1⊗𝑃2 to be ∃𝑥′′ .𝒞𝑃1 [𝑥′′/𝑥′]∧𝒞𝑃2 [𝑥′′/𝑥]. Operationally, composition involves
first introducing a new vocabulary; renaming the variables properly; performing a meet, and finally
forgetting the intermediate vocabulary.

Somewhat surprisingly, because of the tower property in probability theory, exactly the same steps
can be used to compose expectation polyhedra. Informally, the tower property means that E[𝑋] =
E[E[𝑋 | 𝑌]], where 𝑋 and 𝑌 are two random variables, and E[𝑋 | 𝑌] is a conditional expectation. For
instance, suppose that 𝐸𝑃1 and 𝐸𝑃2 are defined by the constraint sets {E(𝑥′) = 𝑥+ 2} and {E(𝑥′) = 7𝑥},
respectively. Following the renaming recipe above, we have E(𝑥′′) = 𝑥 + 2 and E(𝑥′ | 𝑥′′) = 7𝑥′′ . By
the tower property, we have E(𝑥′) = E(E(𝑥′ | 𝑥′′)) = E(7𝑥′′) = 7E(𝑥′′) = 7𝑥 + 14. Operationally, the
tower property allows us to compose linear expectation invariants, and eliminate the intermediate
vocabulary 𝑥′′ . Consequently, we define

(𝑃1,𝐸𝑃1)⊗ℐ (𝑃2,𝐸𝑃2) def= (𝑃1 ⊗ 𝑃2,𝐸𝑃1 ⊗𝐸𝑃2).

Conditional-choice. For the ordinary-polyhedron component, a conditional-choice 𝜙^ is performed
by first meeting each operand with the logical constraint 𝜙, and then joining the results. However,
for the expectation-polyhedron component, conditioning can split the probability space in almost
arbitrary ways. Consequently, the constraints on post-state expectations as a function of pre-state
valuations are not necessarily true after conditioning. Thus, we define

(𝑃1,𝐸𝑃1)𝜙^ℐ (𝑃2,𝐸𝑃2) def= let 𝑃 = ({𝜙} ⊓ 𝑃1)⊔ ({¬𝜙} ⊓ 𝑃2)
in (𝑃 , (𝐸𝑃1 ⊔𝐸𝑃2)⊓ (0⊔ 𝑃 [E[𝑥′]/𝑥′])).

The ⊓ in the second component is performed to maintain the invariant that 0⊔ 𝑃 [E[𝑥′]/𝑥′] ⊒ the
second component.

Probabilistic-choice. For the ordinary-polyhedron component, we merely join the components of the
two operands. For the expectation-polyhedron component, we introduce two more vocabularies and
have

(∃𝑥′′ ,𝑥′′′ .𝒞𝐸𝑃1 [𝑥′′/E[𝑥′]]∧𝒞𝐸𝑃2 [𝑥′′′/E[𝑥′]]∧
𝑛⋀︁
𝑖=1

E[𝑥′𝑖] = 𝑝 · 𝑥′′𝑖 + (1− 𝑝) · 𝑥′′′𝑖)⇒𝒞𝐸𝑃1𝑝⊕𝐸𝑃2 .

Consequently, we define 𝐸𝑃1 𝑝⊕𝐸𝑃2 to be

∃𝑥′′ ,𝑥′′′ .

⎛⎜⎜⎜⎜⎜⎝𝒞𝐸𝑃1 [𝑥′′/E[𝑥′]]∧𝒞𝐸𝑃2 [𝑥′′′/E[𝑥′]]∧
𝑛⋀︁
𝑖=1

E[𝑥′𝑖] = 𝑝 · 𝑥′′𝑖 + (1− 𝑝) · 𝑥′′′𝑖

⎞⎟⎟⎟⎟⎟⎠ ,
18

5.3 Linear Expectation-Invariant Analysis 19

and (𝑃1,𝐸𝑃1) 𝑝⊕ℐ (𝑃2,𝐸𝑃2) def= (𝑃1 ⊔ 𝑃2,𝐸𝑃1 𝑝⊕𝐸𝑃2).

Nondeterministic-choice. The nondeterministic-choice operations on both ordinary polyhedra and

expectation polyhedra can be defined as join. Hence, we define (𝑃1,𝐸𝑃1)⋓ℐ (𝑃2,𝐸𝑃2) def= (𝑃1 ⊔ 𝑃2,𝐸𝑃1 ⊔
𝐸𝑃2).

Bottom and Unit Element. We define ⊥ℐ
def= (𝑓 𝑎𝑙𝑠𝑒,0), and 1ℐ

def= ({𝑥′𝑖 = 𝑥𝑖 | 1 ≤ 𝑖 ≤ 𝑛}, {E[𝑥′𝑖] = 𝑥𝑖 | 1 ≤
𝑖 ≤ 𝑛}).
Semantic Function. Some examples of the semantic mapping J·KI are as follows, where min(D)
and max(D) represents the interval of the support of a distributionD , while mean(D) stands for its
average.

J𝑥𝑖 := ℰKI def=
(︂
{𝑥′𝑖 = ℰ(𝑥)} ∪ {𝑥′𝑗 = 𝑥𝑗 | 𝑗 , 𝑖}, {E[𝑥′𝑖] = ℰ(𝑥)} ∪ {E[𝑥′𝑗] = 𝑥𝑗 | 𝑗 , 𝑖}

)︂
J𝑥𝑖 ∼D KI def=

(︂
{min(D) ≤ 𝑥′𝑖 ≤max(D)} ∪ {𝑥′𝑗 = 𝑥𝑗 | 𝑗 , 𝑖}, {E[𝑥′𝑖] = mean(D)} ∪ {E[𝑥′𝑗] = 𝑥𝑗 | 𝑗 , 𝑖}

)︂
JskipKI def= 1ℐ

Note we assume all expressions in the program are linear. For nonlinear arithmetic programs, one
can adopt some linearization techniques [Farzan and Kincaid 2015; Miné 2006].

Theorem 5.4. 𝛾ℐ is a prob. over-abstraction from 𝒞 to ℐ .

Widening. Let ▽ be the standard widening operator on ordinary polyhedra [Halbwachs 1979]. Recall
from Obs. 4.8 that whenever a widening operation 𝑎▽ 𝑏 is performed, the property 𝑎 ⊑𝒜 𝑏 holds.
There is a subtle issue with expectation invariants when dealing with conditional or nondeterministic
loops.

Observation 5.5. In a conventional program, if you have a loop “while 𝐵 do 𝑆 od,” and 𝐼 is a
loop-invariant, then 𝐼 ∧¬𝐵 (which implies 𝐼) holds on exiting the loop. In contrast, for a conditional
or nondeterministic loop in a probabilistic program, a loop-invariant that holds at the beginning and
end of the loop body does not necessarily hold on exiting the loop.

Example 5.6. Consider the following program:

while ¬(𝑥 = 𝑦) do
if prob(1

2) then 𝑥 := 𝑥+ 1 else 𝑦 := 𝑦 + 1 fi
od

For the loop body, we can derive an expectation invariant E[𝑥′ − 𝑦′] = 𝑥− 𝑦; however, for the entire loop this
property does not hold: at the end of the loop 𝑥 = 𝑦 must hold, and hence E[𝑥′ − 𝑦′] should be equal to 0.

Because of this issue, we use a pessimistic widening operator for conditional-choice and
nondeterministic-choice: the widening operator forgets the expectation invariants and rebuilds
them from standard invariants.

(𝑃1,𝐸𝑃1)▽𝑐 (𝑃2,𝐸𝑃2) def= (𝑃1 ▽ 𝑃2,0⊔ 𝑃2[E[𝑥′]/𝑥′])

(𝑃1,𝐸𝑃1)▽𝑛 (𝑃2,𝐸𝑃2) def= (𝑃1 ▽ 𝑃2,0⊔ 𝑃2[E[𝑥′]/𝑥′])

We do not have a good method for (𝑃1,𝐸𝑃1)▽𝑝 (𝑃2,𝐸𝑃2). We found that the following approach loses
precision:

let 𝑃 = (𝑃1 ▽ 𝑃2) in (𝑃 , (𝐸𝑃1 ▽𝐸𝑃2)⊓ (0⊔ 𝑃 [E[𝑥′]/𝑥′]))

In our experiments, we use (𝑃1,𝐸𝑃1)▽𝑝 (𝑃2,𝐸𝑃2) def= (𝑃1 ▽ 𝑃2,𝐸𝑃2), which does no extrapolation in the
ℰ𝒫 component.

6 Evaluation
In this Section, we first describe the implementation of PMAF, and the three instantiations introduced
in §5. Then, we evaluate the effectiveness and performance of the three analyses.

6.1 Implementation
PMAF is implemented in OCaml; the core framework consists of about 400 lines of code. The
framework is implemented as a functor parametrized by a module representing a PMA, with some
extra functions, such as widening and printing. This organization allows any analysis that can be
formulated in PMAF to be implemented as a plugin. Also, the core framework relies on control-flow
hyper-graphs, and provides users the flexibility to employ it with any front end. We use OCamlGraph
[Conchon et al. 2007] as the implementation of fixed-point computation and Bourdoncle’s algorithm.

The plugin for Bayesian inference is about 400 lines of code, including a lexer and a parser for
the imperative language that we use in the examples of this paper. We use Lacaml [URL 2017a]
to manipulate matrices. The plugins for the Markov decision problem with rewards and linear
expectation-invariant analysis are about 200 lines and 500 lines, respectively. We use APRON
[Jeannet and Miné 2009] for polyhedron operations. Most of the code in the plugins is to implement
the PMA structure of the analysis domain.

Because of the numerical reasoning required when analyzing probabilistic programs, we need to
be concerned about finite numerical precision in our implementations of the instantiations (although
they are sound on a theoretical machine operating on reals). In our implementation, we use the fact
that ascending chains of floating numbers always converge in a finite number of steps. The user
could use the technique proposed by Darulova et al. [Darulova and Kuncak 2014] to obtain a sound
guarantee on numerical precision.

6.2 Experiments

Evaluation Platform. Our experiments were performed on a machine with an Intel Core i5 2.4 GHz
processor and 8GB of RAM under Mac OS X 10.13.4.

Table 1: Top: Bayesian inference.
Bottom: Markov decision problem
with rewards. (Time is in seconds.)

Program #loc rec? #call time
compare 17 n 0 2.22

dice 12 n 0 0.02
eg1 10 n 0 0.02

eg1-tail 16 t 2 0.02
eg2 10 n 0 0.02

eg2-tail 16 t 2 0.01
recursive 14 r 1 0.01
binary10 184 n 90 0.03

loop 10 n 0 0.03
quicksort7 109 n 42 0.03

recursive 13 t 1 0.03
student 43 t 8 0.03

Bayesian Inference and Markov Decision Problem with Re-
wards. We tested our framework on Bayesian inference and
Markov decision problem with rewards on handcrafted ex-
amples. The results of the evaluation of the two analyses
are described in Tab. 1. The tables contains the number of
lines; whether the program is non-recursive, tail-recursive, or
recursive; the number of procedure calls; and the time taken
by the implementation (measured by running each program 5
times and computing the 20% trimmed mean).

Our framework computed the same answer (modulo floating-
point round-off errors) as PReMo [URL 2017b], a tool for proba-
bilistic recursive models. We did not compare with probabilistic
abstract interpretation [Cousot and Monerau 2012] because its
semantic foundation is substantially different from that of our
framework—as we mentioned in §1, the order for resolving
probabilistic behavior and nondeterministic behavior is differ-
ent.

The analysis time of Bayesian inference grows exponentially with respect to the number of program
variables.6 The time cost comes from the explicit matrix representation of domain elements. One

6One should not assume that exponential growth makes the analysis useless; after all, predicate-abstraction

20

6.2 Experiments 21

Table 2: Linear expectation-invariant analysis
Program Expectation invariants #loc rec? #call time
2d-walk E[𝑥′] = 𝑥, E[𝑦′] = 𝑦, E[dist′] = dist, E[count′] ≤ count + 1, E[count′] ≥ count 47 n 0 0.24

aggregate-rv E[2𝑥′ − 𝑖′] = 2𝑥 − 𝑖, E[𝑥′] ≤ 𝑥+ 1
2 , E[𝑥′] ≥ 𝑥 11 n 0 0.06

biased-coin E[𝑥′] ≤ 𝑥+ 1
2 , E[𝑥′] ≥ 𝑥 − 1

2 25 n 0 0.06
binom-update (𝑝= 1

4) E[4𝑥′ −𝑛′] = 4𝑥 −𝑛, E[𝑥′] ≤ 𝑥+ 1
4 , E[𝑥′] ≥ 𝑥 14 n 0 0.06

coupon5 E[count′ − 𝑖′] = count− 𝑖 (1st), E[4count′ − 5𝑖′] = 4count− 5𝑖 (2nd), 58 n 0 0.07
E[3count′ − 5𝑖′] = 3count− 5𝑖 (3rd), E[2count′ − 5𝑖′] = 2count− 5𝑖 (4th),
E[count′ − 5𝑖′] = count− 5𝑖 (5th)

dist E[𝑥′] = 𝑥, E[𝑦′] = 𝑦, E[𝑧′] = 1
2𝑥+ 1

2𝑦 5 n 0 0.05
eg E[𝑥′ + 𝑦′] = 𝑥+ 𝑦 + 3, E[𝑧′] = 1

4𝑧+ 3
4 , E[𝑥′] ≤ 𝑥+ 3, E[𝑥′] ≥ 𝑥 8 n 0 0.89

eg-tail E[𝑧′] ≥ 1
4𝑧, E[𝑥′] ≥ 𝑥, E[𝑦′] ≥ 𝑦, E[𝑥′ + 𝑦′] ≥ 𝑥+ 𝑦 + 3

4 11 t 1 0.13
hare-turtle E[2ℎ′ − 5𝑡′] = 2ℎ− 5𝑡, E[ℎ′] ≤ ℎ+ 5

2 , E[ℎ′] ≥ ℎ 15 n 0 0.06
hawk-dove E[p1b′ − count′] = p1b− count, E[p2b′ − count′] = p2b− count, E[p1b′] ≤ p1b + 1, 29 n 0 0.08

E[p1b′] ≥ p1b
mot-ex E[2𝑥′ − 𝑦′] = 2𝑥 − 𝑦, E[4𝑥′ − 3count′] = 4𝑥 − 3count, E[𝑥′] ≤ 𝑥+ 3

4 , E[𝑥′] ≥ 𝑥 16 n 0 0.06
recursive E[𝑥′] = 𝑥+ 9 13 r 2 0.37

uniform-dist E[𝑛′] ≤ 2𝑛, E[𝑛′] ≥ 𝑛, E[𝑔 ′] ≤ 2𝑔 + 1
2 , E[𝑔 ′] ≥ 𝑔 14 n 0 0.06

could use Algebraic Decision Diagrams [Bahar et al. 1997] as a compact representation to improve
the efficiency.

The analyzer for the Markov decision problem with rewards works quickly and obtains some
interesting results. quicksort7 is a model of a randomized quicksort algorithm on an array of size 7
(obtained from [URL 2017b]), and our analysis results are consistent with the wost-case expected
number of comparisons being Θ(𝑛 log𝑛).7 binary10 is a model of randomized binary search algorithm
on an array of size 10, and our analysis results are consistent with the worst-case expected number of
comparisons being Θ(log𝑛).

Linear Expectation-Invariant Analysis. We performed a more thorough evaluation of linear
expectation-invariant analysis. We collected several examples from the literature on probabilis-
tic invariant generation [Chakarov and Sankaranarayanan 2014; Katoen et al. 2010], and handcrafted
some new examples to demonstrate particular capabilities of our domain, e.g., analysis of recursive
programs. For the examples obtained from the loop-invariant-generation benchmark, we extracted
the loop body as our test programs. Also, we performed a positive-negative decomposition to make
sure all program variables are nonnegative. That is, we represented each variable 𝑥 as 𝑥+ − 𝑥− where
𝑥+,𝑥− ≥ 0, and replaced every operation on variables with appropriate operations on the decomposed
variables.

The results of the evaluation are shown in Tab. 2, which lists the expectation invariants obtained,
and the time taken by the implementation. In general, the analysis runs quickly—all the examples
are processed in less than one second. The analysis time mainly depends on the number of program
variables and the size of the control-flow hyper-graph.

As shown in Tab. 2, our analysis can derive nontrivial expectation invariants, e.g., relations among
different program variables such as E[𝑥′ + 𝑦′] = 𝑥 + 𝑦 + 3, E[2𝑥′ − 𝑦′] = 2𝑥 − 𝑦. In most cases, our
results are at least as precise as those in [Chakarov and Sankaranarayanan 2014; Katoen et al. 2010].
Exceptions are biased-coin and uniform-dist, collected from [Katoen et al. 2010], where their invariant-
generation algorithm uses a template-based approach and the form of expectations can be more
complicated, e.g., [𝑃1] · ℰ1 + [𝑃2] · ℰ2 where 𝑃1, 𝑃2 are linear assertions and ℰ1,ℰ2 are linear expressions.
Nevertheless, our analysis is fully automated and applicable to general programs, while [Katoen et al.

domains [Graf and Saïdi 1997] also grow exponentially: the universe of assignments to a set of Boolean variables
grows exponentially in the number of variables. Finding useful coarser abstractions for Bayesian inference—by
analogy with the techniques of Ball et al. [Ball et al. 2001] for predicate abstraction—might be an interesting
direction for future work.

7The analysis computes worst-case expected number because the underlying semantics re-
solves nondeterminism first and probabilistic-choice second, and thus the analysis computes
maxnondet. resolutionE[#comparisons under resolution].

2010] requires interactive proofs for nested loops, and [Chakarov and Sankaranarayanan 2014] works
only for single loops.

7 Related Work

Static Analysis for Standard Programs. Our framework is an extension of interprocedural dataflow
analysis [Knoop and Steffen 1992; Lal et al. 2005; Müller-Olm and Seidl 2004; Sharir and Pnueli 1981]
to probabilistic programs, but it does not support some language features that standard dataflow
analysis has been used to address, e.g., calls through function pointers.

Compared to the Galois connections that are ordinarily used in abstract interpretation [Cousot
and Cousot 1977, 1979], our definition of probabilistic abstractions is based on just a concretization
function, so PMAF does not have the full power of standard abstract-interpretation machinery.

Static Analysis for Probabilistic Programs. Most closely related to our work is probabilistic abstract
interpretation [Cousot and Monerau 2012; Monniaux 2000, 2001, 2003], which is discussed in the
introduction. There is a long line of research on manual reasoning techniques for probabilistic
programs [Ferrer Fioriti and Hermanns 2015; Kaminski et al. 2016; Kozen 1985; McIver and Morgan
2001; Olmedo et al. 2016]. The main difference to this work is that we focus on the design and
implementation of automatic techniques that that rely on computing fixed points.

Other work focuses on specialized automatic analyses for specific properties. Claret et al. [Claret
et al. 2013] proposed a dataflow analysis for Bayesian inference on Boolean programs that we refor-
mulate in PMAF to lift it to the interprocedural level. There are different techniques for automatically
proving termination, such as probabilistic pushdown automata [Brázdil et al. 2014, 2015] and mar-
tingales and stochastic invariants [Chatterjee et al. 2016b, 2017]. Martingales for automatic analysis
of probabilistic programs have been pioneered by Chakarov et al. [Chakarov and Sankaranarayanan
2013]. Compared with existing techniques for probabilistic invariant generation [Barthe et al. 2016a;
Chakarov and Sankaranarayanan 2013, 2014; Chatterjee et al. 2017], the expectation-invariant analy-
sis proposed in §5.3 is designed as a two-vocabulary domain utilizing the well-studied polyhedral
abstract domain.

Semantics for Probabilistic Programs. There is a long tradition of using probability kernels to
define the semantics of probabilistic programs. Kernels were used by Kozen [Kozen 1985] to give a
semantics for Probabilistic Propositional Dynamic Logic (PPDL), a probabilistic generalization of
PDL. Kozen considers well-structured programs with sequencing and conditional-choice, but without
non-deterministic choice. He does not consider reasoning methods that use abstract interpretation of
his PPDL semantics. There are a list of domain-theoretic studies on probabilistic nondeterminism
[den Hartog and de Vink 1999; Jones 1989; Jones and Plotkin 1989; Mislove 2000; Mislove et al. 2004;
Tix et al. 2009], which develop powerdomain constructions over probability distributions, but do
not consider powerdomains over kernels. Borgström et al. [Borgström et al. 2016] have used kernels
to define the operational semantics of a probabilistic lambda calculus. The main novelty of our
denotational semantics in §3.3 is that it is defined for control-flow hyper-graphs, based on kernels.

Other Analyses Based on Hyper-Graphs. Hyper-graph-based analyses go back to the join-over-
all-hyper-path-valuations of Knuth [Knuth 1977]. Other analyses based on hyper-graphs includes
Möncke and Wilhelm’s [Möncke and Wilhelm 1991] framework for finding join-over-all-hyper-path-
valuations for partially ordered abstract domains. In the hyper-paths in this paper, we use binary
hyper-edges to model calls, as well as conditional, probabilistic, and nondeterministic choice. For
acyclic hyper-graphs, Eisner has considered semirings for computing expectations and variances of
random variables [Li and Eisner 2009]. He works with a discrete sample space: all hyper-paths in a
given hyper-graph, and the value of a random variable for a given hyper-path is built up as the sum
of the values contributed by each hyper-edge. In our work, we consider cyclic hyper-graphs, and the
nature of the computation that a hyper-path represents is more complex than that considered by

22

7 RELATED WORK 23

Eisner.

Acknowledgments
This article is based on research supported, in part, by a gift from Rajiv and Ritu Batra; by AFRL under
DARPA MUSE award FA8750-14-2-0270, DARPA STAC award FA8750-15-C-0082, and DARPA award
FA8750-16-2-0274; and by the UW-Madison Office of the Vice Chancellor for Research and Graduate
Education with funding from the Wisconsin Alumni Research Foundation. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. Any opinions, findings, and conclusions or recommendations expressed
in this publication are those of the authors, and do not necessarily reflect the views of the sponsoring
agencies.

We thank the nurses from the Univ. of Pittsburgh Medical Center for their professional medical
care, which was instrumental in finishing the submission before the PLDI deadline.

References
2017a. Lacaml - Linear Algebra for OCaml. https://github.com/mmottl/lacaml.

2017b. PReMo – Probabilistic Recursive Models analyzer. http://groups.inf.ed.ac.uk/premo/.

Samson Abramsky and Achim Jung. 1994. Domain Theory. In Handbook of Logic in Computer Science. Vol. 3.
Oxford University Press Oxford, UK.

R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii, Abelardo Pardo, and Fabio
Somenzi. 1997. Algebraic Decision Diagrams and their Applications. Formal Methods in System Design 10
(1997), 171–206.

T. Ball, A. Podelski, and S.K. Rajamani. 2001. Boolean and Cartesian Abstraction for Model Checking C Programs.
In Tools and Algs. for the Construct. and Anal. of Syst.

Gilles Barthe, Thomas Espitau, Luis María Ferrer Fioriti, and Justin Hsu. 2016a. Synthesizing Probabilistic
Invariants via Doob’s Decomposition. In Computer Aided Verification. 43–61.

Gilles Barthe, Thomas Espitau, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. 2016b.
Formal Certification of Randomized Algorithms. Technical Report. http://justinh.su/files/papers/ellora.pdf.

Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009. Formal Certification of Code-based
Cryptographic Proofs. In Proceedings of the 36th Annual Symposium on Principles of Programming Languages
(POPL’09) (Savannah, GA, USA). ACM, New York, NY, USA, 90–101.

Patrick Billingsley. 2012. Probability and Measure. John Wiley & Sons, Inc.

Johannes Borgström, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. 2016. A Lambda-Calculus
Foundation for Universal Probabilistic Programming. In International Conference on Functional Programming.
33–46.

Francois Bourdoncle. 1993. Efficient Chaotic Iteration Strategies With Widenings. In Formal Methods in Prog. and
Their Applications.

Tomáš Brázdil, Stefan Kiefer, and Antonín Kučera. 2014. Efficient Analysis of Probabilistic Programs with an
Unbounded Counter. J. ACM 61, 41 (2014).

Tomáš Brázdil, Stefan Kiefer, Antonín Kučera, and Ivana Hutařová Vařeková. 2015. Runtime Analysis of Proba-
bilistic Programs with Unbounded Recursion. J. Comput. System Sci. 81 (2015), 288–310.

Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus
Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A Probabilistic Programming Language. Journal
of Statistical Software 76 (2017).

Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In
Computer Aided Verification. 511–526.

Aleksandar Chakarov and Sriram Sankaranarayanan. 2014. Expectation Invariants for Probabilistic Program
Loops as Fixed Points. In Static Analysis Symposium. 85–100.

Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady. 2016a. Termination Analysis of Probabilistic
Programs Through Positivstellensatz’s. In Computer Aided Verification - 28th International Conference (CAV’16).
3–22.

Krishnendu Chatterjee, Hongfei Fu, Petr Novotný, and Rouzbeh Hasheminezhad. 2016b. Algorithmic Analysis
of Qualitative and Quantitative Termination Problems for Affine Probabilistic Programs. In Principles of
Programming Languages. 327–342.

Krishnendu Chatterjee, Petr Novotný, and Ðorđe Žikelić. 2017. Stochastic Invariants for Probabilistic Termination.
In Principles of Programming Languages. 145–160.

Guillaume Claret, Sriram K. Rajamani, Aditya V. Nori, Andrew D. Gordon, and Johannes Borgström. 2013.
Bayesian Inference using Data Flow Analysis. In Foundations of Software Engineering. 92–102.

Sylvain Conchon, Jean-Christophe Filliâtre, and Julien Signoles. 2007. Designing a Generic Graph Library Using
ML Functors. In Trends in Functional Programming.

P. Cousot. 1981. Semantic Foundations of Program Analysis. In Program Flow Analysis: Theory and Applications,
S.S. Muchnick and N.D. Jones (Eds.). Prentice-Hall, Englewood Cliffs, NJ, Chapter 10, 303–342.

P. Cousot and R. Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In Princ. of Prog. Lang. 238–252.

P. Cousot and R. Cousot. 1978. Static Determination of Dynamic Properties of Recursive Procedures. In Formal
Descriptions of Programming Concepts, (IFIP WG 2.2, St. Andrews, Canada, August 1977), E.J. Neuhold (Ed.).
North-Holland, 237–277.

P. Cousot and R. Cousot. 1979. Systematic Design of Program Analysis Frameworks. In Princ. of Prog. Lang.
269–282.

P. Cousot and N. Halbwachs. 1978. Automatic Discovery of Linear Constraints Among Variables of a Program. In
Princ. of Prog. Lang. 84–96.

Patrick Cousot and Michael Monerau. 2012. Probabilistic Abstract Interpretation. In European Symposium on
Programming. 166–190.

Eva Darulova and Viktor Kuncak. 2014. Sound Compilation of Reals. In Principles of Programming Languages.

J.I. den Hartog and E.P. de Vink. 1999. Mixing Up Nondeterminism and Probability: a preliminary report.
Electronic Notes in Theoretical Computer Science 22 (1999), 88–110.

E.W. Dijkstra. 1976. A Discipline of Programming. Prentice-Hall.

Kousha Etessami, Dominik Wojtczak, and Mihalis Yannakakis. 2008. Recursive Stochastic Games with Positive
Rewards. In International Colloquium on Automata, Languages, and Programming. 711–723.

Kousha Etessami and Mihalis Yannakakis. 2005. Recursive Markov Chains, Stochastic Grammars, and Monotone
Systems of Nonlinear Equations. In Symposium on Theoretical Aspects of Computer Science. 340–352.

Kousha Etessami and Mihalis Yannakakis. 2015. Recursive Markov Decision Processes and Recursive Stochastic
Games. J. ACM 62, 11 (2015).

24

7 RELATED WORK 25

Azadeh Farzan and Zachary Kincaid. 2015. Compositional Recurrence Analysis. In Formal Methods in Compiter-
Aided Design.

Luis María Ferrer Fioriti and Holger Hermanns. 2015. Probabilistic Termination: Soundness, Completeness, and
Compositionality. In Principles of Programming Languages. 489–501.

R.W. Floyd. 1967. Assigning Meanings to Programs. In Proc. AMS Symposium in Appl. Math., Vol. 19.

G. Gallo, G. Longo, S. Pallottino, and S. Nguyen. 1993. Directed Hypergraphs and Applications. Disc. Appl. Math.
42 (1993), 177–201.

Timon Gehr, Sasa Misailovic, and Martin T. Vechev. 2016. PSI: Exact Symbolic Inference for Probabilistic Programs.
In Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016,
Proceedings, Part I. 62–83.

Zoubin Ghahramani. 2015. Probabilistic machine learning and artificial intelligence. Nature 521 (2015), 452–459.

Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, and Joshua B. Tenenbaum. 2008. Church: a language
for generative models, In Uncertainty in Artificial Intelligence. Special Issue: Conference on Practical Bayesian
Statistics, 220–229.

Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. 2014. Probabilistic Program-
ming. In Proceedings of the on Future of Software Engineering (FOSE’14). 167–181.

S. Graf and H. Saïdi. 1997. Construction of Abstract State Graphs with PVS. In Computer Aided Verif.

Carl A. Gunter, Peter D. Mosses, and Dana S. Scott. 1989. Semantic Domains and Denotational Semantics. Technical
Report. University of Pennsylvania Department of Computer and Information Science.

N. Halbwachs. 1979. Détermination automatique de relations linéaires vérifiées par les variables d’un programme.
Thèse de 3e cycle. (As cited in [Halbwachs et al. 1997].).

N. Halbwachs, Y.-E. Proy, and P. Roumanoff. 1997. Verification of Real-Time Systems Using Linear Relation
Analysis. Formal Methods in System Design 11, 2 (1997), 157–185.

C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12 (1969), 576–580.

S. Horwitz, T. Reps, and M. Sagiv. 1995. Demand Interprocedural Dataflow Analysis. In Found. of Softw. Eng.
104–115.

B. Jeannet and A. Miné. 2009. Apron: A Library of Numerical Abstract Domains for Static Analysis. In Computer
Aided Verif.

Claire Jones. 1989. Probabilistic Non-determinism. Ph.D. Dissertation. University of Edinburgh Edinburgh, Scotland,
UK.

Claire Jones and Gordon Plotkin. 1989. A Probabilistic Powerdomain of Evaluations. In Logic in Computer Science.
186–195.

Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo. 2016. Weakest
Precondition Reasoning for Expected Run—Times of Probabilistic Programs. In European Symposium on
Programming. 364–389.

Joost Pieter Katoen, Annabelle K. McIver, Larissa A. Meinicke, and Carroll C. Morgan. 2010. Linear-Invariant Gen-
eration for Probabilistic Programs: Automated Support for Proof-Based Methods. In Static Analysis Symposium.
390–406.

Mark Kattenbelt, Marta Kwiatkowska, Gethin Norman, and David Parker. 2009. Abstraction Refinement for
Probabilistic Software. In Verification, Model Checking, and Abstract Interpretation. 182–197.

G.A. Kildall. 1973. A Unified Approach to Global Program Optimization. In Princ. of Prog. Lang. 194–206.

J. Knoop and B. Steffen. 1992. The Interprocedural Coincidence Theorem. In Comp. Construct. 125–140.

D.E. Knuth. 1977. A Generalization of Dijkstra’s Algorithm. Inf. Proc. Let. 6, 1 (1977), 1–5.

Stanley Kok, Marc Sumner, Matthew Richardson, Parag Singla, Hoifung Poon, Daniel Lowd, Jue Wang, and Pedro
Domingos. 2007. The Alchemy System for Statistical Relational AI. Technical Report. University of Washington.

Dexter Kozen. 1981. Semantics of Probabilistic Programs. J. Comput. System Sci. 22 (1981), 328–350.

Dexter Kozen. 1985. A Probabilistic PDL. J. Comput. System Sci. 30 (1985), 162–178.

A. Lal, T. Reps, and G. Balakrishnan. 2005. Extended Weighted Pushdown Systems. In Computer Aided Verif.

Z. Li and J. Eisner. 2009. First- and Second-Order Expectation Semirings with Applications to Minimum-Risk
Training on Translation Forests. In EMNLP.

Annabelle K. McIver and Carroll C. Morgan. 2001. Partial correctness for probabilistic demonic programs.
Theoretical Computer Science 266 (2001), 513–541.

Annabelle K. McIver and Carroll C. Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems.
Springer Science+Business Media, Inc.

Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and Andrey Kolobov. 2005. BLOG:
Probabilistic Models with Unknown Objects. In International Joint Conference on Artificial Intelligence. 1352–
1359.

Antoine Miné. 2006. Symbolic Methods to Enhance the Precision of Numerical Abstract Domains. In Verif., Model
Checking, and Abs. Interp.

T. Minka, J.M. Winn, J.P. Guiver, S. Webster, Y. Zaykov, B. Yangel, A. Spengler, and J. Bronskill. 2014. Infer.NET
2.6. Microsoft Research Cambridge. http://research.microsoft.com/infernet.

Michael Mislove. 2000. Nondeterminism and Probabilistic Choice: Obeying the Laws. In Concurrency Theory.
350–365.

Michael Mislove, Joël Ouaknine, and James Worrell. 2004. Axioms for Probability and Nondeterminism. Electronic
Notes in Theoretical Computer Science 96 (2004), 7–28.

U. Möncke and R. Wilhelm. 1991. Grammar Flow Analysis. In Attribute Grammars, Applications and Systems, (Int.
Summer School SAGA) (Lec. Notes in Comp. Sci.), H. Alblas and B. Melichar (Eds.), Vol. 545. Springer-Verlag,
Prague, Czechoslovakia, 151–186.

David Monniaux. 2000. Abstract Interpretation of Probabilistic Semantics. In Static Analysis Symposium. 322–339.

David Monniaux. 2001. Backwards Abstract Interpretation of Probabilistic Programs. In European Symposium on
Programming. 367–382.

David Monniaux. 2003. Abstract Interpretation of Programs as Markov Decision Processes. In Static Analysis
Symposium. 237–254.

M. Müller-Olm and H. Seidl. 2004. Precise Interprocedural Analysis through Linear Algebra. In Princ. of Prog.
Lang.

Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2016. Reasoning about
Recursive Probabilistic Programs. In Logic in Computer Science. 672–681.

Prakash Panangaden. 1999. The Category of Markov Kernels. Electronic Notes in Theoretical Computer Science 22,
Supplement C (1999).

Avi Pfeffer. 2005. The Design and Implementation of IBAL: A General-Purpose Probabilistic Language. Technical
Report. Harvard Computer Science Group.

Martin L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley &
Sons, Inc.

26

7 RELATED WORK 27

G. Ramalingam. 1996. Bounded Incremental Computation. Springer-Verlag.

T. Reps, S. Horwitz, and M. Sagiv. 1995. Precise Interprocedural Dataflow Analysis via Graph Reachability. In
Princ. of Prog. Lang. 49–61.

M. Sagiv, T. Reps, and S. Horwitz. 1996. Precise Interprocedural Dataflow Analysis with Applications to Constant
Propagation. Theor. Comp. Sci. 167 (1996), 131–170.

Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani. 2013. Static Analysis for Probabilistic
Programs: Inferring Whole Program Properties from Finitely Many Paths. In Programming Language Design and
Implementation. 447–458.

M. Sharir and A. Pnueli. 1981. Two Approaches to Interprocedural Data Flow Analysis. In Program Flow Analysis:
Theory and Applications. Prentice-Hall.

R.E. Tarjan. 1981. A Unified Approach to Path Problems. J. ACM 28, 3 (1981), 577–593.

Regina Tix, Klaus Keimel, and Gordon Plotkin. 2009. Semantic Domains for Combining Probability and Non-
Determinism. Electronic Notes in Theoretical Computer Science 222 (2009), 3–99.

D. Wang, J. Hoffman, and T. Reps. 2018. A Denotational Semantics for Nondeterminism in Probabilistic Programs.
Available at www.cs.cmu.edu/~diw3/papers/WangHR18.pdf.

www.cs.cmu.edu/~diw3/papers/WangHR18.pdf

A Proofs
Readers can refer to Abramsky and Jung [1994]; Tix et al. [2009]; Wang et al. [2018] for the domain-
theoretic notions we will use in the proofs.

A.1 Thm. 4.7

Proof. We only show the proof for the over-approximations. By definition, C [𝑃] = lfp⊑̇𝒞𝜆𝑣.⊥𝒞
𝐹C𝑃 =

sup{(𝐹C𝑃)𝑛(𝜆𝑣.⊥𝒞)} by Kleene, and A [𝑃] = lfp⊑̇𝒜𝜆𝑣.⊥𝒜
𝐹A𝑃 obtained by Knaster-Tarski. We want to show

that for all 𝑛 we have (𝐹C𝑃)𝑛(𝜆𝑣.⊥𝒞)⊑̇𝒞 𝛾̇(A [𝑃]). Let’s prove by induction on 𝑛. The base case follows

directly from the fact that ⊥𝒞 is the least element in 𝒞. Suppose we know (𝐹C𝑃)𝑛(𝜆𝑣.⊥𝒞)⊑̇𝒞 𝛾̇(A [𝑃])
for some 𝑛. Let’s denote the left hand side by 𝐿𝐻𝑆 and A [𝑃] by 𝑆𝑂𝐿. We want to show that
𝐹C𝑃 (𝐿𝐻𝑆)⊑̇𝒞 𝛾̇(𝑆𝑂𝐿). This expands to 𝐹C𝑃 (𝐿𝐻𝑆)(𝑣) ⊑𝒞 𝛾(𝑆𝑂𝐿(𝑣)) for all 𝑣 ∈ 𝑉 . We proceed by a case
analysis on the kind of edges leaving 𝑣.

1. If 𝑣 = 𝑣exit𝑖 for some 𝑖, then 𝐹C𝑃 (𝐿𝐻𝑆)(𝑣) = 1𝒞 . Then we can conclude this case by showing that

𝑆𝑂𝐿(𝑣) = 1𝒜. By definition of 𝑆𝑂𝐿, we know that 𝐹A𝑃 (𝑆𝑂𝐿) = 𝑆𝑂𝐿, thus 𝐹A𝑃 (𝑆𝑂𝐿)(𝑣) = 𝑆𝑂𝐿(𝑣).

By definition of 𝐹A𝑃 , we know that 𝐹A𝑃 (𝑆𝑂𝐿)(𝑣) = 1𝒜.

2. If 𝑣 , 𝑣exit𝑖 for all 𝑖, then 𝑣 is associated with some 𝑒 = ⟨𝑣, {𝑢1, · · · ,𝑢𝑘}⟩ ∈ 𝐸, and we have

𝐹C𝑃 (𝐿𝐻𝑆)(𝑣) = ̂𝐶𝑡𝑟𝑙(𝑒)(𝐿𝐻𝑆(𝑢1), · · · ,𝐿𝐻𝑆(𝑢𝑘))

⊑𝒞 ̂𝐶𝑡𝑟𝑙(𝑒)(𝛾(𝑆𝑂𝐿(𝑢1)), · · · ,𝛾(𝑆𝑂𝐿(𝑢𝑘))).

If we can prove that for any kind of 𝐶𝑡𝑟𝑙(𝑒) it holds that ̂𝐶𝑡𝑟𝑙(𝑒)(𝛾(𝑥1), · · · ,𝛾(𝑥𝑘)) ⊑𝒞
𝛾(̂𝐶𝑡𝑟𝑙(𝑒)

♯
(𝑥1, · · · ,𝑥𝑘)), then we can conclude the case by the following argument:

𝐹C𝑃 (𝐿𝐻𝑆)(𝑣) ⊑𝒞 𝛾(̂𝐶𝑡𝑟𝑙(𝑒)
♯
(𝑆𝑂𝐿(𝑢1), · · · ,𝑆𝑂𝐿(𝑢𝑘)))

= 𝛾(𝐹A𝑃 (𝑆𝑂𝐿)(𝑣))

= 𝛾(𝑆𝑂𝐿(𝑣)).

Now consider the form of 𝐶𝑡𝑟𝑙(𝑒).

• 𝐶𝑡𝑟𝑙(𝑒) = 𝑠𝑒𝑞[act]: We want to show that ̂𝑠𝑒𝑞[act](𝛾(𝑥1)) ⊑𝒞 𝛾(̂𝑠𝑒𝑞[act]
♯
(𝑥1)). It is equivalent

to JactKC ⊗𝒞 𝛾(𝑥1) ⊑𝒞 𝛾(JactKA ⊗𝒜 𝑥1). Indeed, we have

JactKC ⊗𝒞 𝛾(𝑥1) ⊑𝒞 𝛾(JactKA)⊗𝒞 𝛾(𝑥1) ⊑𝒞 𝛾(JactKA ⊗𝒜 𝑥1)

by assumption, monotonicity of ⊗𝒞 , and properties of 𝛾 .

• 𝐶𝑡𝑟𝑙(𝑒) = 𝑐𝑎𝑙𝑙[𝑖 → 𝑗]: We want to show that ̂𝑐𝑎𝑙𝑙[𝑖→ 𝑗](𝛾(𝑥1)) ⊑𝒞 𝛾(̂𝑐𝑎𝑙𝑙[𝑖→ 𝑗]
♯
(𝑥1)). It is

equivalent to 𝐿𝐻𝑆(𝑣entry𝑗)⊗𝒞 𝛾(𝑥1) ⊑𝒞 𝛾(𝑆𝑂𝐿(𝑣entry𝑗)⊗𝒜 𝑥1). Indeed, we have

𝐿𝐻𝑆(𝑣entry𝑗)⊗𝒞 𝛾(𝑥1) ⊑𝒞 𝛾(𝑆𝑂𝐿(𝑣entry𝑗))⊗𝒞 𝛾(𝑥1) ⊑𝒞 𝛾(𝑆𝑂𝐿(𝑣entry𝑗)⊗𝒜 𝑥1)

by induction hypothesis, monotonicity of ⊗𝒞 , and properties of 𝛾 .

• 𝐶𝑡𝑟𝑙(𝑒) = 𝑐𝑜𝑛𝑑[𝜙]: We want to show that ̂𝑐𝑜𝑛𝑑[𝜙](𝛾(𝑥1),𝛾(𝑥2)) ⊑𝒞 𝛾(̂𝑐𝑜𝑛𝑑[𝜙]
♯
(𝑥1,𝑥2)). It is

equivalent to 𝛾(𝑥1)𝜙^𝒞 𝛾(𝑥2) ⊑𝒞 𝛾(𝑥1 𝜙^𝒜 𝑥2). Appeal to properties of 𝛾 .

28

A.2 Thm. 5.1 29

• 𝐶𝑡𝑟𝑙(𝑒) = 𝑝𝑟𝑜𝑏[𝑝]: We want to show that ̂𝑝𝑟𝑜𝑏[𝑝](𝛾(𝑥1),𝛾(𝑥2)) ⊑𝒞 𝛾(̂𝑝𝑟𝑜𝑏[𝑝]
♯
(𝑥1,𝑥2)). It is

equivalent to 𝛾(𝑥1) 𝑝⊕𝒞 𝛾(𝑥2) ⊑𝒞 𝛾(𝑥1 𝑝⊕𝒜 𝑥2). Appeal to properties of 𝛾 .

• 𝐶𝑡𝑟𝑙(𝑒) = 𝑛𝑑𝑒𝑡: We want to show that (︀𝑛𝑑𝑒𝑡(𝛾(𝑥1),𝛾(𝑥2)) ⊑𝒞 𝛾((︀𝑛𝑑𝑒𝑡♯(𝑥1,𝑥2)). It is equivalent
to 𝛾(𝑥1)⋓𝒞 𝛾(𝑥2) ⊑𝒞 𝛾(𝑥1 ⋓𝒜 𝑥2). Appeal to properties of 𝛾 .

A.2 Thm. 5.1
Proof. By the properties of the concrete semantics, we have 𝛾ℬ(𝑎) =↑ (𝜆(𝑠,𝑆 ′).

∑︀
𝑠′∈𝑆 ′ 𝑎(𝑠, 𝑠

′)), i.e.,
the upper closure of {𝑎} in PΩ.

• We want to show 𝛾ℬ (1ℬ) ⊑𝒞 1𝒞 . Appeal to the fact that ↑ (𝜆(𝑠,𝑆 ′).[𝑠 ∈ 𝑆 ′]) = {1
K
} = 1

P
.

• We want to show for all 𝑄1,𝑄2 ∈ ℬ, 𝛾ℬ(𝑄1 ⊗ℬ 𝑄2) ⊑𝒞 𝛾ℬ(𝑄1) ⊗𝒞 𝛾ℬ(𝑄2). It is sufficient to
show 𝛾ℬ(𝑄1 × 𝑄2) ⊇↑ 𝑐𝑜𝑛𝑣(𝛾ℬ(𝑄1) ⊗ 𝛾ℬ(𝑄2)). Observe that 𝛾ℬ(𝑄1 × 𝑄2) is saturated and
convex, it is sufficient to show 𝛾ℬ(𝑄1) ⊗ 𝛾ℬ(𝑄2) ⊆ 𝛾ℬ(𝑄1 ×𝑄2). Suppose 𝜅1 ∈ 𝛾ℬ(𝑄1) and
𝜅2 ∈ 𝛾ℬ(𝑄2). Let 𝑞1 = 𝜆(𝑠,𝑆 ′).

∑︀
𝑠′∈𝑆 ′ 𝑄1(𝑠, 𝑠′) and 𝑞2 = 𝜆(𝑠,𝑆 ′).

∑︀
𝑠′∈𝑆 ′ 𝑄2(𝑠, 𝑠′). Then 𝜅1 ⊒ 𝑞1

and 𝜅2 ⊒ 𝑞2. Because ⊗ is monotone, we know that 𝜅1 ⊗𝜅2 ⊒ 𝑞1 ⊗ 𝑞2. Observe that 𝑞1 ⊗ 𝑞2 =
𝜆(𝑠,𝑆 ′).

∫︀
𝑞1(𝑠,𝑑𝑦)𝑞2(𝑦,𝑆 ′) = 𝜆(𝑠,𝑆 ′).

∑︀
𝑠′∈𝑆 ′ (𝑄1 ×𝑄2)(𝑠, 𝑠′), thus 𝑞1 ⊗ 𝑞2 ∈ 𝛾ℬ(𝑄1 ×𝑄2). Hence

𝜅1 ⊗𝜅2 ∈ 𝛾ℬ (𝑄1 ×𝑄2).

• We want to show for all 𝑄1,𝑄2 ∈ ℬ and 𝜙 ∈ ℒ, 𝛾ℬ(𝑄1 𝜙^ℬ 𝑄2) ⊑𝒞 𝛾ℬ(𝑄1) 𝜙^𝒞 𝛾ℬ(𝑄2).
It is sufficient to show 𝛾ℬ(𝜆(𝑠, 𝑠′).if ̂︀𝜙(𝑠) then 𝑄1(𝑠, 𝑠′) else 𝑄2(𝑠, 𝑠′)) ⊇↑ 𝛾ℬ(𝑄1) 𝜙^ 𝛾ℬ(𝑄2).
Observe that the left-hand-side is saturated, it is sufficient to show 𝛾ℬ(𝑄1) 𝜙^ 𝛾ℬ(𝑄2) ⊆
𝛾ℬ(𝜆(𝑠, 𝑠′).if ̂︀𝜙(𝑠) then 𝑄1(𝑠, 𝑠′) else 𝑄2(𝑠, 𝑠′)). Suppose 𝜅1 ∈ 𝛾ℬ(𝑄1) and 𝜅2 ∈ 𝛾ℬ(𝑄2). Let
𝑞1 = 𝜆(𝑠,𝑆 ′).

∑︀
𝑠′∈𝑆 ′ 𝑄1(𝑠, 𝑠′) and 𝑞2 = 𝜆(𝑠,𝑆 ′).

∑︀
𝑠′∈𝑆 ′ 𝑄2(𝑠, 𝑠′). Then 𝜅1 ⊒ 𝑞1 and 𝜅2 ⊒ 𝑞2.

Because 𝜙^ is monotone, we know that 𝜅1 𝜙^ 𝜅2 ⊒ 𝑞1 𝜙^ 𝑞2. Observe that 𝑞1 𝜙^ 𝑞2 =
𝜆(𝑠,𝑆 ′).if ̂︀𝜙(𝑠) then 𝑞1(𝑠,𝑆 ′) else 𝑞2(𝑠,𝑆 ′) = 𝜆(𝑠,𝑆 ′).

∑︀
𝑠′∈𝑆 ′ if ̂︀𝜙(𝑠) then 𝑄1(𝑠, 𝑠′) else 𝑄2(𝑠, 𝑠′),

thus 𝑞1 𝜙^ 𝑞2 ∈ 𝛾ℬ(𝜆(𝑠, 𝑠′).if ̂︀𝜙(𝑠) then 𝑄1(𝑠, 𝑠′) else 𝑄2(𝑠, 𝑠′)). Hence 𝜅1 𝜙^ 𝜅2 ∈
𝛾ℬ (𝜆(𝑠, 𝑠′).if ̂︀𝜙(𝑠) then 𝑄1(𝑠, 𝑠′) else 𝑄2(𝑠, 𝑠′)).

• We want to show for all 𝑄1,𝑄2 ∈ ℬ and 𝑝 ∈ [0,1], 𝛾ℬ(𝑄1 𝑝⊕ℬ 𝑄2) ⊑𝒞 𝛾ℬ(𝑄1) 𝑝⊕𝒞 𝛾ℬ(𝑄2). It
is sufficient to show 𝛾ℬ(𝑝𝑄1 + (1 − 𝑝)𝑄2) ⊇↑ 𝛾ℬ(𝑄1) 𝑝⊕ 𝛾ℬ(𝑄2). Observe that the left-hand-
side is saturated, it is sufficient to show 𝛾ℬ(𝑄1) 𝑝⊕ 𝛾ℬ(𝑄2) ⊆ 𝛾ℬ(𝑝𝑄1 + (1 − 𝑝)𝑄2). Suppose
𝜅1 ∈ 𝛾ℬ(𝑄1) and 𝜅2 ∈ 𝛾ℬ(𝑄2). Let 𝑞1 = 𝜆(𝑠,𝑆 ′).

∑︀
𝑠′∈𝑆 ′ 𝑄1(𝑠, 𝑠′) and 𝑞2 = 𝜆(𝑠,𝑆 ′).

∑︀
𝑠′∈𝑆 ′ 𝑄2(𝑠, 𝑠′).

Then 𝜅1 ⊒ 𝑞1 and 𝜅2 ⊒ 𝑞2. Because 𝑝⊕ is monotone, we know that 𝜅1 𝑝⊕𝜅2 ⊒ 𝑞1 𝑝⊕ 𝑞2. Observe
that 𝑞1 𝑝⊕𝑞2 = 𝜆(𝑠,𝑆 ′).𝑝 ·𝑞1(𝑠,𝑆 ′) + (1−𝑝) ·𝑞2(𝑠,𝑆 ′) = 𝜆(𝑠,𝑆 ′).

∑︀
𝑠′∈𝑆 ′ 𝑝 ·𝑄1(𝑠, 𝑠′) + (1−𝑝) ·𝑄2(𝑠, 𝑠′),

thus 𝑞1 𝑝⊕ 𝑞2 ∈ 𝛾ℬ (𝑝𝑄1 + (1− 𝑝)𝑄2). Hence 𝜅1 𝑝⊕𝜅2 ∈ 𝛾ℬ (𝑝𝑄1 + (1− 𝑝)𝑄2).

• We want to show that for all 𝑄1,𝑄2 ∈ ℬ, 𝛾ℬ (𝑄1 ⋓ℬ 𝑄2) ⊑𝒞 𝛾ℬ (𝑄1)⋓𝒞 𝛾ℬ (𝑄2). It is sufficient to
show 𝛾ℬ (˙min(𝑄1,𝑄2)) ⊇↑ 𝑐𝑜𝑛𝑣(𝛾ℬ (𝑄1)∪𝛾ℬ (𝑄2)). Observe that the left-hand-side is saturated
and convex, it is sufficient to show 𝛾ℬ (𝑄1)∪𝛾ℬ (𝑄2) ⊆ 𝛾ℬ (˙min(𝑄1,𝑄2)). It follows directly from
the fact that ˙min(𝑄1,𝑄2)≤̇𝑄1 and ˙min(𝑄1,𝑄2)≤̇𝑄2, as well as the definition of 𝛾ℬ .

A.3 Thm. 5.3
Proof. By the properties of the concrete semantics, we have 𝛾ℛ(𝑎) = {𝜅 | ∀𝑠.

∫︀
𝑦 ·𝜅(𝑠,𝑑𝑦) ≤ 𝑠+ 𝑎},

where 𝐶 is the Scott closure of 𝐶 in PΩ.

• We want to show 1𝒞 ⊑𝒞 𝛾ℛ(1ℛ). Appeal to the fact that 1
K
∈ 𝛾ℛ(0).

• We want to show for all 𝑄1,𝑄2 ∈ ℛ, 𝛾ℛ(𝑄1)⊗𝒞 𝛾ℛ(𝑄2) ⊑𝒞 𝛾ℛ(𝑄1 ⊗ℛ 𝑄2). It is sufficient to
show that 𝑐𝑜𝑛𝑣(𝛾ℛ(𝑄1)⊗𝛾ℛ(𝑄2)) ⊆ 𝛾ℛ(𝑄1 +𝑄2). Observe that the right-hand-side is Scott-
closed and convex, it is sufficient to show that 𝛾ℛ(𝑄1) ⊗ 𝛾ℛ(𝑄2) ⊆ 𝛾ℛ(𝑄1 +𝑄2). Suppose
𝜅1 ∈ 𝛾ℛ(𝑄1) and 𝜅2 ∈ 𝛾ℛ(𝑄2). Observe that

∫︀
𝑦 ·𝜅1(𝑠,𝑑𝑦) ≤ 𝑠+𝑄1 and

∫︀
𝑦 ·𝜅2(𝑠,𝑑𝑦) ≤ 𝑠+𝑄2. Then∫︀

𝑦 ·(𝜅1⊗𝜅2)(𝑠,𝑑𝑦) =
∫︀
𝑦 𝑦(

∫︀
𝑧 𝜅1(𝑠,𝑑𝑧)·𝜅2(𝑧,𝑑𝑦)) =

∫︀
𝑧(
∫︀
𝑦 𝑦 ·𝜅2(𝑧,𝑑𝑦))·𝜅1(𝑠,𝑑𝑧) ≤

∫︀
(𝑧+𝑄2)·𝜅1(𝑠,𝑑𝑧) =∫︀

𝑧 ·𝜅1(𝑠,𝑑𝑧) +
∫︀
𝑄2 ·𝜅1(𝑠,𝑑𝑧) ≤ 𝑠+𝑄1 +𝑄2. Hence 𝜅1 ⊗𝜅2 ∈ 𝛾ℛ(𝑄1 +𝑄2).

• We want to show for all 𝑄1,𝑄2 ∈ ℛ and 𝑝 ∈ [0,1], 𝛾ℛ(𝑄1) 𝑝⊕𝒞 𝛾ℛ(𝑄2) ⊑𝒞 𝛾ℛ(𝑄1 𝑝⊕ℛ𝑄2). It is

sufficient to show that 𝛾ℛ(𝑄1) 𝑝⊕𝛾ℛ(𝑄2) ⊆ 𝛾ℛ(𝑝𝑄1 + (1− 𝑝)𝑄2). Observe that the right-hand-
side is Scott-closed, it is sufficient to show that 𝛾ℛ(𝑄1)𝑝⊕𝛾ℛ(𝑄2) ⊆ 𝛾ℛ(𝑝𝑄1+(1−𝑝)𝑄2). Suppose

𝜅1 ∈ 𝛾ℛ(𝑄1) and 𝜅2 ∈ 𝛾ℛ(𝑄2). Observe that
∫︀
𝑦 · 𝜅1(𝑠,𝑑𝑦) ≤ 𝑠 +𝑄1 and

∫︀
𝑦 · 𝜅2(𝑠,𝑑𝑦) ≤ 𝑠 +𝑄2.

Then
∫︀
𝑦 · (𝜅1 𝑝⊕𝜅2)(𝑠,𝑑𝑦) =

∫︀
𝑦 · (𝑝𝜅1 + (1−𝑝)𝜅2)(𝑠,𝑑𝑦) =

∫︀
𝑦 ·𝑝 ·𝜅1(𝑠,𝑑𝑦) +

∫︀
𝑦 · (1−𝑝) ·𝜅2(𝑠,𝑑𝑦) ≤

𝑝𝑄1 + (1− 𝑝)𝑄2. Hence 𝜅1 𝑝⊕𝜅2 ∈ 𝛾ℛ(𝑝𝑄1 + (1− 𝑝)𝑄2).

• We want to show for all 𝑄1,𝑄2 ∈ ℛ, 𝛾ℛ(𝑄1) ⋓𝒞 𝛾ℛ(𝑄2) ⊑𝒞 𝛾ℛ(𝑄1 ⋓ℛ 𝑄2). It is sufficient
to show that 𝑐𝑜𝑛𝑣(𝛾ℛ(𝑄1)∪𝛾ℛ(𝑄2)) ⊆ 𝛾ℛ(max(𝑄1,𝑄2)). Observe that the right-hand-side is
Scott-closed and convex, it is sufficient to show that 𝛾ℛ(𝑄1)∪𝛾ℛ(𝑄2) ⊆ 𝛾ℛ(max(𝑄1,𝑄2)). It
follows directly from the fact that 𝑄1 ≤ max(𝑄1,𝑄2) and 𝑄2 ≤ max(𝑄1,𝑄2), as well as the
definition of 𝛾ℛ.

A.4 Thm. 5.4

Proof. Let Ω def= R
𝑛
≥0 be the set of program states. (Note here we assume R≥0 admits a Borel-field

generated by sets of compact intervals [McIver and Morgan 2001].) By the properties of the concrete
semantics, we have

𝛾ℐ (𝑃 ,𝐸𝑃) = {𝜅 | ∀𝑠.𝜅(𝑠)((𝑃 |𝑠)𝑐) = 0∧
[︃ ∫︀

𝑦 ·𝜅(𝑠)(𝑑𝑦)
𝑠

]︃
∈ 𝐸𝑃 }.

• We want to show 1𝒞 ⊑𝒞 𝛾ℐ (⊥ℐ). It is sufficient to show ↓ 1
K
⊆ 𝛾ℐ ({𝑥′𝑖 = 𝑥𝑖 }, {E[𝑥′𝑖] = 𝑥𝑖 }). Appeal

to the fact that 1
K
∈ 𝛾ℐ ({𝑥′𝑖 = 𝑥𝑖 }, {E[𝑥′𝑖] = 𝑥𝑖 }).

• We want to show for all (𝑃1,𝐸𝑃1), (𝑃2,𝐸𝑃2) ∈ ℐ , 𝛾ℐ (𝑃1,𝐸𝑃1)⊗𝒞 𝛾ℐ (𝑃2,𝐸𝑃2) ⊑𝒞 𝛾ℐ ((𝑃1,𝐸𝑃1)⊗ℐ
(𝑃2,𝐸𝑃2)). It is sufficient to show that 𝛾ℐ (𝑃1,𝐸𝑃1) ⊗ 𝛾ℐ (𝑃2,𝐸𝑃2) ⊆ 𝛾ℐ (𝑃1 ⊗ 𝑃2,𝐸𝑃1 ⊗ 𝐸𝑃2).
Suppose 𝜅1 ∈ 𝛾ℐ (𝑃1,𝐸𝑃1) and 𝜅2 ∈ 𝛾ℐ (𝑃2,𝐸𝑃2). Observe that (𝜅1 ⊗ 𝜅2)(𝑠, (𝑃1 ⊗ 𝑃2|𝑠)𝑐) =∫︀
𝜅1(𝑠,𝑑𝑦) · 𝜅2(𝑦, (𝑃1 ⊗ 𝑃2|𝑠)𝑐). If 𝑦 ∈ (𝑃1|𝑠)𝑐, then 𝜅1(𝑠, {𝑦}) = 0. If 𝑦 ∈ 𝑃1|𝑠, then by the defi-

nition of 𝑃1 ⊗ 𝑃2, we know 𝜅2(𝑦, (𝑃1 ⊗ 𝑃2|𝑠)𝑐) = 0. Hence (𝜅1 ⊗ 𝜅2)(𝑠, (𝑃1 ⊗ 𝑃2|𝑠)𝑐) = 0. On the
other hand, observe that

∫︀
𝑦 · (𝜅1 ⊗ 𝜅2)(𝑠,𝑑𝑦) =

∫︀
𝑦 𝑦(

∫︀
𝑧 𝜅1(𝑠,𝑑𝑧) · 𝜅2(𝑧,𝑑𝑦)) =

∫︀
𝑧(
∫︀
𝑦 𝑦 · 𝜅2(𝑧,𝑑𝑦)) ·

𝜅1(𝑠,𝑑𝑧), and
[︃ ∫︀

𝑦 ·𝜅2(𝑧,𝑑𝑦)
𝑧

]︃
∈ 𝐸𝑃2 for all 𝑧, by the fact that 𝐸𝑃2 is convex, we know

that

⎡⎢⎢⎢⎢⎣
∫︀
𝑧(
∫︀
𝑦 𝑦 ·𝜅2(𝑧,𝑑𝑦)) ·𝜅1(𝑠,𝑑𝑧)∫︀

𝑧 𝑧 ·𝜅1(𝑠,𝑑𝑧)

⎤⎥⎥⎥⎥⎦ ∈ 𝐸𝑃2. Because
[︃ ∫︀

𝑧 𝑧 ·𝜅1(𝑠,𝑑𝑧)
𝑠

]︃
∈ 𝐸𝑃1, we know that[︃ ∫︀

𝑦 · (𝜅1 ⊗𝜅2)(𝑠,𝑑𝑦)
𝑦

]︃
∈ 𝐸𝑃1 ⊗𝐸𝑃2 ⊆ 𝐸𝑃1 ⊗𝐸𝑃2.

• We want to show for all (𝑃1,𝐸𝑃1), (𝑃2,𝐸𝑃2) ∈ ℐ and 𝜙 ∈ ℒ, 𝛾ℐ (𝑃1,𝐸𝑃1) 𝜙^𝒞 𝛾ℐ (𝑃2,𝐸𝑃2) ⊑𝒞

𝛾ℐ ((𝑃1,𝐸𝑃1) 𝜙^ℐ (𝑃2,𝐸𝑃2)). It is sufficient to show that 𝛾ℐ (𝑃1,𝐸𝑃1) 𝜙^ 𝛾ℐ (𝑃2,𝐸𝑃2) ⊆ 𝛾ℐ (𝑃 def=

({𝜙}⊓𝑃1)⊔ ({¬𝜙}⊓𝑃2), (𝐸𝑃1⊔𝐸𝑃2)⊓𝑃 [E[𝑥′]/𝑥′]). Suppose 𝜅1 ∈ 𝛾ℐ (𝑃1,𝐸𝑃1) and 𝜅2 ∈ 𝛾ℐ (𝑃2,𝐸𝑃2).
Observe that (𝜅1 𝜙^ 𝜅2)(𝑠, (𝑃 |𝑠)𝑐) = if ̂︀𝜙(𝑠) then 𝜅1(𝑠, (𝑃 |𝑠)𝑐) else 𝜅2(𝑠, (𝑃 |𝑠)𝑐). If ̂︀𝜙(𝑠), then

30

A.4 Thm. 5.4 31

𝑃 |𝑠 = {𝜙} ⊓ 𝑃1 ⊆ 𝑃1, hence (𝜅1 𝜙^ 𝜅2)(𝑠, (𝑃 |𝑠)𝑐) = 0. If ¬̂︀𝜙(𝑠), then 𝑃 |𝑠 = {¬𝜙} ⊓ 𝑃2 ⊆ 𝑃2, hence

(𝜅1𝜙^𝜅2)(𝑠, (𝑃 |𝑠)𝑐) = 0. On the other hand, observe that
∫︀
𝑦 · (𝜅1𝜙^𝜅2)(𝑠,𝑑𝑦) = if ̂︀𝜙(𝑠) then

∫︀
𝑦 ·

𝜅1(𝑠,𝑑𝑦) else
∫︀
𝑦 ·𝜅2(𝑠,𝑑𝑦). Hence

[︃ ∫︀
𝑦 · (𝜅1 𝜙^𝜅2)(𝑠,𝑑𝑦)

𝑠

]︃
∈ 𝐸𝑃1 ⊔𝐸𝑃2 ⊆ 𝐸𝑃1 ⊔𝐸𝑃2.

• We want to show for all (𝑃1,𝐸𝑃1), (𝑃2,𝐸𝑃2) ∈ ℐ and 𝑝 ∈ [0,1], 𝛾ℐ (𝑃1,𝐸𝑃1) 𝑝⊕𝒞 𝛾ℐ (𝑃2,𝐸𝑃2) ⊑𝒞
𝛾ℐ ((𝑃1,𝐸𝑃1) 𝑝⊕ℐ (𝑃2,𝐸𝑃2)). It is sufficient to show that 𝛾ℐ (𝑃1,𝐸𝑃1) 𝑝⊕ 𝛾ℐ (𝑃2,𝐸𝑃2) ⊆ 𝛾ℐ (𝑃1 ⊔
𝑃2,𝐸𝑃1 𝑝⊕𝐸𝑃2). Suppose 𝜅1 ∈ 𝛾ℐ (𝑃1,𝐸𝑃1) and 𝜅2 ∈ 𝛾ℐ (𝑃2,𝐸𝑃2). Observe that (𝜅1 𝑝⊕𝜅2)(𝑠, (𝑃1 ⊔
𝑃2|𝑠)𝑐) = 𝑝 · 𝜅1(𝑠, (𝑃1 ⊔ 𝑃2|𝑠)𝑐) + (1 − 𝑝) · 𝜅2(𝑠, (𝑃1 ⊔ 𝑃2|𝑠)𝑐) = 0. On the other hand, observe that∫︀
𝑦 · (𝜅1 𝑝⊕𝜅2)(𝑠,𝑑𝑦) = 𝑝

∫︀
𝑦 ·𝜅1(𝑠,𝑑𝑦) + (1− 𝑝)

∫︀
𝑦 ·𝜅2(𝑠,𝑑𝑦). Hence 𝜅1 𝑝⊕𝜅2 ∈ 𝐸𝑃1 𝑝⊕𝐸𝑃2.

• We want to show that for all (𝑃1,𝐸𝑃1), (𝑃2,𝐸𝑃2) ∈ ℐ , 𝛾ℐ (𝑃1,𝐸𝑃1)⋓𝒞𝛾ℐ (𝑃2,𝐸𝑃2) ⊑𝒞 𝛾ℐ ((𝑃1,𝐸𝑃1)⋓ℐ
(𝑃2,𝐸𝑃2)). Appeal to the fact that 𝛾ℐ (𝑃1,𝐸𝑃1)∪𝛾ℐ (𝑃2,𝐸𝑃2) ⊆ 𝛾ℐ (𝑃1 ⊔ 𝑃2,𝐸𝑃1 ⊔𝐸𝑃2).

	1 Introduction
	2 Overview
	2.1 Probabilistic Programming
	2.2 Two Static Analyses
	2.3 The Algebraic Framework

	3 Probabilistic Programs
	3.1 A Hyper-Graph Model of Probabilistic Programs
	3.2 Background from Measure Theory
	3.3 A Denotational Semantics

	4 Analysis Framework
	4.1 An Algebraic Characterization of Fixpoint Semantics
	4.2 Abstractions of Probabilistic Programs
	4.3 Interprocedural Analysis Algorithm
	4.4 Widening

	5 Instantiations
	5.1 Bayesian Inference
	5.2 Markov Decision Process with Rewards
	5.3 Linear Expectation-Invariant Analysis

	6 Evaluation
	6.1 Implementation
	6.2 Experiments

	7 Related Work
	Acknowledgments
	References
	A Proofs
	A.1 The:Soundness
	A.2 The:SoundBI
	A.3 The:SoundMDP
	A.4 The:SoundLEIA

