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Abstract

Automatically establishing that a probabilistic program sat-
isfies some property ¢ is a challenging problem. While a
sampling-based approach—which involves running the pro-
gram repeatedly—can suggest that ¢ holds, to establish that
the program satisfies ¢, analysis techniques must be used.
Despite recent successes, probabilistic static analyses are still
more difficult to design and implement than their determin-
istic counterparts. This paper presents a framework, called
PMAFPF, for designing, implementing, and proving the correct-
ness of static analyses of probabilistic programs with chal-
lenging features such as recursion, unstructured control-flow,
divergence, nondeterminism, and continuous distributions.
PMAF introduces pre-Markov algebras to factor out common
parts of different analyses. To perform interprocedural anal-
ysis and to create procedure summaries, PMAF extends ideas
from non-probabilistic interprocedural dataflow analysis to
the probabilistic setting. One novelty is that PMAF is based
on a semantics formulated in terms of a control-flow hyper-
graph for each procedure, rather than a standard control-
flow graph. To evaluate its effectiveness, PMAF has been
used to reformulate and implement existing intraprocedural
analyses for Bayesian-inference and the Markov decision
problem, by creating corresponding interprocedural analy-
ses. Additionally, PMAF has been used to implement a new
interprocedural linear expectation-invariant analysis. Exper-
iments with benchmark programs for the three analyses
demonstrate that the approach is practical.

CCS Concepts « Software and its engineering — Au-
tomated static analysis; « Theory of computation —
Probabilistic computation; Program analysis;
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1 Introduction

Probabilistic programming is becoming increasingly popu-
lar because it provides a rich framework for implementing
randomized algorithms [5], cryptography protocols [6], cog-
nitive [39] models, and machine learning [37] algorithms.
Static analysis of probabilistic programs has received a lot
of attention [10, 11, 13-18, 25, 29-31, 33, 36, 48-50, 72, 79].
Unfortunately, analyses of probabilistic programs have usu-
ally been standalone developments, and it is not immediately
clear how different techniques relate.

This paper presents a framework, which we call PMAF
(for Pre-Markov Algebra Framework), for designing, imple-
menting, and proving the correctness of static analyses of
probabilistic programs. We show how several analyses that
may appear to be quite different, can be formulated—and
generalized—using PMAF. Examples include Bayesian infer-
ence [18, 30, 31], Markov decision problem with rewards [75],
and probabilistic-invariant generation [13, 15, 49]

New constructs in probabilistic programs are of two kinds,
to express data randomness (e.g., sampling) and control-
flow randomness (e.g., probabilistic choice). To express both
features, we introduce a new algebraic structure, called
a pre-Markov algebra, which is equipped with operations
corresponding to control-flow actions in probabilistic pro-
grams: sequencing, conditional-choice, probabilistic-choice,
and nondeterministic-choice. PMAF is based on a new fixed-
point semantics that models challenging features such as
divergence, unstructured control-flow, nondeterminism, and
continuous distributions. To establish correctness, we in-
troduce probabilistic abstractions between two pre-Markov
algebras that represent the concrete and abstract semantics.

Our work shows how, with suitable extensions, a blend-
ing of ideas from prior work on (i) static analysis of single-
procedure probabilistic programs, and (ii) interprocedural
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dataflow analysis of standard (non-probabilistic) programs

can be used to create a framework for interprocedural analy-

sis of multi-procedure probabilistic programs. In particular,

e The semantics on which PMAF is based is an interpreta-
tion of the control-flow graphs (CFGs) for a program’s
procedures. One insight is to treat each CFG as a hyper-
graph rather than a standard graph.

o The abstract semantics is formulated so that the analyzer
can obtain procedure summaries.

Hyper-graphs contain hyper-edges, each of which con-
sists of one source node and possibly several destination
nodes. Conditional-branching, probabilistic-branching, and
nondeterministic-branching statements are represented by
hyper-edges. In ordinary CFGs, nodes can also have several
successors; however, the operator applied at a confluence
point ¢ when analyzing a CFG is join (L), and the paths lead-
ing up to q are analyzed independently. For reasons discussed
in §2.3, PMAF is based on a backward analysis, so the con-
fluence points represent the program’s branch points (i.e.,
for if-statements and while-loops). If the CFG is treated as a
graph, join would be applied at each branch-node, and the
subpaths from each successor would be analyzed indepen-
dently. In contrast, when the CFG is treated as a hyper-graph,
the operator applied at a probabilistic-choice node with prob-
ability p is Aa.Ab.a, ®b—where ,® is not join, but an operator
that weights the two successor paths by p and 1 — p. For in-
stance, in Fig. 2(b), the hyper-edge (vo, {v1,vs}) generates
the inequality &7 [vy] 3 o7 [v1]o.75 ® </ [vs], for some analy-
sis .o/ This approach allows the (hyper-)subpaths from the
successors to be analyzed jointly.

To perform interprocedural analyses of probabilistic pro-
grams, we adopt a common practice from interprocedural
analysis of standard non-probabilistic programs: the abstract
domain is a two-vocabulary domain (each value represents
an abstraction of a state transformer) rather than a one-
vocabulary domain (each value represents an abstraction
of a state). In the algebraic approach, an element in the al-
gebra represents a two-vocabulary transformer. Elements
can be “multiplied” by the algebra’s formal multiplication
operator, which is typically interpreted as (an abstraction of)
the reversal of transformer composition. The transformer ob-
tained for the set of hyper-paths from the entry of procedure
P to the exit of P is the summary for P.

In the case of loops and recursive procedures, PMAF
uses widening to ensure convergence. Here our approach
is slightly non-standard: we found that for some instanti-
ations of the framework, we could improve precision by
using different widening operators for loops controlled by
conditional, probabilistic, and nondeterministic branches.

The main advantage of PMAF is that instead of starting
from scratch to create a new analysis, you only need to instan-
tiate PMAF with the implementation of a new pre-Markov
algebra. To establish soundness, you have to establish some
well-defined algebraic properties, and can then rely on the
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soundness proof of the framework. To implement your analy-
sis, you can rely on PMAF to perform sound interprocedural
analysis, with respect to the abstraction that you provided.
The PMAF implementation supplies common parts of differ-
ent static analyses of probabilistic programs, e.g., efficient
iteration strategies with widenings and interprocedural sum-
marization. Moreover, any improvements made to the PMAF
implementation immediately translate into improvements
to all of its instantiations.

To evaluate PMAF, we created a prototype implemen-
tation, and reformulated two existing intraprocedural
probabilistic-program analyses—the Bayesian-inference al-
gorithm proposed by Claret et al. [18], and Markov decision
problem with rewards [75]—to fit into PMAF: Reformula-
tion involved changing from the one-vocabulary abstract
domains proposed in the original papers to appropriate two-
vocabulary abstract domains. We also developed a new pro-
gram analysis: linear expectation-invariant analysis (LEIA).
Linear expectation-invariants are equalities involving ex-
pected values of linear expressions over program variables.

A related approach to static analysis of probabilistic pro-
grams is probabilistic abstract interpretation (PAI) [25, 67-69],
which lifts standard program analysis to the probabilistic set-
ting. PAI is both general and elegant, but the more concrete
approach developed in our work on PMAF has a couple of
advantages. First, PMAF is algebraic and provides a simple
and well-defined interface for implementing new abstrac-
tions. We provide an actual implementation of PMAF that can
be easily instantiated to specific abstract domains. Second,
PMAF is based on a different semantic foundation, which fol-
lows the standard interpretation of non-deterministic proba-
bilistic programs in domain theory [27, 46, 47, 64, 65, 82].

The concrete semantics of PAI isolates probabilistic
choices from the non-probabilistic part of the semantics by
interpreting programs as distributions P : Q — (D — D),
where Q is a probability space and D — D is the space of non-
probabilistic transformers. As a result, the PAI interpreta-
tion of the following non-deterministic program is that with
probability %, we have a program that non-deterministically
returns 1 or 2; with probability i, we have a program that
returns 1; and with probability 4—11, a program that returns 2.

if x then if prob(%) then return 1 else return 2
else if prob(%) then return 1 else return 2 fi

In contrast, the semantics used in PMAF resolves non-
determinism on the outside, and thus the semantics of the
program is that it returns 1 with probability % and 2 with %
As a result, one can conclude that the expected return value
r is 1.5. However, PAI—and every static analysis based on
PAI—can only conclude 1.25 < r < 1.75.

Contributions. Our work makes five main contributions:

e We present a new denotational semantics for probabilistic
programs, which is capable of expressing several nontriv-
ial features of probabilistic-programming languages.
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e We develop PMAF, an algebraic framework for static anal-
yses of probabilistic programs. PMAF provides a novel
approach to analyzing probabilistic programs with non-
deterministic choice (§4.1 and §4.2) and general recursion
(§4.3) (as well as continuous sampling and unstructured
control-flow).

e We show that two previous intraprocedural probabilistic
program analyses can be reformulated to fit into PMAF,
thereby creating new interprocedural analyses for such
previous work.

e We develop a new program analysis, linear expectation-
invariant analysis, by means of a suitable instantiation
of PMAF. This analysis is more general than previous
approaches to finding expectation invariants.

e We report on experiments with PMAF that show that the
framework is easy to instantiate and works effectively. The
experiments also show that linear expectation-invariant
analysis can derive nontrivial invariants.

2 Overview

In this Section, we familiarize the reader with probabilistic
programming, and briefly introduce two different static anal-
yses of probabilistic programs: Bayesian inference and linear
expectation invariant analysis. We then informally explain
the main ideas behind our algebraic framework for analyz-
ing probabilistic programs and show how it generalizes the
aforementioned analyses.

2.1 Probabilistic Programming

Probabilistic programs contain two sources of randomness:
(i) data randomness, i.e., the ability to draw random values
from distributions, and (ii) control-flow randomness, i.e., the
ability to branch probabilistically. A variety of probabilistic
programming languages and systems has been proposed
[12,38,54,61, 63, 74]. In this paper, our prototypical language
is imperative.

We use the Boolean program in Fig. 1a to illustrate data
randomness. In the program, b; and b, are two Boolean-
valued variables. The sampling statement x ~ Dist(0) draws
a value from a distribution Dist with a vector of parameters
0, and assigns it to the variable x, e.g., b; ~ Bernoulli(0.5)
assigns to by a random value drawn from a Bernoulli distri-
bution with mean 0.5. Intuitively, the program tosses two
fair Boolean-valued coins repeatedly, until one coin is true.

We introduce control-flow randomness through the arith-
metic program in Fig. 1b. In the program, x, y, and z are
real-valued variables. As in the previous example, we have
sampling statements, and Uniform(l, r) represents a uniform
distribution on the interval (I,r). The probabilistic choice
prob(p) returns true with probability p and false with proba-
bility 1 — p. Moreover, the program also exhibits nondeter-
minism, as the symbol * stands for a nondeterministic choice
that can behave like standard nondeterminism, as well as an
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by ~ Bernoulli(0.5);
by ~ Bernoulli(0.5);
while (=b; A =by) do if x thenx :=x+z
by ~ Bernoulli(0.5); elsey:=y+z
b, ~ Bernoulli(0.5) fi
Od ()d

(a) (b)

Figure 1. (a) Boolean probabilistic program; (b) Arithmetic
probabilistic program

while prob(%) do
z ~ Uniform(0, 2);

arbitrary probabilistic choice [60, §6.6]. Intuitively, the pro-
gram describes two players x and y playing a round-based
game that ends with probability ‘—11 after each round. In each
round, either player x or player y gains some reward that is
uniformly distributed on [0, 2].

2.2 Two Static Analyses

Bayesian inference (BI). Probabilistic programs can be
seen as descriptions of probability distributions [12, 38, 63].
For a Boolean probabilistic program, such as the one in
Fig. 1a, Bayesian-inference analysis [18] calculates the dis-
tribution over variable valuations at the end of the program,
conditioned on the program terminating. The inferred proba-
bility distribution is called the posterior probability distribu-
tion. The program in Fig. 1a specifies the posterior distribu-
tion over the variables (b1, b;) given by: P[b; = false, by =
false] = 0,and P[b; = false, b, = true] = P[by = true,b; =
false] = P[by = true,b; = true] = % This distribution also
indicates that the program terminates almost surely, i.e., the
probability that the program terminates is 1.’

Linear expectation invariant analysis (LEIA). Loop in-
variants are crucial to verification of imperative programs
[28, 34, 43]. Although loop invariants for traditional pro-
grams are usually Boolean-valued expressions over program
variables, real-valued invariants are needed to prove the
correctness of probabilistic loops [55, 60]. Such expectation
invariants are usually defined as random variables—specified
as expressions over program variables—with some desirable
properties [13, 14, 49]. In this paper, we work with a more
general kind of expectation invariant, defined as follows:

Definition 2.1. For a program P, E[&;] < &; is called an
expectation invariant if &; and &, are real-valued expres-
sions over P’s program variables, >« is one of {=, <, >, <, >},
and the following property holds: For any initial valuation of
the program variables, the expected value of &; in the final
valuation (i.e., after the execution of P) is related to the value
of &; in the initial valuation by <.

We typically use variables with primes in &; to denote the
values in the final valuation. For example, for the program in

In general, we work with with subprobability distributions, where the
probabilities add up to strictly less than 1. In the case of a program that
diverges with probability p > 0, the posterior distribution is a subprobability
distribution in which the probabilities of the states sum up to 1 — p.
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Fig. 1b, E[x' +y'] = x +y + 3, E[z] = ‘—llz + %, E[x'] < x +3,
E[x’] = x, E[y’] < y + 3, and E[y’] > y are several linear
expectation invariants, and our analysis can derive all of
these automatically! The expectation invariant E[x" + ¢'] =
x +y+ 3 indicates that the expected value of the total reward
that the two players would gain is exactly 3.

2.3 The Algebraic Framework

This section explains the main ideas behind PMAF, which is
general enough to encode the two analyses from §2.2.

Data Randomness vs. Control-Flow Randomness. Our
first principle is to make an explicit separation between data
randomness and control-flow randomness. This distinction is
intended to make the framework more flexible for analy-
sis designers by providing multiple ways to translate the
constructs of their specific probabilistic programming lan-
guage into the constructs of PMAF. Analysis designers
may find it useful to use the control-flow-randomness con-
struct directly (e.g., “if prob(0.3)...”), rather than simu-
lating control-flow randomness by data randomness (e.g.,
“p ~ Uniform(0, 1);if (p < 0.3)...”). For program analysis,
such a simulation can lead to suboptimal results if the con-
structs used in the simulation require properties to be tracked
that are outside the class of properties that a particular analy-
sis’s abstract domain is capable of tracking. For example, if an
analysis domain only keeps track of expectations, then anal-
ysis of “p ~ Uniform(0,1)” only indicates that E[p] = 0.5,
which does not provide enough information to establish that
P[p < 0.3] = 0.3 in the then-branch of “if (p < 0.3)...”
In contrast, when “prob(0.3)...” is analyzed in the frag-
ment with the explicit control-flow-randomness construct
(“if prob(0.3)...”) the analyzer can directly assign the prob-
abilities 0.3 and 0.7 to the outgoing branches, and use those
probabilities to compute appropriate expectations in the re-
spective branches.

We achieve the separation between data randomness and
control-flow randomness by capturing the different types
of randomness in the graphs that we use for representing
programs. In contrast to traditional program analyses, which
usually work on control-flow graphs (CFGs), we use control-
flow hyper-graphs to model probabilistic programs. Hyper-
graphs are directed graphs, each edge of which (i) has one
source and possibly multiple destinations, and (ii) has an as-
sociated control-flow action—either sequencing, conditional-
choice, probabilistic-choice, or nondeterministic-choice. A tra-
ditional CFG represents a collection of execution paths, while
in probabilistic programs, paths are no longer independent,
and the program specifies probability distributions over the
paths. It is natural to treat a collection of paths as a whole
and define distributions over the collections. These kinds of
collections can be precisely formalized as hyper-paths made

up of hyper-edges in hyper-graphs.
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Fig. 2 shows the control-flow hyper-graphs of the two
programs in Fig. 1. Every edge has an associated action,
e.g., the control-flow actions cond[—b; A —b;)], prob[%],
and ndet are conditional-choice, probabilistic-choice, and
nondeterministic-choice actions. Data actions, like x := x+z
and b; ~ Bernoulli(0.5), also perform a trivial control-flow
action to transfer control to their one destination node.

Just as the control-flow graph of a procedure typically has
a single entry node and a single exit node, a procedure’s
control-flow hyper-graph also has a single entry node and a
single exit node. In Fig. 2a, the entry and exit nodes are vy
and vs, respectively; in Fig. 2b, the entry and exit nodes are
v and vs, respectively.

Backward Analysis. Traditional static analyses assign to a
CFG node v either backward assertions—about the computa-
tions that can lead up to v—or forward assertions—about the
computations that can continue from v [21, 23]. Backward
assertions are computed via a forward analysis (in the same
direction as CFG edges); forward assertions are computed
via a backward analysis (counter to the flow of CFG edges).

Because we work with hyper-graphs rather than CFGs,
from the perspective of a node v, there is a difference in
how things “look” in the backward and forward direction:
hyper-edges fan out in the forward direction. Hyper-edges
can have two destination nodes, but only one source node.

The second principle of the framework is essentially dic-
tated by this structural asymmetry: the framework supports
backward analyses that compute a particular kind of forward
assertion. In particular, the property to be computed for a
node v in the control-flow hyper-graph for procedure P is (an
abstraction of) a transformer that summarizes the transfor-
mation carried out by the hyper-graph fragment that extends
from v to the exit node of P. It is possible to reason in the
forward direction—i.e., about computations that lead up to
v—but one would have to “break” hyper-paths into paths and
“relocate” probabilities, which is more complicated than rea-
soning in the backward direction. The framework interprets
an edge as a property transformer that computes proper-
ties of the edge’s source node as a function of properties of
the edge’s destination node(s) and the edge’s associated ac-
tion. These property transformers propagate information in
a hypergraph-leaf-to-hypergraph-root manner, which is nat-
ural in hyper-graph problems. For example, standard formu-
lations of interprocedural dataflow analysis [52, 57, 71, 80]
can be viewed as hyper-graph analyses, and propagation is
performed in the leaf-to-root direction there as well.

Recall the Boolean program in Fig. 1a. Suppose that we
want to perform BI to analyze P[b; = true,b, = true] in
the posterior distribution. The property to be computed
for a node will be a mapping from variable valuations to
probabilities, where the probability reflects the chance that
a given state will cause the program to terminate in the
post-state (b; = true, b, = true). For example, the property
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false @
@ by, b, ~ B(0.5) ‘@/’

by, by ~ B(0.5)

GV

@ prob[%] false @

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

X:=x+z

true z ~ U(0,2) @ ndet

y=y+z @

(b)

Figure 2. (a) Control-flow hyper-graph of the program in Fig. 1a. (b) Control-flow hyper-graph of the program in Fig. 1b.

that we would hope to compute for node v, is the function
A(b1, b3).[b1 A by] + [-by A —bs] - %, where [¢] is an Iverson
bracket, which evaluates to 1 if ¢ is true, and 0 otherwise.

Two-Vocabulary Program Properties. In the example of
BI above, we observe that the property transformation dis-
cussed above is not suitable for interprocedural analysis. Sup-
pose that (i) we want analysis results to tell us something
about P[b; = true, by = true] in the posterior distribution of
the main procedure, but (ii) to obtain the answer, the anal-
ysis must also analyze a call to some other procedure Q. In
the procedure main, the analysis is driven by the posterior-
probability query P[b; = true, b, = true]; in general, how-
ever, Q will need to be analyzed with respect to some other
posterior probability (obtained from the distribution of valu-
ations at the point in main just after the call to Q). One might
try to solve this issue by analyzing each procedure multiple
times with different posterior probabilities. However, in an
infinite state space, this approach is no longer feasible.

Following common practice in interprocedural static anal-
ysis of traditional programs, the third principle of the frame-
work is to work with two-vocabulary program properties.
The property sketched in the BI example above is actually
one-vocabulary, i.e., the property assigned to a control-flow
node only involves the state at that node. In contrast, a two-
vocabulary property at node v (in the control-flow hyper-
graph for procedure P) should describe the state transforma-
tion carried out by the hyper-graph fragment that extends
from v to the exit node of P.

For instance, LEIA assigns to each control-flow node a
conjunction of expectation invariants, which relate the state
at the node to the state at the exit node; consequently, LEIA
deals with two-vocabulary properties. In §5, we show that we
can reformulate BI to manipulate two-vocabulary properties.
As in interprocedural dataflow analysis [22, 80], procedure
summaries are used to interpret procedure calls.

Separation of Concerns. Our fourth principle—which is
common to most analysis frameworks—is separation of con-
cerns, by which we mean

Provide a declarative interface for a client to specify the pro-
gram properties to be tracked by a desired analysis, but leave
it to the framework to furnish the analysis implementationby
which the analysis is carried out.

We achieve this goal by adopting (and adapting) ideas from
previous work on algebraic program analysis [32, 76, 81].

Algebraic program analysis is based on the following idea:

Any static analysis method performs reasoning in some
space of program properties and property transformers;
such property transformers should obey algebraic laws.

For instance, the data action skip, which does nothing, can be

interpreted as the identity element in an algebra of program-

property transformers.

Concretely, our fourth principle has three aspects:

1. For our intended domain of probabilistic programs, iden-
tify an appropriate set of algebraic laws that hold for useful
sets of property transformers.

2. Define a specific algebra A for a program-analysis prob-
lem by defining a specific set of property transformers
that obey the laws identified in item 1. Give translations
from data actions and control-flow actions to such prop-
erty transformers. (When such a translation is applied to
a specific program, it sets up an equation system to be
solved over A.)

3. Develop a generic analysis algorithm that solves an equa-
tion system over any algebra that satisfies the laws identi-
fied in item 1.

Items 1 and 3 are tasks for us, the framework designers; they

are the subjects of §3 and §4. Item 2 is a task for a client of

the framework: examples are given in §5.

A client of the framework must furnish an interpretation—
which consists of a semantic algebra and a semantic function—
and a program. The semantic algebra consists of a universe,
which defines the space of possible program-property trans-
formers, and sequencing, conditional-choice, probabilistic-
choice, and nondeterministic-choice operators, correspond-
ing to control-flow actions. The semantic function is a map-
ping from data actions to the universe. (An interpretation is
also called a domain.)

To address Item 3, our prototype implementation follows
the standard iterative paradigm of static analysis [21, 51]: We
first transform the control-flow hyper-graph into a system
of inequalities, and then use a chaotic-iteration algorithm to
compute a solution to it (e.g., [9]), which repeatedly applies
the interpretation until a fixed point is reached (possibly
using widening to ensure convergence). For example, the
control-flow hyper-graph in Fig. 2b can be transformed into
the system shown in Fig. 3, where S(v) € M are elements
in the semantic algebra; C is the approximation order on M;
[-] is the semantic function, which maps data actions to M;
and 1 is the transformer associated with the exit node.
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S(vp) Aprob[21(S(v1), S(vs)) S(v3) 3seq(x = x + z](S(w))
S(v1) 3seq[z ~ Uniform(0, 2)](S(v2)) S(vs) Iseqly =y + z](S(vyp))
S(vz) Indet(S(vs), S(vs)) S(vs) 31

Figure 3. The system of inequalities corresponding to Fig. 2b

The soundness of the analysis (with respect to a concrete
semantics) is proved by (i) establishing an approximation re-
lation between the concrete domain and the abstract domain;
(ii) showing that the abstract semantic function approximates
the concrete one; and (iii) showing that the abstract oper-
ators (sequencing, conditional-choice, probabilistic-choice,
and nondeterministic-choice) approximate the concrete ones.

For BI, we instantiate our framework to give lower bounds
on posterior distributions, using with an interpretation in
which state transformers are probability matrices (see §5.1).
For LEIA, we design an interpretation using a Cartesian
product of polyhedra (see §5.3). Once the functions of the
interpretations are implemented, and a program is translated
into the appropriate hyper-graph, the framework handles
the rest of the work, namely, solving the equation system.

3 Probabilistic Programs

In this Section, we first review the concepts of hyper-graphs
[35] and introduce a probabilistic-program model based on
them. Then we briefly sketch a new denotational semantics
for our hyper-graph based imperative program model.

3.1 A Hyper-Graph Model of Probabilistic Programs
Definition 3.1 (Hyper-graphs). A hyper-graph H is a
quadruple (V, E, 0", 0®t) where V is a finite set of nodes,
E is a set of hyper-edges, v°""Y € V is a distinguished entry
node, and v € V is a distinguished exit node. A hyper-edge
is an ordered pair (x,Y), where x € Visanodeand Y C V
is an ordered, non-empty set of nodes. For a hyper-edge
e = (x,Y) in E, we use src(e) to denote x and Dst(e) to de-
note Y. Following the terminology from graphs, we say that
e is an outgoing edge of x and an incoming edge of each of
the nodes y € Y. We assume that v®™" has no incoming
edges, and ™ has no outgoing edges.

Definition 3.2 (Probabilistic programs). A probabilistic pro-
gram contains a finite set of procedures {H;};<;<,, where
each procedure H; = (V;, E;, v?ntry, vf"it> is a control-flow
hyper-graph in which each node except vf"” has exactly
one outgoing hyper-edge. We assume that the nodes of
each procedure are pairwise disjoint. To assign meanings
to probabilistic programs modulo data actions A and logical
conditions L, we associate with each hyper-edge e € E =
U1<i<n Ei a control-flow action Ctrl(e), where Ctrl is
Ctrl := seqlact] where act € A | call[i] where 1 <i<n
| cond[p] where ¢ € L | prob[p] where 0 < p <1
| ndet
where the number of destination nodes |Dst(e)| of a hyper-
edge e is 1 if Ctrl(e) is seq[act] or call[i], and 2 otherwise.
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Fig. 2 shows two examples of hyper-graph-based proba-
bilistic programs. See Fig. 4 for data actions A and logical
conditions £ that would be used for an arithmetic program
like the one shown in Fig. 1b.

3.2 Background from Measure Theory

To define denotational semantics for probabilistic programs
modulo data actions A and logical conditions £, we review
some standard definitions from measure theory [7, 73].

A measurable space is a pair (X,X) where X is a non-
empty set called the sample space, and X is a o-algebra over X
(i.e, a set of subsets of X which contains () and is closed under
complement and countable union). A measurable function
from a measurable space (X;,2;) to another measurable
space (X»,X;) is a mapping f : X; — X3 such that for
all A € Z,, f 1(A) € 3,. The measurable functions from
a measurable space (X, ) to the Borel space B(Rp) on
nonnegative real numbers (the smallest o-algebra containing
all open intervals) is called X-measurable.

A measure p on a measurable space (X, ) is a function
from X to [0, 0] such that: (i) (@) = 0, and (ii) for all
pairwise-disjoint countable sequences of sets Aj, Az, -- € X
(ie, A;NA; = 0foralli # j)we have )72, u(4;) =
(U521 A;). The measure p is called a (sub-probability) distri-
bution if p(X) < 1. A measure space is a triple # = (X, 2, 1)
where i is a measure on the measurable space (X, X). The
integral of a ¥-measurable function f over the measurable
space .# = (X,%, u) can be defined following Lebesgue’s
theory and denoted either by /fdp or ff(x)p(dx). The
Dirac measure 6(x) is defined as AA.[x € A].

A (sub-probability) kernel from a measurable space
(X1,21) to a measurable space (X3,%;) is a function Kk :
X1 X X3 — [0, 1] such that: (i) for each A in X,, the function
Ax.k(x,A) is X1-measurable, and (ii) for each x in Xj, the

function «, © AA.k(x, A) is a distribution on (X3, 2,). We
write the integral of a measurable function f : ¥, — [0, co]
with respect to the distribution in (ii) as f f(y)x(x,dy).

3.3 A Denotational Semantics

The next step is to define semantics based on the control-flow
hyper-graphs. We use a denotational approach because it
abstracts away how a program is evaluated and concentrates
only on the effect of the program. This property makes it
suitable as a starting point for static analysis, which is aimed
at reasoning about program properties.

We develop a new semantics for probabilistic program-
ming by combining Borgstrom et al’s distribution-based
semantics using the concept of kernels from measure theory
[8] and existing results on domain-theoretic probabilistic
nondeterminism [27, 46, 47, 64, 65, 82]. This semantics can
describe several nontrivial constructs, including continuous
sampling, nondeterministic choice, and recursion.

Three components are used to define the semantics:
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Az=x:=e|x~ P |skip | observe(p)

@ € L == true | false | e > u, where € {=,<,>} | =¢p

e,u € Exp :=x|c,wherec € R | e ey, where ® € {+,—, X, /}
xeVaru=x|yl|z]| -

2 € Dist ::= Uniform(e, u) | Gaussian(e,u) | - - -

Figure 4. Examples of data actions and logical conditions

o A measurable space & = (Q, F) over program states (e.g.,
finite mappings from program variables to values).

e A mapping from data act actions to kernels act : QX F —
R. The intuition to keep in mind is that act(w, F) is the
probability that the action, starting in state w € Q, halts
in a state that satisfies F € ¥ [56].?

e A mapping from logical conditions ¢ to measurable func-
tions ¢ : Q — {true, false}.

Example 3.3. For an arithmetic program with a finite set
Var of program variables, Q is defined as Var — R and & as
the Borel space on Q. Fig. 5 shows interpretation of the data
actions and logical conditions in Fig. 4, where e(w) evaluates
expression e in state w, (x — v)w updates x in o with v, and
g : B(R) — [0,1] is the measure corresponding to the distri-
bution 9 on reals. Note that the action observe(y) performs
conditioning on states that satisfy ¢.

While distributions can be seen as one-vocabulary speci-
fications, kernels are indeed two-vocabulary transformers
over program states. When there is no nondeterminism, we
can assign a kernel to every control-flow node. We can also
define control-flow actions on kernels. A sequence of actions
acty; act, with kernels k7 and k;, respectively, is modeled by
their composition, denoted by k; ® x,, which yields a new
kernel defined as follows:’

K1 ® K2 = Alx, A). / K1 (x, dy)xa(y, A). (1)
The conditional-choice k; oKz is defined as a new kernel
Alx, A).[9(x)] - k1(x, A) + [=@(x)] - k2(x, A). The probabilistic-
choice x; pOK2is defined as a new kernel A(x, A).p-k1(x, A)+
(1-p) - K2(x, A).

Example 3.4. Consider the following program that models a
variation on a geometric distribution.

n:=0;
while prob(0.9) do

n:=n+1; if n > 10 then break else continue fi
od

Fig. 6 shows its control-flow hyper-graph. The assignment
n := n+1 is interpreted as a kerneln := n + 1 = Aw, F).[(n —

2 As explained by Kozen [56], for finite or countable Q, act has a represen-
tation as a Markov transition matrix M5, in which each entry Mﬁ(w, ')
for a pair of states (w, ") gives the probability that w transitions to «’
under action act.

3For finite or countable Q, and the matrix representation described in
footnote 2, the integral in Eqn. (1) degenerates to matrix multiplication

[56].
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x:=e=MNw,F).[(x = e(w)w € F] frue = Aw.true
x~ 2 = Mo, F).ug({v | (x > v)w € F})false = do. false
observe(¢) = Mw, F).p(w) - [w € F]
skip = A(w, F).[w € F]

e u = Aw.[e(w) > u(w)]
=¢ = dw.~p(w)

Figure 5. Interpretation of actions and conditions

w(n) + 1)w € F). The comparison n > 10 is interpreted as a

measurable function n> 10 = Aw.(w(n) > 10). Let K stand
for 0.3486784401; the semantics assigned to node vy is
9

Mw, F). Z(O.l % 0.95) - [(n = k)w € F] + K - [(n — 10)o € F].
k=0

When nondeterminism comes into the picture, we need to
associate each control-flow node with a collection of kernels.
In other words, we need to consider powerdomains [41] of
kernels. We adopt Tix et al’s constructions of probabilistic
powerdomains [82], and extend them to work on kernels
instead of distributions. We denote the set of feasible col-
lections of kernels by PQ, and the composition, conditional-
choice, probabilistic-choice, and nondeterministic-choice op-
erators on that by ®, ,0, ,®, and U. PQ is also equipped
with a partial order C.

We reformulated distributions and kernels in a domain-
theoretic way to adopt existing studies on powerdomains. We
discuss the details of the construction of PQ in a companion
paper [83]; the focus of this paper is static analysis and we
will keep the domain-theoretic terminology to a minimum.

We adopted Hoare powerdomains and Smyth powerdo-
mains [1, §6.2] over kernels. Kernels are ordered pointwise,
i.e., k1 < Kk if and only if for all w and F, k1(w, F) < kz(w, F).
The zero kernel A(w, F).0 is the bottom element of this or-
der. Intuitively, the Hoare powerdomain is used for partial
correctness, in which the order is set inclusion on the lower
closures of the elements—because each downward-closed
set contains a kernel that represents nontermination (i.e.,
the zero kernel), terminating and nonterminating executions
cannot be distinguished. The Smyth powerdomain is used for
total correctness: the order is reverse inclusion on the upper
closures of the elements—nontermination is interpreted as
the worst output, and the kernel that represents nontermina-
tion does not occur in an upward-closed set that represents
the semantics of a terminating computation.

Given a probabilistic program P = {H; }1<;<n, where H; =
(Vi, E;, vfn"y, U?Xit>, we want to define the semantics of each
node v as a set of kernels that represent the effects from v to

false
< >n::n+1n210

false
Figure 6. Control-flow hyper-graph of the program in Ex. 3.4
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the exit node of the procedure that contains v. Let S(v) € PQ

be the semantics assigned to the node v; the following local

properties should hold:

o if e = (v, {ug, - ,ux}) €
Cerl(e)(S(w), -+~ , S(ux)), and

e otherwise, S(v) = 1.

E, S(v) =

The function act for the different kinds of control-flow ac-
tions is defined as follows:
seqlact]($1) £ {act)@s:
call[](S1) £ S("™)&S; | prob[pl(s1,S:) £ 5,85
ndet(S,S;) & $,US,
Lemma 3.5. The function Fp defined as
Cirl(e)(Sur). -+ . S(u) e = (v, {ur, -

1p otherwise

cond[pl(S1,S2) = 51,08

1S M. { ) €
is w-continuous on (V. — PQ, L), which is an w-cpo with the
least element Av. L.

A dot over an operator denotes its application pointwise.
By Kleene’s fixed-point theorem, we have

Theorem 3.6. pr%v | _Fp exists for all prob. programs P.
-Lp

Thus, the semantics of a node v is defined as (lfp/%v_ LPF p)(v).

4 Analysis Framework

To aid in creating abstractions of probabilistic programs, we
first identify, in §4.1, some algebraic properties that underlie
the mechanisms used in the semantics from §3.3. This algebra
will aid our later definitions of abstractions in §4.2. We then
discuss interprocedural analysis (in §4.3) and widening (§4.4).

4.1 An Algebraic Characterization of Fixpoint
Semantics

In the denotational semantics, the concrete semantics is ob-
tained by composing Ctri(e) operations along hyper-paths.
Hence in the algebraic framework, the semantics of prob-
abilistic programs is denoted by an interpretation, which
consists of two parts: (i) a semantic algebra, which defines
a set of possible program meanings, and which is equipped
with sequencing, conditional-choice, probabilistic-choice,
and nondeterministic-choice operators to compose these
meanings, and (ii) a semantic function, which assigns a mean-
ing to each basic program action.

The semantic algebras that we use—and the lattices used
for abstract interpretation—are pre-Markov algebras:

Definition 4.1 (Pre-w-continuous functions). A function
f : X — Y between two w-cpos X and Y is pre-w-continuous
if it is monotone, and for every w-chain C C X, f(sup(C)) <

sup(f(C)).

Definition 4.2 (Pre-Markov algebras). A pre-Markov alge-
bra (PMA) over a set of logical conditions L is an 8-tuple
M= (M,C,Q, 0<: pS U, L, 1), where (M, C, L) forms an
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w-cpo with a least element L; (M, ®, 1) forms a monoid (i.e.,
® is an associative binary operator with 1 as its identity ele-
ment); , is a binary operator parametrized by ¢ which is
a condition in £; ,® is a binary operator parametrized by
p € [0,1]; Uis abinary operator that is idempotent, commuta-
tive, and associative; ®, »D 0 ¢, and U are pre-w-continuous;
and the following properties hold:
a (pObEan, aCa,0a ala e b a (ﬂOb:b —p<a
apEBbEaLUJb, aCa ,®a, aCa 10, apeab=b l_pEBa
a ,o (b I/IO c)=(a 4),0 b) I/I,chhereqoz(p’/\lﬁ’,q)Vtﬁ =y’
a,®0b ®c)=(a P,GB b) q,@cwherep =p'q.p-4=q

The precedence of the operators is that ® binds tightest,
followed by o< p®; and U.

Remark 4.3. These algebraic laws are not needed to prove
soundness of the framework (stated in Thm. 4.8). These laws
helped us when designing the abstract domains. Exploiting
these algebraic laws to design better algorithms is an inter-
esting direction for future work.

Lemma 4.4. The denotational semantics in §3.3 is a PMA
C = (PQ, Ep,@,(po,ﬁ, @’i]p’l]p) (which we call the con-
crete domain for our framework).

As is standard in abstract interpretation, the order on the
algebra should represent an approximation order: a E b iff
a is approximated by b (i.e., if a represents a more precise
property than b).

Definition 4.5 (Interpretations). An interpretation is a pair
& = (M,[]), where M is a pre-Markov algebra, and
[]: A — M, where A is the set of data actions for prob-
abilistic programs. We call M the semantic algebra of the
interpretation and [-] the semantic function.

Given a probabilistic program P and an interpretation
= (M,[]), we define .#[P] to be the interpretation of
the probabilistic program. .#[P] is then defined as the least
prefixed point (i.e., the least p such that f(p) < p for a func-

tion f) of the function F g, which is defined as
1St 0. {é?rlﬁ)ﬁ(sﬁ(ul), L SPw) e = (v {ur,. . ug)) € E
1

otherwise

where

— e. Aﬁ e.
eqact’ (a1) & [act] ® a; cond[g] (a1,a2) = ay 000z

mﬁ(al) = Sﬁ(vfntry) ®a; mﬂ(al, az) = a ,baz
nge?tﬂ(al, ag) déf a Y as

We generalize Kleene’s fixed-point theorem to prove the

existence of the least prefixed point of Fﬁ.

Theorem 4.6 (Generalized Kleene’s fixed point theorem).
Suppose (X, <) is an w-cpo with a least element L, and let
f + X — X be a pre-w-continuous function. Then f has a
least prefixed point, which is the supremum of the ascending
Kleene chain of f, denoted by lpp= f.
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We use the least prefixed point of F ﬁ to define the inter-
pretation of a probabilistic program P as .#[P] = lpp%v_ J_Fg.

The interpretation of a control-flow node v is then defined
as [v] = F[P](v).

4.2 Abstractions of Probabilistic Programs

Given two PMAs C and A, a probabilistic abstraction is de-
fined as follows:

Definition 4.7 (Probabilistic abstractions). A probabilistic

over-abstraction (or under-abstraction, resp.) from a PMA C

to a PMA A is a concretization mapping, y : A — C, such

that

e y is monotone, i.e., for all Q1, Q; € A, Q1 C4 Q, implies
that y(Q1) Cc y(Q2).

e L-Lc Y(iy{) (or Y(iy{) Lc Lo resp.),

* 1o Ecy(lg) (ory(14) Ec 1¢, resp),

o forall Q1,Q; € A, y(Q1) ®c y(Q2) Ec y(Q1 ®a Q2) (or
y(Q1 ®7 Q2) Ec v(Q1) ®c y(Q2), resp.),

e forall 01,0, € A, y(Q1) , O cy(Q2) Ec ¥(Q1 ,07Q2) (or
¥(Q1,020Q2) Ec ¥(Q1) ,©cy(Q2), resp.),

e forall 01,0, € A, y(Q1) ,®cy(Q2) Ec y(Q1,®4Q2) (or
¥(Q1,®2Q2) Ec y(Q1) ,®cy(Q2), resp.), and

e forall 01,0z € A, y(Q1) Uc y(Q2) Ec v(Q1 Un Q2) (or
¥(Q1 Uz Q2) Ec y(Q1) Uc y(Q2), resp.).

A probabilistic abstraction leads to a sound analyses:

Theorem 4.8. Let € and </ be interpretations over PMAs
C and A; let y be a probabilistic over-abstraction (or under-
abstraction, resp.) from C to A; and let P be an arbitrary
probabilistic program. If for all basic actions act, [act]? C¢
y([act]?) (or y([act]”) Cc¢ [act]?, resp.), then we have
CIPIECi( [P]) (or Y/ [PNEGEIP], resp.).

4.3 Interprocedural Analysis Algorithm

We are given a probabilistic program P and an inter-
pretation & = (A, ﬂ]]ﬂ) where A = (M#,Cq
s ®A, O A pDAs Ua, L4, 14) is a PMA and [[]¥ is a se-
mantic function. The goal is to compute (an overapproxima-
tion of) &7[P] = lpp>~ Aol Fp. # An equivalent way to define
4/ [P] is to specify it as the least solution to a system of
inequalities on {2/[v] | v € V} (where e € E in each case):

e Ctrl(e)
[v] 2a [act]” ®a A[ui1] | (v, {u}) seglact]
o] Aa 1] ,0ad[u2] | (v, {u1,uz}) | cond[g]
Av] I Au1], EB&ZI%[MZ] (v, {ur, u2}) | problp]
o] Aa H[u|Ua Huz] | (v, {u1,uz}) | ndet
A[v] 2a [U,entry] adwm] | (v, {w}) | callli]
A[v] Az 14 1fv—ve"'t

Note that in line 5 a call is treated as a hyper-edge with
the action A(entry, succ).entry ® # succ. There is no explicit
return edge to match a call (as in many multi-procedure
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program representations, e.g., [77]); instead, each exit node
is initialized with the constant 1 4 (line 6).

We mainly use known techniques from previous work on
interprocedural dataflow analysis, with some adaptations
to our setting, which uses hyper-graphs instead of ordinary
graphs (i.e., CFGs).* The analysis direction is backward, and
the algorithm is similar to methods for computing sum-
mary edges in demand interprocedural-dataflow-analysis
algorithms ([44, Fig. 4], [78, Fig. 10]). The algorithm uses a
standard chaotic-iteration strategy (except that propagation
is performed along hyper-edges instead of edges); it uses a
fair iteration strategy for selecting the next edge to consider.

4.4 Widening

Widening is a general technique in static analysis to ensure
and speed up convergence [20, 22]. To choose the nodes at
which widening is to be applied, we treat the hyper-graph as
a graph—i.e., each hyper-edge (including calls) contributes
one or two ordinary edges. More precisely, we construct
a dependence graph G(H) = (N, A) from hyper-graph H =
{(Vi, Ei, U?ntry, U?Xit>}1sisn by defining N £ Ui<i<n Vi, and

def

A={(u,v) | Je € E.(v = src(e) Au € Dst(e))} @)
U {(0{"",v) | Je € E.(v = sre(e) A Ctrl(e) = call[i])}.
We then compute a set W of widening points for G(H) via
the algorithm of Bourdoncle [9, Fig. 4]. Because of the second
set-former in Eqn. (2), W contains widening points that cut
each cycle caused by recursion.

While traditional programs exhibit only one sort of choice
operator, probabilistic programs can have three different
kinds of choice operators, and hence loops can exhibit three
different kinds of behavior. We found that if we used the same
widening operator for all widening nodes, there could be a
substantial loss in precision. Thus, we equip the framework
with three separate widening operators: V., V,, and V. Let
v € W be the source of edge e € E. Then the inequalities
become

e Ctrl(e)
0] 27 A 0] Vn ([act]” @7 #[w]) [(v.{w1}) [seqlact]
Hv]Aa H[v] Ve (F[u1] , O a [uz])  |(v, {u1,uz})|cond[e]
A [v]3a A 0] Vp (1] @2 [u2])  |(v,{u1,uz2})|problp]
A [v]3a [v] Vn (A u1] U.?I Huz])  |(v, {u1, uz})|ndet
0] 3a 0] Vn (F 0] @2 o/ [w])| (0, {u1}) |call[i]

Observation 4.9. Recall from Defn. 3.2 that in a proba-
bilistic program each non-exit node has exactly one outgoing

4 As mentined in §2.3, standard formulations of interprocedural dataflow
analysis [52, 57, 71, 80] can be viewed as hyper-graph analyses. In that
setting, one deals with hyper-graphs with consituent control-flow graphs.
With PMAF, because each procedure is represented as a hyper-graph, one
has hyper-graphs of constituent hyper-graphs. Fortunately, each proce-
dure’s hyper-graph is a single-entry/single-exit hyper-graph, so the basic
ideas and algorithms from standard interprocedural dataflow analysis carry
over to PMAF.
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hyper-edge. In each right-hand side above, the second argu-
ment to the widening operator re-evaluates the action of the
(one outgoing) hyper-edge. Consequently, during an analysis,
we have the invariant that whenever a widening operation
a vV b is performed, the property a C4 b holds.

The safety properties for the three widening operators
are adaptations of the standard stabilization condition: For
every pair of ascending chains {a }xeny and {bg }ren,

o the chain {c }reyn defined by ¢y = a 9O abo and ¢y =
ck Ve (ag+1 ¢Oj{bk+1) is eventually stable;

e the chain {ci }xen defined by ¢y = ao ,®abo and cx4q =
ck Vp (A4 p®ﬂbk+1) is eventually stable; and

e the chain {c }rey defined by ¢y = ap Ug by and cgyq =
¢k Vi (ag+1 Ug byyq) is eventually stable.

5 Instantiations

In this Section, we instantiate the framework to derive three
important analyses: Bayesian inference (BI) (§5.1), comput-
ing rewards in Markov decision processes (§5.2), and linear
expectation-invariant analysis (LEIA) (§5.3).

5.1 Bayesian Inference

Claret et al. [18] proposed a technique to perform Bayesian
inference on Boolean programs using dataflow analysis. They
use a forward analysis to compute the posterior distribu-
tion of a single-procedure, well-structured, probabilistic pro-
gram. Their analysis is similar to an intraprocedural dataflow
analysis: they use discrete joint-probability distributions as
dataflow facts, merge these facts at join points, and compute
fixpoints in the presence of loops. Let Var be the set of pro-
gram variables; the set of program states is Q = Var — B.
Note that Q is isomorphic to B!Varl and consequently, a dis-
tribution can be represented by a vector of length 2/V2'l of
reals in Ryg 1]. (Their implementation uses Algebraic Deci-
sion Diagrams [2] to represent distributions compactly.)
The algorithm by Claret et al. is defined inductively on
the structure of programs [18, Alg. 2]—for example, the out-
put distribution of x ~ Bernoulli(r) from an input distribu-
tion 1, denoted by PosT(y, x ~ Bernoulli(r)), is computed as
Ao’ (r “Yolor=olxetruely H(0) + (1= 1) * Xio|o’=o[xfalsel]} #(U)) .
We have used PMAF to extend their work in two dimen-
sions, creating (i) an interprocedural version of Bayesian in-
ference with (ii) nondeterminism. Because of nondetermin-
ism, for a given input state the posterior distribution is not
unique; consequently, our goal is to compute procedure sum-
maries that gives lower bounds on posterior distributions.
To reformulate the domain in the two-vocabulary set-
ting needed for computing procedure summaries, we in-
troduce Var’, primed versions of the variables in Var. Var
and Var’ denote the variables in the pre-state and post-
state of a state transformer. A distribution transformer
(and therefore a procedure summary) is a matrix of size
2VarlyoVarl of reals in Ryo,1]- We defineaPMA 8 = (Mg,Cg
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,®8, 4,08, B8, Ug, Lg, 1) as follows:

Mg o glVarl 5 olVar'l _, R[o 1]
alUgb défm'in(a, b)
L= A(s,1).0
def def
ap®gb=p'a+(l—p)-b 15=A(s,1).[s = t])
a,08b = A(s,t).if §(s) then as, t) else b(s, 1)
The use of pointwise min in the definition of a Ug b causes
the analysis to compute procedure summaries that provide
lower bounds on the posterior distributions.

def .
aCgb=a<b

a®g bEaxb

Theorem 5.1. B is a PMA.

Let Z = (B,[]?) be the interpretation for Bayesian
inference. We define the semantic function as [x := §]¢ =
A(s, A).[s[x « &E(s)] € A] and [x := E]Z = A(s, t).[s[x «
E(s)] = t], as well as [x ~ Bernoulli(p)]® = A(s,A).p -
[s[x < true] € Al + (1 —p) - [s[x « false] € A] and
[x ~ Bernoulli(p)]Z = A(s, t).p- [s[x « true] = t]+(1-p)-
[s[x « false] = t]).

We define the concretization mapping yg : Mg — PQ
as yg(a) = ({x | Vs,s".k(s,{s'}) > a(s,s")})) where (C)
denotes the smallest element in PQ such that contains C.

Theorem 5.2. yg is a prob. under-abstraction from C to B.

We do not define widening operators for BI, because yg
is an under-abstraction and our algorithm starts from the
bottom element in the abstract domain, the intermediate
result at any iteration is a sound answer.

5.2 Markov Decision Process with Rewards

Analyses of finite-state Markov decision processes were orig-
inally developed in the fields of operational research and
finance mathematics [75]. Originally, Markov decision pro-
cesses were defined as finite-state machines with actions
that exhibit probabilistic transitions. In this paper, we use a
slightly different formalization, using hyper-graphs.

Definition 5.3 (Markov decision process). A Markov deci-
sion process (MDP) is a hyper-graph H = (V, E, vy, ity
where every node except vt has exactly one outgoing
hyper-edge; each hyper-edge with just a single destination
has an associated reward, seq[reward(r)], where r is a posi-
tive real number; and each hyper-edge with two destinations
has either prob[p], where 0 < p < 1, or ndet. Note that
MDPs are a specialization of single-procedure probabilistic
programs without conditional-choice.

We can also treat the hyper-graph as a graph: each hyper-
edge contributes one or two graph edges. A path through
the graph has a reward, which is the sum of the rewards that
label the edges of the path. (Edges from hyper-edges with
the actions prob[p] or ndet are considered to have reward 0.)
The analysis problem that we wish to solve is to determine,
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for each node v, the greatest expected reward that one can
gain by executing the program from v.

It is natural to extend MDPs with procedure calls and
multiple procedures, to obtain recursive Markov decision
processes. The set of program states is defined to be the
set of nonnegative real numbers: Q = [0, o]. To address
the maximum-expected-reward problem for a recursive
Markov decision process, we define a PMA R = (Mg, Eg
s ®R, p ORs pOR, UR, Lg,1g) as follows:

Mg = [0,00] | ,0g = max Lg 20
Ck £ < |a,@gbEp-a+(1-p)-b| 1y £0
®R o + Ug o max

Theorem 5.4. R is a PMA.

Let Z = (R, [-]#) be the interpretation for a Markov deci-
sion process with rewards. We define the semantic function
as [reward(r)]* = A(s, A).[s +7 € A] and [reward(r)]” = r.

We define the concretization mapping yg : Mg — P[0, co]
as follows: yr(a) = ({x | Vs. fy -k(s,dy) < s+ a}).
Theorem 5.5. yr is a prob. over-abstraction from C to R.

We use a trivial widening in this analysis: if after some
fixed number of iterations the analysis does not converge, it
returns oo as the result.

5.3 Linear Expectation-Invariant Analysis

Several examples of expectation invariants obtained via lin-
ear expectation-invariant analysis (LEIA) were given in §2.2.
This section gives details of the abstract domain for LEIA.

We make use of an existing abstract domain, namely, the
domain of convex polyhedra [24]. Elements of the polyhedral
domain are defined by linear-inequality and linear-equality
constraints among program variables. For LEIA, we use two-
vocabulary polyhedra over nonnegative program variables.
Letx = (x1,--- ,x,)! be a column vector of nonnegative pro-
gram variables and x” = (x[,-- -, x,’l)T be a column vector of
the “primed” versions of corresponding program variables. A
polyhedron P C RZZ’B captures linear-inequality constraints
among x and x’, which can be interpreted as a relation be-
tween pre-state and post-state variable valuations.

A polyhedron P = {(xTxT)T € RZZ’B | A'x" + Ax <
b A D'x’ + Dx = e}, can be encoded as the intersec-
tion of a finite number of closed half spaces and a finite
number of subspaces, where A’, A, D’, D are matrices and
b, e are vectors. The associated constraint set is defined as
Cp = {A'x"+Ax < b,D’x"+Dx = e}.Let P be the set of poly-
hedra; P is equipped with meet, join, renaming, forgetting,
and comparison operations.

LEIA uses expectation polyhedra. They are actually the
same as polyhedra, except that the two vocabularies are
x = (x1, ,x,)" and E[x] = (E[x{],- - LE[x,])T. An ex-
pectation polyhedron represents a constraint set of the form

{A’E[x'] + Ax < b,D’E[x'] + Dx = e}. (3)
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Because of the linearity of the expectation operator E, an
equivalent way to express Eqn. (3) is as follows:

{E[A’x'] + Ax < b,E[D’x’] + Dx = e}.
Let EP be the set of expectation polyhedra. EP is equipped

with the same set of operations as P.
We define the state space to be Q = RZ . We then define a

PMA 7 with a universe M; = P xEP. An element (P,EP) €
I consists of (i) a set of standard constraints P € #, and
(ii) a set of expectation constraints EP € &P, such that
0 U P[E[x"]/x"] 2 EP holds, where 0 = A™ (E[x]] = 0).
The latter property means that, if necessary, we can always
“rebuild” a pessimistic 8 component from the  component
as 0 LI P[E[x']/x"].°
We define the concretization mapping yr as follows:

yr(P,EP) = «{K | Vs.x (5’ {3' | [ SS’ ] = —'P}) =0A
[ fs’ic(ss, ds’) ] = EP})).

Comparison. The comparison operation on ordinary poly-
hedra can be defined as standard set inclusion. For expec-
tation polyhedra, taking into account subprobability distri-
butions, we define EP; C EP, to be 0 LI EP; C 0 LI EP,, so

that any element inside or below EP; should also be inside or
def

below EP,. Consequently, we define (P1, EP;) T (P2, EP;) =
Py CP,ANOUEP; COULEP,.

Composition. For ordinary polyhedra, the composition of
P; and P, can be defined as
(3x”.Cp,[x"/x"] A Cp,[x" [x]) = Cp, g P,

where we introduce an intermediate vocabulary x” =
(xf’y-- -, x;l’)T, and use it to connect P; and P,. Consequently,
we define P; ® P, to be 3x”.Cp,[x""/x"] A Cp,[x""/x]. Opera-
tionally, composition involves first introducing a new vocab-
ulary; renaming the variables properly; performing a meet,
and finally forgetting the intermediate vocabulary.

Somewhat surprisingly, because of the tower property in
probability theory, exactly the same steps can be used to
compose expectation polyhedra. Informally, the tower prop-
erty means that E[X] = E[E[X | Y]], where X and Y are
two random variables, and E[X | Y] is a conditional expec-
tation. For instance, suppose that EP; and EP, are defined
by the constraint sets {E(x’) = x + 2} and {E(x") = 7x},
respectively. Following the renaming recipe above, we have
E(x") = x + 2 and E(x” | x”") = 7x"’. By the tower property,
we have E(x") = E(B(x’ | x”)) = E(7x"") = 7TE(x") = 7x + 14.
Operationally, the tower property allows us to compose lin-
ear expectation invariants, and eliminate the intermediate

SThe intuition is that P represents a convex overapproximation to some
desired set of points; the expected value has to lie somewhere inside 0 LI
P, where “OU . . .” is needed to account for subprobability distributions.
For instance, for a nonnegative interval [lo, hi], we must have expected €
([0, 0] U [lo, hi]); ie., 0 < expected < hi.



PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

vocabulary x”. Consequently, we define
(P1,EPy) ®7 (Py, EPy) = (P ® Py, EP; ® EPy).

Conditional-choice. For the ordinary-polyhedron compo-
nent, a conditional-choice ,, & is performed by first meeting
each operand with the logical constraint ¢, and then joining
the results. However, for the expectation-polyhedron compo-
nent, conditioning can split the probability space in almost
arbitrary ways. Consequently, the constraints on post-state
expectations as a function of pre-state valuations are not
necessarily true after conditioning. Thus, we define
def

(P1,EP1) , O 1(P2, EPy) =let P = ({9} M P1) U ({=p} M P,)

in (P, (EP; U EP,) 1 (0 U P[E[x]/x"])).

The M in the second component is performed to maintain
the invariant that 0 U P[E[x’]/x"] 3 the second component.

Probabilistic-choice. For the ordinary-polyhedron compo-
nent, we merely join the components of the two operands.
For the expectation-polyhedron component, we introduce
two more vocabularies and have

(3x”, x"".Cep, [x" [E[x"]] A Cep,[x"" [E[x']] A

i Elx]=p-x"+(1-p)-x[") = CEp, ,0EP,-
Consequently, we define EP; ,®EP; to be

Cep, [x" [E[x"]] A Cep,[x"" [E[x']]
\A AL EX]=p-x/+(1=p)-x" )’

def

and (Pl,Epl)P@j(Pg,Epz) = (Pl L Pz,EP] pe)EPZ)
Nondeterministic-choice. The nondeterministic-choice

operations on both ordinary polyhedra and expectation poly-
hedra can be defined as join. Hence, we define (Py, EP;) Uy

def

(P2, EP,) = (P, U P, EP; LI EP,).
Bottom and Unit Element. We define L ; «f (false, 0), and

L,=5{x=x|1<i<n){Elx]]=x;|1<i<n}).

Semantic Function. Some examples of the semantic map-
ping [-] are as follows, where min(%) and max(2) repre-
sents the interval of the support of a distribution 2, while
mean(2) stands for its average.
e A A
{E[x{] = 8(x)} U{E[x]] = x; | j # i}

{min(?) < x| < max(2)} U{x] =x; | j # i},
{E[x{] = mean(2)} U {E[x]'] =x;|j#i}

[skip]” d:dl I
Note we assume all expressions in the program are linear.
For nonlinear arithmetic programs, one can adopt some lin-
earization techniques [32, 62].

ax// x/ll
>

b~ 7174

Theorem 5.6. yy is a prob. over-abstraction from C to 1.

Widening. Let V be the standard widening operator on
ordinary polyhedra [42]. Recall from Obs. 4.9 that whenever
a widening operation aV b is performed, the property a C4 b
holds. There is a subtle issue with expectation invariants
when dealing with conditional or nondeterministic loops.
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Observation 5.7. In a conventional program, if you have a
loop “while B do S od,” and I is a loop-invariant, then I A
=B (which implies I) holds on exiting the loop. In contrast,
for a conditional or nondeterministic loop in a probabilistic
program, a loop-invariant that holds at the beginning and end
of the loop body does not necessarily hold on exiting the loop.

Example 5.8. Consider the following program:
while —(x = y) do
if prob(%) thenx:=x+1lelsey:=y+1fi od
For the loop body, we can derive an expectation invariant
E[x" — y’] = x — y; however, for the entire loop this prop-
erty does not hold: at the end of the loop x = y must hold, and
hence E[x’ — y’] should be equal to 0.

Because of this issue, we use a pessimistic widening oper-
ator for conditional-choice and nondeterministic-choice: the
widening operator forgets the expectation invariants and

rebuilds them from standard invariants.
def

(P1,EPy) V¢ (P2, EPy) = (Py V P, 0L Po[E[x"]/x])

def

(P1,EPy) Vo (P2, EP;) = (P1 V P2, 0 U Po[E[x']/x"])
We do not have a good method for (P, EP;) V,, (P, EP;). We
found that the following approach loses precision:

letP = (Pl VPZ) in (P,(EP1 VEPZ)I’I(OI_IP[E[x']/x']))

In our experiments, we use (Py, EPy) V,, (P, EP;) « (P v
P,, EP,), which does no extrapolation in the E component.

6 Evaluation

In this Section, we first describe the implementation of PMAF,
and the three instantiations introduced in §5. Then, we eval-
uate the effectiveness and performance of the three analyses.

6.1 Implementation

PMAF is implemented in OCaml; the core framework con-
sists of about 400 lines of code. The framework is imple-
mented as a functor parametrized by a module representing
a PMA, with some extra functions, such as widening and
printing. This organization allows any analysis that can be
formulated in PMAF to be implemented as a plugin. Also,
the core framework relies on control-flow hyper-graphs, and
provides users the flexibility to employ it with any front
end. We use OCamlGraph [19] as the implementation of
fixed-point computation and Bourdoncle’s algorithm.

The plugin for Bayesian inference is about 400 lines
of code, including a lexer and a parser for the impera-
tive language that we use in the examples of this paper.
We use Lacaml [70] to manipulate matrices. The plugins
for the Markov decision problem with rewards and linear
expectation-invariant analysis are about 200 lines and 500
lines, respectively. We use APRON [45] for polyhedron op-
erations. Most of the code in the plugins is to implement the
PMA structure of the analysis domain.
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Table 1. Linear expectation-invariant analysis

Program Expectation invariants #loc rec? #call time
2d-walk E[x’] =x, E[y']=y, E[dist'] =dist, E[count’] < count+1, E[count’] > count 47 n 0 0.24
aggregate-rv  E[2x’ —i’] = 2x i, Blx]<x+3, Ex]=x 11 n 0 0.06
biased-coin E[x’'] <x+ 1, E[x]>x- % 25 n 0 0.06
binom-update (p:i) El4x’ —n'] =4x—-n, E[x'|<x+ i, E[x'] = x 14 n 0 0.06
coupon5 E[count’ —i’] = count — i (1st), E[4count’ —5i’] = 4count — 5i (2nd), E[3count’ —5i’] = 3count —5i (3rd), 58 n 0 0.07
E[2count’ — 5i’] = 2count — 5i 4th) E[count’ — 5i’] = count — 5i (5th)
dist E[x]=x, E[y]=y, E[Z]= Ex + %y 5 n 0 005
eg E[x'+ y'] =x+y+3, E[Z]= %z + %, E[x']<x+3, E[x]>x 8 n 0 0.89
eg-tail E[z'] > Ex12x, Ely]1>y B +yl>x+y+3 11 t 1 013
hare-turtle [E[2h’ — 5t ] =2h-5t, B[W]<h+3, E[h]=>h 15 n 0 0.06
hawk-dove E[p1b’ — count’] = p1b — count, E[p2b’ — count’] = p2b — count, E[p1b'] < p1b+1, E[plb'] > p1b 29 n 0 0.08
mot-ex E[2x" —y'] =2x -y, E[4x’ —3count’] = 4x — 3count, E[x'] <x+ %, E[x'] > x 16 n 0 0.06
recursive E[x'] =x+9 13 r 2 037
uniform-dist E[n'] <2n, E[n]>n, Elg'l<2g9+3, Elg]l>g 14 n 0 006

Because of the numerical reasoning required when an-
alyzing probabilistic programs, we need to be concerned
about finite numerical precision in our implementations of
the instantiations (although they are sound on a theoretical
machine operating on reals). In our implementation, we use
the fact that ascending chains of floating numbers always
converge in a finite number of steps. The user could use the
technique proposed by Darulova et al. [26] to obtain a sound
guarantee on numerical precision.

6.2 Experiments

Evaluation Platform. Our experiments were performed
on a machine with an Intel Core i5 2.4 GHz processor and
8GB of RAM under Mac OS X 10.13.4.

Bayesian  Infer-
ence and Markov
Decision Problem

Table 2. Top: Bayesian inference.
Bottom: Markov decision problem
with rewards. (Time is in seconds.)

with Rewards. Program #loc rec? #call time
We tested our compare 17 n 0 2.22
framework on dice 12 n 0 002
Bayesian inference egl 10 n 0 0.2
and Markov deci- egl-tail 16 t 2 002
. . eg2 10 n 0 0.02

sion problem with eg2—t§il 6 t 2 ool
rewards on hand- recursive 14 r 1 0.01
crafted examples. binaryl0 184 n 90 0.03
The results of the loop 10 n 0 003
evaluation of the quicksort7 109 n 42  0.03
two analyses are recursive 13 t 1 0.03
student 43 t 8 0.03

described in Tab. 2.
The tables contains the number of lines; whether the
program is non-recursive, tail-recursive, or recursive; the
number of procedure calls; and the time taken by the
implementation (measured by running each program 5
times and computing the 20% trimmed mean).

Our framework computed the same answer (modulo
floating-point round-off errors) as PReMo [84], a tool for
probabilistic recursive models. We did not compare with
probabilistic abstract interpretation [25] because its seman-
tic foundation is substantially different from that of our

framework—as we mentioned in §1, the order for resolv-
ing probabilistic behavior and nondeterministic behavior is
different.

The analysis time of Bayesian inference grows exponen-
tially with respect to the number of program variables.’ The
time cost comes from the explicit matrix representation of do-
main elements. One could use Algebraic Decision Diagrams
[2] as a compact representation to improve the efficiency.

The analyzer for the Markov decision problem with re-
wards works quickly and obtains some interesting results.
quicksort7 is a model of a randomized quicksort algorithm
on an array of size 7 (obtained from [84]), and our analysis
results are consistent with the wost-case expected number
of comparisons being @(nlogn).” binary10 is a model of
randomized binary search algorithm on an array of size 10,
and our analysis results are consistent with the worst-case
expected number of comparisons being ©(log n).

Linear Expectation-Invariant Analysis. We performed
a more thorough evaluation of linear expectation-invariant
analysis. We collected several examples from the literature on
probabilistic invariant generation [14, 49], and handcrafted
some new examples to demonstrate particular capabilities of
our domain, e.g., analysis of recursive programs. For the ex-
amples obtained from the loop-invariant-generation bench-
mark, we extracted the loop body as our test programs. Also,
we performed a positive-negative decomposition to make
sure all program variables are nonnegative. That is, we rep-
resented each variable x as x* — x~ where x*,x~ > 0, and
replaced every operation on variables with appropriate op-
erations on the decomposed variables.

One should not assume that exponential growth makes the analysis useless;
after all, predicate-abstraction domains [40] also grow exponentially: the
universe of assignments to a set of Boolean variables grows exponentially
in the number of variables. Finding useful coarser abstractions for Bayesian
inference—by analogy with the techniques of Ball et al. [3] for predicate
abstraction—might be an interesting direction for future work.

"The analysis computes worst-case expected number because
the underlying semantics resolves nondeterminism first and
probabilistic-choice second, and thus the analysis computes

MaXpondet. resolution E[#comparisons under resolution].
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The results of the evaluation are shown in Tab. 1, which
lists the expectation invariants obtained, and the time taken
by the implementation. In general, the analysis runs quickly—
all the examples are processed in less than one second. The
analysis time mainly depends on the number of program
variables and the size of the control-flow hyper-graph.

As shown in Tab. 1, our analysis can derive nontrivial ex-
pectation invariants, e.g., relations among different program
variables such as E[x" +y'] = x +y + 3, E[2x' —y'] = 2x —v.
In most cases, our results are at least as precise as those
in [14, 49]. Exceptions are biased-coin and uniform-dist, col-
lected from [49], where their invariant-generation algorithm
uses a template-based approach and the form of expecta-
tions can be more complicated, e.g., [P1]- &1 +[P;] - E; where
Py, P, are linear assertions and &;, &, are linear expressions.
Nevertheless, our analysis is fully automated and applicable
to general programs, while [49] requires interactive proofs
for nested loops, and [14] works only for single loops.

7 Related Work

Static Analysis for Standard Programs. Our framework
is an extension of interprocedural dataflow analysis [52, 57,
71, 80] to probabilistic programs, but it does not support
some language features that standard dataflow analysis has
been used to address, e.g., calls through function pointers.

Compared to the Galois connections that are ordinarily
used in abstract interpretation [21, 23], our definition of
probabilistic abstractions is based on just a concretization
function, so PMAF does not have the full power of standard
abstract-interpretation machinery.

Static Analysis for Probabilistic Programs. Most closely
related to our work is probabilistic abstract interpreta-
tion [25, 67-69], which is discussed in the introduction.
There is a long line of research on manual reasoning tech-
niques for probabilistic programs [33, 48, 56, 59, 72]. The
main difference to this work is that we focus on the design
and implementation of automatic techniques that that rely
on computing fixed points.

Other work focuses on specialized automatic analyses for
specific properties. Claret et al. [18] proposed a dataflow
analysis for Bayesian inference on Boolean programs that
we reformulate in PMAF to lift it to the interprocedural level.
There are different techniques for automatically proving ter-
mination, such as probabilistic pushdown automata [10, 11]
and martingales and stochastic invariants [16, 17]. Mar-
tingales for automatic analysis of probabilistic programs
have been pioneered by Chakarov et al. [13]. Compared
with existing techniques for probabilistic invariant genera-
tion [4, 13, 14, 17], the expectation-invariant analysis pro-
posed in §5.3 is designed as a two-vocabulary domain utiliz-
ing the well-studied polyhedral abstract domain.

Semantics for Probabilistic Programs. There is a long
tradition of using probability kernels to define the semantics
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of probabilistic programs. Kernels were used by Kozen [56]
to give a semantics for Probabilistic Propositional Dynamic
Logic (PPDL), a probabilistic generalization of PDL. Kozen
considers well-structured programs with sequencing and
conditional-choice, but without non-deterministic choice.
He does not consider reasoning methods that use abstract
interpretation of his PPDL semantics. There are a list of
domain-theoretic studies on probabilistic nondeterminism
[27, 46, 47, 64, 65, 82], which develop powerdomain con-
structions over probability distributions, but do not consider
powerdomains over kernels. Borgstrom et al. [8] have used
kernels to define the operational semantics of a probabilis-
tic lambda calculus. The main novelty of our denotational
semantics in §3.3 is that it is defined for control-flow hyper-
graphs, based on kernels.

Other Analyses Based on Hyper-Graphs. Hyper-graph-
based analyses go back to the join-over-all-hyper-path-
valuations of Knuth [53]. Other analyses based on hyper-
graphs includes Méncke and Wilhelm’s [66] framework for
finding join-over-all-hyper-path-valuations for partially or-
dered abstract domains. In the hyper-paths in this paper,
we use binary hyper-edges to model calls, as well as condi-
tional, probabilistic, and nondeterministic choice. For acyclic
hyper-graphs, Eisner has considered semirings for comput-
ing expectations and variances of random variables [58]. He
works with a discrete sample space: all hyper-paths in a given
hyper-graph, and the value of a random variable for a given
hyper-path is built up as the sum of the values contributed
by each hyper-edge. In our work, we consider cyclic hyper-
graphs, and the nature of the computation that a hyper-path
represents is more complex than that considered by Eisner.
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