
Type-Guided Worst-Case Input Generation

Di Wang and Jan Hoffmann

Carnegie Mellon University

Abstract
This paper presents a novel technique for type-guided worst-case input generation

for functional programs. The technique builds on automatic amortized resource analysis
(AARA), a type-based technique for deriving symbolic bounds on the resource usage of
functions. Worst-case input generation is performed by an algorithm that takes as input
a function, its resource-annotated type derivation in AARA, and a skeleton that describes
the shape and size of the input that is to be generated. If successful, the algorithm fills
in integers, booleans, and data structures to produce a value of the shape given by the
skeleton. The soundness theorem states that the generated value exhibits the highest
cost among all arguments of the functions that have the shape of the skeleton. This cost
corresponds exactly to the worst-case bound that is established by the type derivation.
In this way, a successful completion of the algorithm proves that the bound is tight for
inputs of the given shape. Correspondingly, a relative completeness theorem is proved to
show that the algorithm succeeds if and only if the derived worst-case bound is tight. The
theorem is relative because it depends on a decision procedure for constraint solving. The
technical development is presented for a simple first-order language with linear resource
bounds. However, the technique scales to and has been implemented for Resource Aware
ML, an implementation of AARA for a fragment of OCaml with higher-order functions,
user-defined data types, and types for polynomial bounds. Experiments demonstrate
that the technique works effectively and can derive worst-case inputs with hundreds
of integers for sorting algorithms, operations on search trees, and insertions into hash
tables.

Keywords— Resource bound analysis, worst-case analysis, type systems, amortized analysis, sym-
bolic execution

1 Introduction
An important characteristic of a computer program is its resource requirements, that is, the amount
of resource such as time, memory, power, etc. that the program needs to execute. Analyzing the worst-
case resource usage of a program has many applications such as finding performance bottlenecks,
detecting algorithmic complexity vulnerabilities, and identifying information leaks through side
channels.

Besides an analysis of the worst-case behavior, it is often desirable to obtain specific inputs such
that executing the analyzed program on these inputs exhibits the worst-case performance. For
instance, consider algorithmic complexity attacks where an adversary can construct inputs that
result in unexpected space or time usage that can break or slow down critical software systems.
As emphasized in DARPA’s STAC program [Website 2015], worst-case inputs are instrumental for

1

programmers to understand what could trigger the unexpected behavior and fix the problem to
improve performance. To give a concrete example, the PHP community noticed a Denial-of-Service
vulnerability [Website 2011] that has been fixed [Website 2012b] after an analysis found that it was
based on hash collisions [Website 2012a].

Despite of their usefulness, manual construction of worst-case inputs can be cumbersome, because
(i) programs can be complex, large, and rely on unfamiliar or unavailable library code, (ii) the worst-
case inputs do not seem to follow any universal pattern, e.g., a worst-case quicksort requires specific
ordering [McIlroy 1999] while a worst-case hash table requires maximal number of collisions [Crosby
and Wallach 2003], and (iii) even if a candidate input is present, it can be still difficult to prove the
input does exhibit the worst-case resource usage.

As a result, automatic methods for worst-case input generation are highly desirable and have received
a lot of attention. On the one hand, there is a large field of fuzz testing [Forrester and Miller 2000;
Godefroid et al. 2008] and symbolic execution [Godefroid et al. 2005; Sen et al. 2005]. Combinations
of these methods have been recently studied for dynamic worst-case analysis [Burnim et al. 2009;
Noller et al. 2018; Petsios et al. 2017]. These dynamic approaches are quite universal in the sense
that they can be applied to arbitrary programs implemented in a widely used programming language
such as Java, but they usually do not formally guarantee that the resulting input exposes the worst
resource usage. On the other hand, there is an active community that employs static methods such as
type systems [Hoffmann et al. 2017; Jost et al. 2010] and abstract interpretation [Albert et al. 2011;
Gulwani 2009] to compute upper bounds on the worst-case resource usage. These static analyses
provide sound resource bounds, but they do not generate a concrete witness to show the derived
resource bound is tight.

In this paper, we develop a novel type-guided worst-case input generation algorithm for a purely
functional fragment of Resource Aware ML (RaML) [Hoffmann et al. 2017], a resource-aware version
of a subset of the functional programming language OCaml that features higher-order functions
and user-defined data structures. Based on automatic amortized resource analysis (AARA) [Hofmann
and Jost 2003], RaML infers concrete multivariate-polynomial upper bounds, parametrized with a
resource metric, as functions of sizes of the inputs. Our algorithm takes in a RaML function 𝑓 of
type 𝐴→ 𝐵 along with its resource-annotated typing derivation and a first-order input skeleton of
type 𝐴, which specifies the shape of the input (e.g., the length of a list),1 and then either produces a
concretization of the skeleton (e.g., a concrete list with the specified length), which is guaranteed to
expose the worst-case resource usage of the function 𝑓 , or reports a generation failure. Our algorithm
also enjoys relative completeness, in the sense that if the inferred bound in RaML is tight for an input
skeleton (i.e., there does exist a concretization of the skeleton that exhibits the resource usage exactly
as the inferred bound), our generation algorithm always succeeds.2

From the perspective of automatic resource analysis, our work also mitigates a longstanding issue
with current techniques for worst-case resource bound analysis. Existing analysis techniques [Albert
et al. 2015; Brockschmidt et al. 2014; Carbonneaux et al. 2017; Gulwani et al. 2009; Hofmann and Jost
2003; Kincaid et al. 2017; Sinn et al. 2014] are sound and the derived bounds are thus always upper
bounds on the worst-case behavior. However, there does not exist any guarantee on the tightness of
the result. That includes the constant factors in the bounds as well as the asymptotic behavior. As a
result, users often find it difficult to interpret the result of the analysis. With this view, our result can
be seen as a way of automatically proving that a bound derived by RaML is tight for inputs of a given
shape or size. From the relative completeness result follows also the other direction: If we use an
oracle for satisfiability and are not able to generate a worst-case input then the derived bound is not
tight for the inputs described by the given skeleton.

A key challenge in the development of the worst-case input generation is to ensure soundness—

1We focus on first-order inputs in the sense that we do not consider the generation of an unknown function in
this paper.

2In fact, our generation algorithm is complete modulo constraint solving. See §5 for details.

2

1 INTRODUCTION 3

for a given input skeleton, the generation result must expose the worst resource usage among all
possible concretizations of the skeleton. It is intractable to compare the generation result with all
other concretizations, because it usually requires exploration of the space of all concretizations, the
number of which could be infinite, or enumeration of all the execution paths in the program, the
number of which could be exponential in the size of the input. To address this challenge, we need
to develop a mechanism to generate a worst-case input without exploring the complete space of
candidate concretizations.

The other challenge is to exploit compositionality during the input generation—in order to scale
the worst-case input generation to large input skeletons, it is usually more efficient to generate a
worst-case input by composing its generated subparts. For example, to generate a worst-case input for
a recursive function, it seems natural to generate a worst-case input for each recursive call, and then
combine them to generate a worst-case input for the function body. However, combining the results
from the recursive calls can be nontrivial: different calls can involve the same fragment of the input
and the recursively generated results might not be compatible.

To address the first challenge, we define symbolic input skeletons and develop a generation algorithm
based on symbolic execution, which searches the space of all execution paths of a program and collects
path constraints that suffices for a concretization of the input skeleton to trigger the worst-case resource
usage. The major novelty of our generation algorithm is that it is type-guided—it makes use of the
typing derivation derived by RaML to guide the search as well as prune the search space. RaML’s
type system is based on amortized analysis, in the sense that it specifies the potential functions before
and after the evaluation of a subexpression to account for resource usage. Because RaML derives
upper bounds on resource usage, these potentials are conservative and allow for potential waste.
If such waste occurs then the corresponding path cannot coincide with the derived upper bound.
Our type-guided generation algorithm utilizes the resource-annotated typing derivation to detect
potential waste as early as possible to prune partial executions that cannot be extended to expose the
resource usage indicated by the derived worst-case bound.

To address the second challenge, we propose the novel concept of compositional input generation
and devise two search heuristics based on the concept. First, we describe uniform execution, which
corresponds to programs that have worst-case inputs that always execute the same branch of each
conditional expression. Second, we introduce skeleton similarity, which corresponds to recursive
functions that have worst-case inputs that execute the same path in the function body for all calls
to itself with inputs of the same shape. Note that skeleton similarity is more general than uniform
execution and includes for instance alternating shapes in recursive calls.

We evaluate our type-guided worst-case input generation algorithm on more than 20 case studies,
including time usage for sorting algorithms, operations in search trees, etc., memory usage for list
operations, and customized resource metrics such as the number of collisions for hash tables. The
experiments show that our algorithm is able to derive nontrivial worst-case inputs, as well as scale to
large input skeletons in some of the case studies, e.g., sorting algorithms with hundreds of integers.

Contributions. Our work makes four main contributions.

• We develop a novel resource-parametric type-guided worst-case input generation algorithm for
a considerable fragment of purely functional RaML.

• We prove the nontrivial soundness and relative completeness of our generation algorithm.

• We propose novel concepts about compositional worst-case input generation, as well as devise
and prove the correctness of two search heuristics to improve scalability.

• We implement our generation algorithm in the existing RaML system that features higher-
order functions, user-defined data types, and polynomial resource bounds, and evaluate its
effectiveness and efficiency on a broad suite of case studies.

let rec lpairs l = match l with
| []→ []
| x1 :: xs→ match xs with
| []→ []
| x2 :: xs’→ if (x1:int) < (x2:int) then (x1, x2) :: lpairs xs’ else lpairs xs’

Fig. 1: The function lpairs will serve as a running example in this paper.

2 Overview
In this section, we illustrate our type-guided worst-case input generation algorithm using a simple
example. The function lpairs in Fig. 1 collects adjacent ordered pairs of integers. For example, the
expression lpairs([1,2,3,4]) evaluates to [⟨1,2⟩,⟨3,4⟩] and lpairs([2,1,3,4]) evaluates to [⟨3,4⟩]. We
write the type of the function as 𝐿(int)→ 𝐿(int×int), where→,× are the standard function and product
types, respectively, and 𝐿(𝑇) is the type of lists with elements of type 𝑇 . We want to generate inputs
for the function such that it exposes the worst heap-space usage. In this example, we use a slightly
different memory model from OCaml’s and assume each datatype constructor creates a boxed value
with a header of length 2, as well as a tuple only consumes the same amount of resources as its length.
Specifically, we assume a nil-node (i.e., an empty list) consumes 2 units of resource, a cons-node (i.e.,
a list constructed by a head element and a tail list) consumes 4 units, a pair constructor consumes 2
units. We do not consider garbage collection.

Resource Bound Analysis. First of all, we use RaML to compute an upper bound on the worst-
case heap space usage, as well as the corresponding typing derivation that our input generation
algorithm demands. RaML derives a linear bound (2 + 3𝑀) for the function lpairs, where 𝑀 is the
number of cons-nodes of the argument, i.e., the length of the input list.

The resource analysis in RaML is based on the potential method of amortized analysis [Tarjan
1985]. The intuition is to introduce potential functions that depend on data structures, and the
potential at a program point should be sufficient to pay for the cost of the next evaluation step as
well as the potential at the next program point. In RaML, a set of fixed potential functions is fixed
for every data type [Hoffmann et al. 2011, 2017; Hoffmann and Hofmann 2010; Hofmann and Jost
2003]. Types of inductive data structures are annotated with nonnegative rational numbers 𝑝 ∈Q+

0 .
For example, 𝐿𝑝(𝐴) is an annotated list type where 𝐴 is another annotated type. The potential of a
value 𝑎 is then defined with respect to its annotated type. If 𝑎 = [𝑎1, · · · , 𝑎𝑛] is a list of values of type 𝐴,
its potential Φ(𝑎 : 𝐿𝑝(𝐴)) is defined as

∑︀𝑛
𝑖=1(𝑝+Φ(𝑎𝑖 : 𝐴)), or equivalently, 𝑛 · 𝑝+

∑︀𝑛
𝑖=1Φ(𝑎𝑖 : 𝐴). The

function types are also annotated and have the form 𝐴1
𝑞/𝑞′
−−−−→ 𝐴2 where 𝐴1 and 𝐴2 are annotated

argument and result types, and 𝑞,𝑞′ ∈Q+
0 stand for the constant potential before a call to the function

and after the call, respectively. For the function lpairs in Fig. 1, RaML derives a resource-annotated

type 𝐿3(int)
2/0−−−→ 𝐿0(int× int).

A type with positive potential on the result type like in the type 𝐿5(int)
3/1−−−→ 𝐿2(int× int) is needed

to type an application of lpairs in a composed function like 𝑓 (lpairs(𝑙)) if 𝑓 has type 𝐿2(int× int)
1/0−−−→ 𝐴

for some type 𝐴. In general, the type of a function can be described with variables for the potential
annotations and linear constraints that describe their relations.

The typing rules of RaML’s type system manipulates the coefficients 𝑞 associated with data types
to ensure that the correct potential is assigned to new data structures or used to pay for resource

usage. RaML’s resource-annotated typing judgment has the form Γ
𝑞′
𝑞
𝑒 : 𝐴 where 𝑒 is an expression,

𝑞,𝑞′ ∈Q+
0 stand for constant potential before and after the evaluation of the expression, respectively,

Γ is a resource-annotated typing context that maps program variables to annotated types, and 𝐴 is a
resource-annotated result type. Intuitively, if the initial potential is at least the amount specified by Γ ,
then it is sufficient to evaluate 𝑒 to a value and the leftover potential after the evaluation is at least the

4

2 OVERVIEW 5

amount specified by 𝐴. For the program in Fig. 1, two examples of typing judgements are

𝑥1 : int,𝑥2 : int 0
2 ⟨𝑥1,𝑥2⟩ : int× int and 𝑥𝑠′ : 𝐿3(int) 0

2 lpairs 𝑥𝑠′ : 𝐿0(int× int).

The first typing judgment indicates the evaluation of the pair construction needs 2 units of potential
because the resource metric specifies the pair construction consumes 2 units of heap space. The
second typing judgment indicates that if 𝑥𝑠′ is a list of length 𝑁 , then the potential (2 + 3𝑁) suffices
for the evaluation of the expression lpairs 𝑥𝑠′ .

Worst-Case Input Generation. Before describing the input generation algorithm, we informally
analyze the worst-case heap-space usage of the program in Fig. 1. Because all memory operations are
constructions of the result list of pairs, and the total number of adjacent pairs that can be constructed
is ⌊𝑀2 ⌋ where 𝑀 is the length of the input list, we deduce that the heap space usage is at most
2 + (2 + 4) · ⌊𝑀2 ⌋: the first 2 pays for the nil-node, the second 2 pays for the pair, and the 4 is used to
pay for a cons-node. It is the exact usage when all available pairs are ordered—hence the resource
bound derived by RaML (2 + 3𝑀) is tight if 𝑀 is even.

To generate a worst-case input for a program, the user needs to specify an input skeleton. For
the function lpairs, a skeleton can be represented as a list of indeterminate integers. For example,
[int1, int2, int3, int4] is a skeleton of an integer list of length four. A basic approach for worst-case
input generation is to evaluate the program on the input skeleton symbolically: search all possible
execution paths and record path constraints.

We write symbolic executions of an expression 𝑒 under a skeleton environment 𝛾 that maps program
variables to skeletons as judgments of the form 𝛾 ⊢ 𝑒⇒

⟨︀
𝜑,𝑆

⟩︀
, where 𝜑 is the path constraint of this

execution, and 𝑆 is a value that might contain indeterminates, representing the evaluation result of 𝑒.
For example, the symbolic execution of the conditional expression can be formalized as two rules:

(SE-Cond-True)

𝛾 ⊢ 𝑒1⇒
⟨︀
𝜑,𝑆

⟩︀
𝛾 ⊢ if 𝑒 then 𝑒1 else 𝑒2⇒

⟨︀
(𝛾(𝑒))∧𝜑,𝑆

⟩︀
(SE-Cond-False)

𝛾 ⊢ 𝑒2⇒
⟨︀
𝜑,𝑆

⟩︀
𝛾 ⊢ if 𝑒 then 𝑒1 else 𝑒2⇒

⟨︀
¬(𝛾(𝑒))∧𝜑,𝑆

⟩︀
where 𝛾(𝑒) transforms 𝑒 to a symbolic constraint under the environment 𝛾 , e.g., if 𝑒 = (𝑥1 < 𝑥2) and
𝛾(𝑥1) = int1,𝛾(𝑥2) = int2, then 𝛾(𝑒) = (int1 < int2). After collecting all possible execution paths from a
symbolic execution of the program, the basic input generation algorithm picks a worst-case execution
path with the largest resource usage with respect to the resource metric, as well as a satisfiable path
constraint. For the function lpairs, an example of worst-case execution paths is

𝑙 ↦→ [int1, int2, int3, int4] ⊢ lpairs 𝑙⇒
⟨
(int1 < int2)∧ (int3 < int4), [⟨int1, int2⟩,⟨int3, int4⟩]

⟩
(1)

Finally, an SMT solver can be invoked to find a model for the path constraint. For the execution path
(1), one model is {int1 ↦→ 0, int2 ↦→ 1, int3 ↦→ 0, int4 ↦→ 1}, which corresponds to a concrete input list
[0,1,0,1] that indeed triggers the worst heap space usage.

The major novelty of our worst-case input generation algorithm is to make use of the resource-
annotated typing derivation during the symbolic execution. RaML’s type system is an affine type
system, which means that each resource in the typing context can be used at most once. Potential
waste happens when some resources in the context are never used but carry positive potential. Our
input generation algorithm is designed to find an execution path with imposed linearity, i.e., without
potential waste. During the symbolic execution, the algorithm relies on the typing derivation to
check if there is any potential waste. If such waste is detected then partial executions that involve the
respective path can be pruned from the search. For example, the typing judgment of the conditional
expression in the function lpairs is

𝑥1 : int,𝑥2 : int,𝑥𝑠′ : 𝐿3(int) 0
8 if (𝑥1 < 𝑥2) then (⟨𝑥1,𝑥2⟩ :: lpairs 𝑥𝑠′) else (lpairs 𝑥𝑠′) : 𝐿0(int× int) (2)

and the typing judgments of two branches of the conditional expression are

𝑥1 : int,𝑥2 : int,𝑥𝑠′ : 𝐿3(int) 0
8 ⟨𝑥1,𝑥2⟩ :: lpairs 𝑥𝑠′ : 𝐿0(int× int) (3)

𝑥𝑠′ : 𝐿3(int) 0
2 lpairs 𝑥𝑠′ : 𝐿0(int× int) (4)

Suppose the input skeleton is [int1, int2, int3, int4]. When our algorithm evaluates the conditional
expression for the first time, the symbolic environment 𝛾 is

𝑥1 ↦→ int1,𝑥2 ↦→ int2,𝑥𝑠′ ↦→ [int3, int4]

and the potential at the program point with respect to the typing judgment (2) is 8 + 0 + 0 + 3 · 2 = 14.
The then-branch needs 8 + 0 + 0 + 3 · 2 = 14 units of potential to proceed with respect to (3), and the
else-branch needs only 2 + 3 · 2 = 8 units with respect to (4). Hence our algorithm detects potential
waste in the else-branch and decides to only explore the then-branch. By this means our algorithm is
able to prune the search space to contain only one execution path as (1), and know that this path is
the only one that can expose the worst-case resource as given by the initial potential. More generally,
every time our algorithm finds an execution path without potential loss, the associated path constraint
suffices for the input skeleton to trigger the worst-case resource usage.

Let us try another input skeleton for the function lpairs: a singleton list [int1]. Note that because
the length of the list is odd, the resource bound derived by RaML is not tight. The typing judgment
of the inner match expression is

𝑥1 : int,𝑥𝑠 : 𝐿3(int) 0
5 match 𝑥𝑠 with []→ [] | · · · : 𝐿0(int× int) (5)

and the typing judgment of the nil-case of this match expression is

· 0
2 [] : 𝐿0(int× int) (6)

When our input generation algorithm evaluates the inner match expression, the symbolic environment
𝛾 is

𝑥1 ↦→ int1,𝑥𝑠 ↦→ []

and the potential at the program point is 5 + 3 ·0 = 5, with respect to the typing judgment (5). Because
𝑥𝑠 is mapped to [], the nil-case of the match expression is evaluated in the next step. However, the
nil-case needs only 2 units of potential to proceed with respect to (6), hence this execution path
contains potential waste. For this input skeleton, our algorithm reports a generation failure, which
suggests the resource bound is not tight when the input is a singleton list.

Compositional Input Generation. Our type-guided worst-case input generation algorithm
provides new opportunities to develop search heuristics. In this paper, we focus on heuristics that
exploit compositionality. Intuitively, compositional generation produces a worst-case input for a
function by first generating subparts of the input that are used in function calls and then combining
them. Because in the function body, different function calls can involve the same fragment of the
input, it is more reasonable to generate path constraints that suffice for an input skeleton to trigger
the worst-case resource usage, by combining path constraints on subparts of the input generated
from the function calls. Then the major obstacle to compositionality is the exponential number of
combinations of branch choices of conditional expressions. To reduce the number of combinations
that the algorithm needs to investigate, we propose two different heuristics.

The first heuristic, named uniform execution, is based on the observation that many programs have
worst-case inputs that trigger the evaluation of the same branch of each conditional expression. For
example, the function lpairs in Fig. 1 always evaluates the then-branch of the conditional expression
to expose its worst-case heap space usage. Therefore, this heuristic enumerates the combinations

6

3 SETTING THE STAGE: RESOURCE AWARE ML 7

let rec wc_lpairs l = match l with
| []→ (⊤, [])
| x1 :: xs→ match xs with
| []→ (⊥, [])
| x2 :: xs’→ let (𝜑, ret) = wc_lpairs xs’ in ((x1 < x2) ∧ 𝜑, (x1, x2) :: ret)

Fig. 2: Pseudo-code of a compositional input generation procedure for the function lpairs in Fig. 1

of branch choices of conditional expressions in the code and then runs the type-guided symbolic
execution to check whether it has potential waste. Because the number of conditional expressions in
the code is independent of the size of the input, the heuristic can scale to large inputs. We can use
the heuristic for the function lpairs, to derive an input generation procedure for the function that
computes a sufficient constraint for worst-case inputs from an input skeleton. Fig. 2 presents the
pseudo-code of this procedure, takes in a symbolic input and returns a path constraint as well as a
symbolic result. The symbols ⊤ and ⊥ stands for true and false, respectively.

The second heuristic, named skeleton similarity, is based on the observation that a recursive function
usually has worst-case inputs such that for all the calls to this function with the same shape of inputs,
it executes the same path in the function body. For example, Fig. 3 shows a modified version of the
function lpairs in Fig. 1. The function lpairs_alt takes an extra boolean argument 𝑑 to pick either an
ordered pair or a reversely ordered pair. Then this function collects adjacent pairs of integers, and
these pairs should be ordered and reversely ordered alternatively. The uniform-execution heuristic
does not work here—although the first two branches of the conditional expression do not waste
potential, both of them should be executed on a worst-case input because inside these branches the
boolean argument 𝑑 is inverted. Instead, the function lpairs_alt has worst-case inputs for skeletons of
even lengths, such that if the length of the argument list is a multiple of four, the function evaluates
the second branch, and otherwise, it evaluates the first branch. For example, if the argument list has
four elements, a worst-case input is ⟨false, [1,0,0,1]⟩, and if the argument list has two elements, a
worst-case input is ⟨true, [0,1]⟩. Operationally, this heuristic records satisfiable execution paths for
different shapes of the inputs of the recursive function. If it encounters a call to the function with an
input skeleton of the shape it has already explored then it tries the recorded execution path first.

3 Setting the Stage: Resource Aware ML
In this section, we introduce a purely functional first-order fragment of RaML that includes booleans,
integers, pairs, lists, binary trees, recursion, and pattern match. We then present a resource-aware
type system with linear potential for upper bounds. We will use this language to define and formalize
our type-guided worst-case input generation algorithm in §5. The restriction to this fragment in
the technical development is only for brevity. Our results carry over to the full purely functional
fragment of RaML, which includes multivariate polynomial potential functions, user-defined types,
and higher-order functions [Hoffmann et al. 2017]. The reason is that the technical development is,
in principle, independent of the shape of potential functions. Our worst-case input generation tool
has also been implemented for this larger fragment (see §7.1).

let rec lpairs_alt d l = match l with
| []→ []
| x1 :: xs→ match xs with
| []→ []
| x2 :: xs’→
if d && (x1:int) < (x2:int) then (x1, x2) :: lpairs_alt (not d) xs’
else if (not d) && (x1:int) > (x2:int) then (x1, x2) :: lpairs_alt (not d) xs’
else lpairs_alt d xs’

Fig. 3: A modified version of the function lpairs in Fig. 1

Syntax. The expressions are in share-let-normal-form [Hoffmann et al. 2011], which means that
syntactic forms allow only variables rather than arbitrary terms whenever possible, without loss of
expressivity. Fig. 4 presents the grammar of expressions via abstract binding trees [Harper 2016].
The syntactic form op^(𝑥1,𝑥2) represents expressions that perform primitive binary operations ^
on booleans and integers. The syntactic form share(𝑥,𝑥1.𝑥2.𝑒) has to be used to introduce multiple
occurrences of a variable 𝑥 in an expression. We skip the standard notions of integer constants 𝑛 ∈Z,
variable identifiers 𝑥 ∈ VID, and function identifiers 𝑓 ∈ FID.

Simple Types. The language has a usual ML-like type system, where well-typed expressions are
assigned with a simple type without resource annotations. As defined in Fig. 4, simple types are
data types 𝐴 and first-order types 𝐹. A set of semantic values is assigned to each data type 𝐴 in an
obvious way, written J𝐴K. For example, J𝑇 (int× int)K is the set of finite binary trees, each node of
which contains a pair of integers. First-order types 𝐹 are types of functions. For example, the type of
the function lpairs in Fig. 1 is 𝐿(int)→ 𝐿(int× int).

A typing context Γ is a finite partial mapping from variable identifiers to data types. A signature
Σ is a finite partial mapping from function identifiers to first-order types. The typing judgment
Σ;Γ ⊢ 𝑒 : 𝐴 states that the expression 𝑒 has type 𝐴 under the signature Σ and context Γ . The typing
rules are standard and in fact, a subset of the resource-aware typing rules in Fig. 6 by omitting the
resource annotations. Then a program consists of a signature Σ and a family {𝜆𝑥𝑓 .𝑒𝑓 }𝑓 ∈dom(Σ) of
top-level function definitions with a distinguished variable identifier as the formal parameter, such
that Σ;𝑥𝑓 : 𝐴 ⊢ 𝑒𝑓 : 𝐵 if Σ(𝑓) = 𝐴→ 𝐵.

Big-Step Operational Cost Semantics. The resource usage of a program is determined by a
big-step operational cost semantics. The cost is parametric in the resource metric and can measure
every quantity whose usage in a single evaluation step can be bounded by a constant. The semantics
is formulated with respect to an environment as usual. A value 𝑣 ∈ Val is either a null value null,
a boolean constant 𝑏 ∈ {true, false}, an integer constant 𝑛 ∈ Z, or a pair of values ⟨𝑣1,𝑣2⟩. It is
convenient to identify tuples like ⟨𝑣1,𝑣2,𝑣3⟩ with the pair ⟨𝑣1,⟨𝑣2,𝑣3⟩⟩. An environment 𝑉 : VID ⇀ Val
is a finite partial mapping from variables to values. The operational evaluation judgment has the form

𝑉
𝑞′
𝑞
𝑒 ⇓ 𝑣 where 𝑞,𝑞′ ∈Q+

0 are nonnegative rational numbers. The intuitive meaning is that under

the environment 𝑉 and 𝑞 units of available resource, 𝑒 evaluates to the value 𝑣 without running out
of resource and 𝑞′ units of resource are available after the evaluation. Then the evaluation consumes
𝛿 = 𝑞 − 𝑞′ units of resource. Fig. 5 show the evaluation rules of the big-step semantics where 𝐾 is
a resource metric that maps syntactic forms to nonnegative rational numbers.3 For example, to

3 The resource usage can also be negative, which means the evaluation releases some resources, e.g., memory
could become available during evaluation [Hoffmann et al. 2011, 2017].

𝑒 F ⟨⟩ | true | false | 𝑛 | 𝑥 | op^(𝑥1,𝑥2) | app(𝑓 ,𝑥) | let(𝑒1,𝑥.𝑒2) | pair(𝑥1,𝑥2)

| matp(𝑥,𝑥1.𝑥2.𝑒) | nil | cons(𝑥ℎ,𝑥𝑡) |matl(𝑥,𝑒1,𝑥ℎ.𝑥𝑡 .𝑒2) | leaf | node(𝑥0,𝑥1,𝑥2)

| matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) | if(𝑥,𝑒1, 𝑒2) | share(𝑥,𝑥1.𝑥2.𝑒)

^ ∈ {+,−,×,div,mod,=,,,<,>,∧,∨}
𝐴 F unit | bool | int | 𝐴1 ×𝐴2 | 𝐿(𝐴) | 𝑇 (𝐴)

𝐹 F 𝐴1→ 𝐴2

Fig. 4: Syntax of the language

8

3 SETTING THE STAGE: RESOURCE AWARE ML 9

𝑉
𝑞′
𝑞
𝑒 ⇓ 𝑣 𝑒 evaluates to 𝑣 with 𝑞′ units of resource left over under 𝑉 and 𝑞 units of resource

(E-Triv)

𝑉 𝑞
𝑞+𝐾unit

⟨⟩ ⇓ null

(E-Bool)

𝑏 ∈ {true, false}

𝑉 𝑞
𝑞+𝐾bool

𝑏 ⇓ 𝑏

(E-Int)

𝑛 ∈Z

𝑉 𝑞
𝑞+𝐾 int

𝑛 ⇓ 𝑛

(E-Var)

𝑥 ∈ dom(𝑉)

𝑉 𝑞
𝑞+𝐾var

𝑥 ⇓ 𝑉 (𝑥)

(E-Op)

𝑥1,𝑥2 ∈ dom(𝑉)
𝑣 = 𝑉 (𝑥1)^𝑉 (𝑥2)

𝑉 𝑞
𝑞+𝐾op

op^(𝑥1,𝑥2) ⇓ 𝑣

(E-App)

𝑉 (𝑥) = 𝑣

𝑉 [𝑥𝑓 ↦→ 𝑣]
𝑞′
𝑞

𝑒𝑓 ⇓ 𝑣′

𝑉
𝑞′

𝑞+𝐾app
app(𝑓 ,𝑥) ⇓ 𝑣′

(E-Let)

𝑉 𝑞1

𝑞
𝑒1 ⇓ 𝑣1

𝑉 [𝑥 ↦→ 𝑣1]
𝑞′
𝑞1

𝑒2 ⇓ 𝑣2

𝑉
𝑞′

𝑞+𝐾 let
let(𝑒1,𝑥.𝑒2) ⇓ 𝑣2

(E-Pair)

𝑥1,𝑥2 ∈ dom(𝑉)
𝑣 = ⟨𝑉 (𝑥1),𝑉 (𝑥2)⟩

𝑉 𝑞
𝑞+𝐾pair

pair(𝑥1,𝑥2) ⇓ 𝑣

(E-MatP)

𝑉 (𝑥) = ⟨𝑣1,𝑣2⟩
𝑉 [𝑥1 ↦→ 𝑣1,𝑥2 ↦→ 𝑣2]

𝑞′
𝑞

𝑒 ⇓ 𝑣

𝑉
𝑞′

𝑞+𝐾matP
matp(𝑥,𝑥1.𝑥2.𝑒) ⇓ 𝑣

(E-Cons)

𝑥ℎ,𝑥𝑡 ∈ dom(𝑉)
𝑣 = ⟨𝑉 (𝑥ℎ),𝑉 (𝑥𝑡)⟩

𝑉 𝑞
𝑞+𝐾cons

cons(𝑥ℎ,𝑥𝑡) ⇓ 𝑣

(E-Nil)

𝑉 𝑞
𝑞+𝐾nil

nil ⇓ null

(E-MatL-Nil)

𝑉 (𝑥) = null 𝑉
𝑞′
𝑞

𝑒1 ⇓ 𝑣

𝑉
𝑞′

𝑞+𝐾matLN
matl(𝑥,𝑒1,𝑥ℎ.𝑥𝑡 .𝑒2) ⇓ 𝑣

(E-MatL-Cons)

𝑉 (𝑥) = ⟨𝑣ℎ,𝑣𝑡⟩
𝑉 [𝑥ℎ ↦→ 𝑣ℎ,𝑥𝑡 ↦→ 𝑣𝑡] 𝑞′

𝑞
𝑒2 ⇓ 𝑣

𝑉
𝑞′

𝑞+𝐾matLC
matl(𝑥,𝑒1,𝑥ℎ.𝑥𝑡 .𝑒2) ⇓ 𝑣

(E-Node)

𝑥0,𝑥1,𝑥2 ∈ dom(𝑉) 𝑣 = ⟨𝑉 (𝑥0),𝑉 (𝑥1),𝑉 (𝑥2)⟩

𝑉 𝑞
𝑞+𝐾node

node(𝑥0,𝑥1,𝑥2) ⇓ 𝑣

(E-MatT-Leaf)

𝑉 (𝑥) = null 𝑉
𝑞′
𝑞

𝑒1 ⇓ 𝑣

𝑉
𝑞′

𝑞+𝐾matTL
matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) ⇓ 𝑣

(E-MatT-Node)

𝑉 (𝑥) = ⟨𝑣0,𝑣1,𝑣2⟩ 𝑉 [𝑥0 ↦→ 𝑣0,𝑥1 ↦→ 𝑣1,𝑥2 ↦→ 𝑣2]
𝑞′
𝑞

𝑒2 ⇓ 𝑣

𝑉
𝑞′

𝑞+𝐾matTN
matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) ⇓ 𝑣

(E-Cond-True)

𝑉 (𝑥) = true 𝑉
𝑞′
𝑞

𝑒1 ⇓ 𝑣

𝑉
𝑞′

𝑞+𝐾condT
if(𝑥,𝑒1, 𝑒2) ⇓ 𝑣

(E-Leaf)

𝑉 𝑞
𝑞+𝐾 leaf

leaf ⇓ null

(E-Cond-False)

𝑉 (𝑥) = false 𝑉
𝑞′
𝑞

𝑒2 ⇓ 𝑣

𝑉
𝑞′

𝑞+𝐾condF
if(𝑥,𝑒1, 𝑒2) ⇓ 𝑣

(E-Share)

𝑉 (𝑥) = 𝑣 𝑉 [𝑥1 ↦→ 𝑣,𝑥2 ↦→ 𝑣]
𝑞′
𝑞

𝑒 ⇓ 𝑣′

𝑉
𝑞′
𝑞

share(𝑥,𝑥1.𝑥2.𝑒) ⇓ 𝑣′

Fig. 5: Evaluation rules of the big-step operational cost semantics

compute heap space usage, we specify 𝐾nil = 2, 𝐾cons = 4, 𝐾pair = 2, and other syntactic forms are
assigned with a zero cost. The evaluation is deterministic in the sense that there is at most one

combination of 𝑞′ ,𝑣 such that 𝑉
𝑞′
𝑞

𝑒 ⇓ 𝑣 for a given expression 𝑒, an environment 𝑉 , and 𝑞 units

of initial resource. If 𝑣 is a value, 𝐴 is a type, and 𝑎 ∈ J𝐴K is a semantic value of type 𝐴, we write
|= 𝑣 ↦→ 𝑎 : 𝐴 to mean that 𝑣 defines 𝑎. We also write |= 𝑣 : 𝐴 to indicate that there exists a semantic
value 𝑎 ∈ J𝐴K satisfying |= 𝑣 ↦→ 𝑎 : 𝐴. We write |= 𝑉 : Γ , if |= 𝑉 (𝑥) : Γ (𝑥) for every 𝑥 ∈ dom(Γ).

Resource-Aware Type System. To apply the potential method of amortized analysis [Tarjan
1985], one has to establish a mapping from program points to potentials. The potential at a program
point should suffice for the cost of any possible evaluation step as well as the potential at the next
program point. Potential functions are usually defined with respect to data structures used in the
program. To assign linear potentials to data structures, inductive data types (i.e., lists and binary trees)
are annotated with a nonnegative rational number 𝑝 ∈Q+

0 [Hofmann and Jost 2003]. The intuitive
meaning is that every internal constructor in the inductive data structure is assigned with 𝑝 units of
potential. The following grammar defines the resource-annotated data types 𝐴.

𝐴F unit | bool | int | 𝐴1 ×𝐴2 | 𝐿𝑝(𝐴) | 𝑇 𝑝(𝐴) where 𝑝 ∈Q+
0

Formally, the potential Φ(𝑎 : 𝐴) of a semantic value 𝑎 ∈ J𝐴K, where 𝐴 is a resource-annotated data type,
is defined as follows.4 For a binary tree 𝑡 ∈ J𝑇 (𝐴)K, we write elems(𝑡) for its elements in pre-order.

Φ(𝑎 : 𝐴) = 0 if 𝐴 ∈ {unit,bool, int}
Φ(𝑎 : 𝐴1 ×𝐴2) = Φ(𝑎1 : 𝐴1) +Φ(𝑎2 : 𝐴2) if 𝑎 = ⟨𝑎1, 𝑎2⟩

Φ(𝑙 : 𝐿𝑝(𝐵)) = 𝑛 · 𝑝+
∑︀𝑛

𝑖=1Φ(𝑎𝑖 : 𝐵) if 𝑙 = [𝑎1, · · · , 𝑎𝑛]

Φ(𝑡 : 𝑇 𝑝(𝐵)) = 𝑛 · 𝑝+
∑︀𝑛

𝑖=1Φ(𝑎𝑖 : 𝐵) if elems(𝑡) = [𝑎1, · · · , 𝑎𝑛]

Let 𝑣 ∈ Val be a value such that |= 𝑣 ↦→ 𝑎 : 𝐴, then the potential Φ(𝑣 : 𝐴) of 𝑣 is defined as Φ(𝑣 : 𝐴) def=
Φ(𝑎 : 𝐴). Further, let 𝑉 be an environment and Γ be a resource-annotated typing context that maps
variables to resource-annotated data types such that |= 𝑉 : Γ , then the potential of Γ under 𝑉 is defined

as Φ𝑉 (Γ) def=
∑︀

𝑥∈dom(Γ)Φ(𝑉 (𝑥) : Γ (𝑥)).

Example 3.1. Let an environment be 𝑉 = {𝑙 ↦→ ⟨0,⟨1,⟨0,⟨1,null⟩⟩⟩⟩} and a resource-annotated typing
context be Γ = {𝑙 : 𝐿3(int)}. Then |= 𝑉 (𝑙) ↦→ [0,1,0,1] : 𝐿(int). The potential of the typing context Γ under 𝑉
is computed as Φ𝑉 (Γ) = Φ(𝑉 (𝑙) : 𝐿3(int)) = Φ([0,1,0,1] : 𝐿3(int)) = 4× 3 = 12.

The resource-annotated first-order types are then defined with respect to the following grammar.
The intuitive meaning is that 𝑞 and 𝑞′ are constant potentials before a call to the function and after it,
respectively.

𝐹F 𝐴1
𝑞/𝑞′
−−−−→ 𝐴2 where 𝑞,𝑞′ ∈Q+

0

The resource-annotated typing judgment has the form Σ;Γ
𝑞′
𝑞

𝑒 : 𝐴, where Σ is a finite partial

mapping from function identifiers to nonempty sets of resource-annotated first-order types, Γ is a
resource-annotated typing context, 𝐴 is a resource-annotated data type, and 𝑞,𝑞′ ∈Q+

0 are nonnegative
numbers. The intuitive meaning is that if there are at least 𝑞+Φ(Γ) units of potential, then it suffices to
evaluate 𝑒 to a value 𝑣 satisfying that there are at least 𝑞′ +Φ(𝑣 : 𝐴) units of potential leftover after the
evaluation.5 Then a resource-annotated program consists of a resource-annotated signature Σ and a

family {𝜆𝑥𝑓 .𝑒𝑓 }𝑓 ∈dom(Σ) of function definitions such that Σ;𝑥𝑓 : 𝐴
𝑞′
𝑞
𝑒𝑓 : 𝐵 for every 𝐴

𝑞/𝑞′
−−−−→ 𝐵 ∈ Σ(𝑓).

The resource-aware typing rules, in fact, form an affine linear type system. It ensures that every
variable is used at most once by allowing exchange and weakening [Walker 2002]. The rules can be
organized into syntax-directed and structural rules. Fig. 6 lists the typing rules. We assume a fixed
global signature Σ that we omit from the typing rules. While the share expressions make “copies” of

4The potential of trees depends on the elements but not on the structure of the tree. We inherit this design
choice from RaML. It keeps the type rules simple and ensures compositionality because the potential is invariant
under tree transformations.

5Both the pre- and post-evaluation potentials are needed because resources might be non-monotone for the
same reason in footnote 3. Although we consider monotone resources in this paper, we keep this design to be
consistent with RaML.

10

3 SETTING THE STAGE: RESOURCE AWARE ML 11

Σ;Γ
𝑞′
𝑞
𝑒 : 𝐴 𝑒 has type 𝐴 under Σ and Γ , and 𝑞,𝑞′ are constant pre- and post-potential

(A-Unit)

· 0
𝐾unit

⟨⟩ : unit

(A-Bool)

𝑏 ∈ {true, false}

· 0
𝐾bool

𝑏 : bool

(A-Int)

𝑛 ∈Z

· 0
𝐾 int

𝑛 : int

(A-Var)

𝑥 : 𝐴 0
𝐾var

𝑥 : 𝐴

(A-Op)

𝑥1 :^arg1 ,𝑥2 :^arg2 0
𝐾op

op^(𝑥1,𝑥2) :^res

(A-App)

𝐴1
𝑞/𝑞′
−−−−→ 𝐴2 ∈ Σ(𝑓)

𝑥 : 𝐴1 𝑞′
𝑞+𝐾app

app(𝑓 ,𝑥) : 𝐴2

(A-Let)

Γ1 𝑞1

𝑞
𝑒1 : 𝐴1

Γ2,𝑥 : 𝐴1 𝑞′
𝑞1

𝑒2 : 𝐴2

Γ1,Γ2 𝑞′
𝑞+𝐾 let

let(𝑒1,𝑥.𝑒2) : 𝐴2

(A-Pair)

𝑥1 : 𝐴1,𝑥2 : 𝐴2 0
𝐾pair

pair(𝑥1,𝑥2) : 𝐴1 ×𝐴2

(A-MatP)

Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2 𝑞′
𝑞

𝑒 : 𝐴

Γ ,𝑥 : 𝐴1 ×𝐴2 𝑞′
𝑞+𝐾matP

matp(𝑥,𝑥1.𝑥2.𝑒) : 𝐴

(A-Cons)

𝑥ℎ : 𝐴,𝑥𝑡 : 𝐿𝑝(𝐴) 0
𝑝+𝐾cons

cons(𝑥ℎ,𝑥𝑡) : 𝐿𝑝(𝐴)

(A-MatL)

Γ
𝑞′

𝑞−𝐾matLN
𝑒1 : 𝐴′

Γ ,𝑥ℎ : 𝐴,𝑥𝑡 : 𝐿𝑝(𝐴)
𝑞′

𝑞+𝑝−𝐾matLC
𝑒2 : 𝐴′

Γ ,𝑥 : 𝐿𝑝(𝐴)
𝑞′
𝑞

matl(𝑥,𝑒1,𝑥ℎ.𝑥𝑡 .𝑒2) : 𝐴′

(A-Cond)

Γ
𝑞′

𝑞−𝐾condT
𝑒1 : 𝐴

Γ
𝑞′

𝑞−𝐾condF
𝑒2 : 𝐴

Γ ,𝑥 : bool
𝑞′
𝑞

if(𝑥,𝑒1, 𝑒2) : 𝐴

(A-Share)

Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2 𝑞′
𝑞

𝑒 : 𝐴′

.(𝐴 | 𝐴1,𝐴2)

Γ ,𝑥 : 𝐴
𝑞′
𝑞

share(𝑥,𝑥1.𝑥2.𝑒) : 𝐴′

(A-Nil)

· 0
𝐾nil

nil : 𝐿𝑝(𝐴)

(A-Leaf)

· 0
𝐾 leaf

leaf : 𝑇 𝑝(𝐴)

(A-Node)

𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴) 0
𝑝+𝐾node

node(𝑥0,𝑥1,𝑥2) : 𝑇 𝑝(𝐴)

(A-MatT)

Γ
𝑞′

𝑞−𝐾matTL
𝑒1 : 𝐴′ Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴)

𝑞′
𝑞+𝑝−𝐾matTN

𝑒2 : 𝐴′

Γ ,𝑥 : 𝑇 𝑝(𝐴)
𝑞′
𝑞

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) : 𝐴′

(A-Weakening)

Γ
𝑞′
𝑞

𝑒 : 𝐴′

Γ ,𝑥 : 𝐴
𝑞′
𝑞

𝑒 : 𝐴′

(A-Relax)

Γ
𝑝′
𝑝

𝑒 : 𝐴 𝑞 ≥ 𝑝 𝑞 − 𝑝 ≥ 𝑞′ − 𝑝′

Γ
𝑞′
𝑞

𝑒 : 𝐴

(A-Subtype)

Γ
𝑞′
𝑞

𝑒 : 𝐴 𝐴 <: 𝐵

Γ
𝑞′
𝑞

𝑒 : 𝐵

(A-Supertype)

Γ ,𝑥 : 𝐵
𝑞′
𝑞

𝑒 : 𝐶 𝐴 <: 𝐵

Γ ,𝑥 : 𝐴
𝑞′
𝑞

𝑒 : 𝐶

Fig. 6: Typing rules of the resource-aware type system

a variable, the sharing relation .(𝐴 | 𝐴1,𝐴2) ensures that the program cannot gain more potential by
making copies—it apportions the potential indicated by 𝐴 into two parts to be associated with 𝐴1
and 𝐴2. Formally, this relation is defined as follows.

𝐴 ∈ {unit,bool, int}
.(𝐴 | 𝐴,𝐴)

.(𝐴 | 𝐴1,𝐴2) .(𝐵 | 𝐵1,𝐵2)

.(𝐴×𝐵 | 𝐴1 ×𝐵1,𝐴2 ×𝐵2)

.(𝐴 | 𝐴1,𝐴2) 𝑝 = 𝑝1 + 𝑝2

.(𝐿𝑝(𝐴) | 𝐿𝑝1 (𝐴1),𝐿𝑝2 (𝐴2))

.(𝐴 | 𝐴1,𝐴2) 𝑝 = 𝑝1 + 𝑝2

.(𝑇 𝑝(𝐴) | 𝑇 𝑝1 (𝐴1),𝑇 𝑝2 (𝐴2))

The structural rules (A-Weakening),(A-Relax),(A-Subtype),(A-Supertype) can be applied to every
expression. The sub-typing relation 𝐴 <: 𝐵 indicates that 𝐴 and 𝐵 are structurally identical, and for
every semantic value 𝑎, the potential Φ(𝑎 : 𝐴) is greater than or equal than the potential Φ(𝑎 : 𝐵).
Formally, this relation is defined as follows.

𝐴 ∈ {unit,bool, int}
𝐴 <: 𝐴

𝐴1 <: 𝐴2 𝐵1 <: 𝐵2

𝐴1 ×𝐵1 <: 𝐴2 ×𝐵2

𝐴1 <: 𝐴2 𝑝1 ≥ 𝑝2

𝐿𝑝1 (𝐴1) <: 𝐿𝑝2 (𝐴2)

𝐴1 <: 𝐴2 𝑝1 ≥ 𝑝2

𝑇 𝑝1 (𝐴1) <: 𝑇 𝑝2 (𝐴2)

Example 3.2. Recall the program in Fig. 1. An example of a resource-annotated derivation with the heap
space metric established by only using syntax-directed rules is as follows. In this typing derivation, every
variable is used exactly once, which indicates that the annotated potential function for this expression is
tight—just enough to pay for all the resource usage to complete the evaluation under any environment 𝑉
such that |= 𝑉 : {𝑦 : int× int,𝑥𝑠′ : 𝐿3(int)}.

𝐿3(int)
2/0−−−→ 𝐿0(int× int) ∈ Σ(lpairs)

𝑥𝑠′ : 𝐿3(int) 0
2

app(lpairs,𝑥𝑠′) : 𝐿0(int× int) 𝑦 : int× int, 𝑦𝑠 : 𝐿0(int× int) 0
4

cons(𝑦,𝑦𝑠) : 𝐿0(int× int)

𝑦 : int× int,𝑥𝑠′ : 𝐿3(int) 0
6

let(app(lpairs,𝑥𝑠′), 𝑦𝑠.cons(𝑦,𝑦𝑠)) : 𝐿0(int× int)

Following is an example of derivations involving structural rules. The rule (A-Relax) in the derivation
indicates a potential waste of 6 units—hence the annotated potential function for this expression is not tight.
Note the rule (A-Weakening) in the derivation does not indicate potential waste, because the variables
𝑥12,𝑥22 only carry zero potential.

· · ·

𝐿3(int)
2/0−−−→ 𝐿0(int× int) ∈ Σ(lpairs)

𝑥𝑠′ : 𝐿3(int) 0
2

app(lpairs,𝑥𝑠′) : 𝐿0(int× int)

𝑥12 : int,𝑥22 : int,𝑥𝑠′ : 𝐿3(int) 0
2

app(lpairs,𝑥𝑠′) : 𝐿0(int× int)
A-Weakening

8 ≥ 2

𝑥12 : int,𝑥22 : int,𝑥𝑠′ : 𝐿3(int) 0
8

app(lpairs,𝑥𝑠′) : 𝐿0(int× int)
A-Relax

𝑏 : bool,𝑥12 : int,𝑥22 : int,𝑥𝑠′ : 𝐿3(int) 0
8

if(𝑏, · · · ,app(lpairs,𝑥𝑠′)) : 𝐿0(int× int)

Soundness. A crucial characterization of a type system is its soundness with respect to an opera-
tional semantics. For resource-aware type systems, soundness theorems state the derived potential
functions at the program points are always sufficient to complete the evaluation [Hoffmann et al.
2011, 2017; Hofmann and Jost 2003]. We formalize the soundness theorem of the semantics and the
type system as follows.

Theorem 3.3. If |= 𝑉 : Γ , 𝑉 ⊢ 𝑒 ⇓ 𝑣, Σ;Γ
𝑞′
𝑞
𝑒 : 𝐴, then for all 𝑝,𝑟 ∈Q+

0 such that 𝑝 = 𝑞+Φ𝑉 (Γ) + 𝑟, there

exists 𝑝′ ∈Q+
0 satisfying 𝑉

𝑝′
𝑝

𝑒 ⇓ 𝑣 and 𝑝′ ≥ 𝑞′ +Φ(𝑣 : 𝐴) + 𝑟.

4 Problem Statement
To formalize the problem of worst-case input generation, we introduce input skeletons. Skeletons can
contain indeterminate booleans, integers, as well as unknown structures of inductive data types. The
following grammar defines these skeletons 𝑆 ∈ Skel.

𝑆 F null | true | false | bool𝑖 | 𝑛 | int𝑖 | ⟨𝑆1,𝑆2⟩ | ℓ
| nil | cons(𝑆ℎ,𝑆𝑡) | listof(𝑆1, · · · ,𝑆𝑛)

| leaf | node(𝑆0,𝑆1,𝑆2) | treeof(𝑆1, · · · ,𝑆𝑛)

12

4 PROBLEM STATEMENT 13

bool𝑖 is a boolean indeterminate with index 𝑖. int𝑖 is a integer indeterminate with index 𝑖. nil,
cons(𝑆ℎ,𝑆𝑡) are list constructors. listof(𝑆1, · · · ,𝑆𝑛) is a a list indeterminate with its elements in order.
leaf, node(𝑆0,𝑆1,𝑆2) are binary tree constructors. treeof(𝑆1, · · · ,𝑆𝑛) is a binary tree indeterminate
with its elements in pre-order. To allow sharing of unknown data structures in the input skeleton, we
introduce pointers ℓ ∈ Loc as skeletons.

A skeleton environment 𝛾 : VID ⇀ Skel is a finite partial mapping from variables to skeletons, and
a skeleton heap 𝜎 : Loc ⇀ Skel is finite partial mapping from pointers to skeletons. Fig. 7 defines
the typing rules for skeletons under a skeleton heap 𝜎 , written 𝜎 ⊢ 𝑆 : 𝐴. We also write 𝜎 ⊢ 𝛾 : Γ ,
where Γ is a typing context, if 𝜎 ⊢ 𝛾(𝑥) : Γ (𝑥) for every 𝑥 ∈ dom(Γ). In this paper, we assume all the
data structure skeletons (i.e., list and binary tree constructors) are saved in the skeleton heap, and
the skeleton environment records primitive skeletons (i.e., booleans, integers, and pairs) as well as
pointers to data structures.

Given a program, the worst-case input generation is aimed to find a concretization of a specified
input skeleton, which exposes the worst-case resource usage of the program with respect to the
operational cost semantics. A concretization consists of a model 𝑀 to resolve boolean and integer
indeterminates, and a heap 𝐻 to resolve unknown structures of inductive data types like lists and
binary trees. Formally, a model 𝑀 is a finite partial mapping from boolean and integer indeterminates
to constants, and a heap 𝐻 is a finite partial mapping from pointers to values. Under a model 𝑀 and a
heap 𝐻 , the concretization 𝑣 of a skeleton 𝑆, written 𝑀;𝐻 ⊢ 𝑆⇝ 𝑣 is formalized in Fig. 8. We write
𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 , if 𝑀;𝐻 ⊢ 𝛾(𝑥)⇝ 𝑉 (𝑥) for every 𝑥 ∈ dom(𝛾). Because the skeleton environment 𝛾 only
records primitive skeletons and pointers, the judgment 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 is deterministic. We also write
𝑀 ⊢ 𝜎 ⊑𝐻 , if 𝑀;𝐻 ⊢ 𝜎 (ℓ)⇝𝐻(ℓ) for every ℓ ∈ dom(𝜎). We use the “refinement” operator ⊑ because
a skeleton heap might correspond to different concrete heaps.

The general worst-case input generation program can be formalized as follows.

Given a program with signature Σ and a function 𝑓 of type Σ(𝑓) = 𝐴→ 𝐵, for a specified input skeleton
𝛾,𝜎 such that 𝜎 ⊢ 𝛾 : {𝑥𝑓 : 𝐴} (i.e., 𝜎 ⊢ 𝛾(𝑥𝑓) : 𝐴) and a resource metric, generate a concretization 𝑀,𝐻

such that 𝑀 ⊢ 𝜎 ⊑𝐻 , 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 , 𝑉
𝑞′
𝑞
𝑒𝑓 ⇓ 𝑣, and the resource consumption 𝛿 = 𝑞−𝑞′ is greater

than or equal to the resource consumption of all possible concretizations of the same input skeleton.

Example 4.1. Recall the function lpairs in Fig. 1. The type of lpairs is 𝐿(int)→ 𝐿(int× int). The formal
parameter of lpairs is 𝑙. Let 𝛾 = {𝑙 ↦→ ℓ} and 𝜎 = {ℓ ↦→ listof(int1, int2, int3, int4)} be an input skeleton that
represents an integer list of length four. A solution to the worst-case input generation for the heap space usage

𝜎 ⊢ 𝑆 : 𝐴 Skeleton 𝑆 has type 𝐴 under 𝜎

𝜎 ⊢ null : unit

𝑏 ∈ {true, false}
𝜎 ⊢ 𝑏 : bool 𝜎 ⊢ bool𝑖 : bool

𝑛 ∈Z
𝜎 ⊢ 𝑛 : int 𝜎 ⊢ int𝑖 : int

𝜎 ⊢ 𝑆1 : 𝐴1 𝜎 ⊢ 𝑆2 : 𝐴2

𝜎 ⊢ ⟨𝑆1,𝑆2⟩ : 𝐴1 ×𝐴2

𝜎 ⊢ 𝜎 (ℓ) : 𝐴

𝜎 ⊢ ℓ : 𝐴

𝜎 ⊢ nil : 𝐿(𝐴)

𝜎 ⊢ 𝑆ℎ : 𝐴 𝜎 ⊢ 𝑆𝑡 : 𝐿(𝐴)

𝜎 ⊢ cons(𝑆ℎ,𝑆𝑡) : 𝐿(𝐴)

∀𝑖 ∈ {1, · · · ,𝑛} : 𝜎 ⊢ 𝑆𝑖 : 𝐴

𝜎 ⊢ listof(𝑆1, · · · ,𝑆𝑛) : 𝐿(𝐴) 𝜎 ⊢ leaf : 𝑇 (𝐴)

𝜎 ⊢ 𝑆0 : 𝐴 𝜎 ⊢ 𝑆1 : 𝑇 (𝐴) 𝜎 ⊢ 𝑆2 : 𝑇 (𝐴)

𝜎 ⊢ node(𝑆0,𝑆1,𝑆2) : 𝑇 (𝐴)

∀𝑖 ∈ {1, · · · ,𝑛} : 𝜎 ⊢ 𝑆𝑖 : 𝐴

𝜎 ⊢ treeof(𝑆1, · · · ,𝑆𝑛) : 𝑇 (𝐴)

Fig. 7: Typing rules for skeletons

𝑀;𝐻 ⊢ 𝑆⇝ 𝑣 Skeleton 𝑆 is concretized to 𝑣 under model 𝑀 and heap 𝐻

𝑀;𝐻 ⊢ null⇝ null 𝑀;𝐻 ⊢ bool𝑖⇝𝑀(bool𝑖) 𝑀;𝐻 ⊢ int𝑖⇝𝑀(int𝑖) 𝑀;𝐻 ⊢ ℓ⇝𝐻(ℓ)

𝑀;𝐻 ⊢ 𝑆1⇝ 𝑣1 𝑀;𝐻 ⊢ 𝑆2⇝ 𝑣2

𝑀;𝐻 ⊢ ⟨𝑆1,𝑆2⟩⇝ ⟨𝑣1,𝑣2⟩
𝑏 ∈ {true, false}
𝑀;𝐻 ⊢ 𝑏⇝ 𝑏

𝑛 ∈Z
𝑀;𝐻 ⊢ 𝑛⇝ 𝑛 𝑀;𝐻 ⊢ listof(·)⇝ null

𝑀;𝐻 ⊢ 𝑆1⇝ 𝑣ℎ 𝑀;𝐻 ⊢ listof(𝑆2, · · · ,𝑆𝑛)⇝ 𝑣𝑡
𝑀;𝐻 ⊢ listof(𝑆1, · · · ,𝑆𝑛)⇝ ⟨𝑣ℎ,𝑣𝑡⟩

𝑀;𝐻 ⊢ nil⇝ null 𝑀;𝐻 ⊢ treeof(·)⇝ null 𝑀;𝐻 ⊢ leaf⇝ null

𝑀;𝐻 ⊢ 𝑆1⇝ 𝑣0 𝑀;𝐻 ⊢ treeof(𝑆2, · · · ,𝑆𝑚)⇝ 𝑣1 𝑀;𝐻 ⊢ treeof(𝑆𝑚+1, · · · ,𝑆𝑛)⇝ 𝑣2

𝑀;𝐻 ⊢ treeof(𝑆1, · · · ,𝑆𝑛)⇝ ⟨𝑣0,𝑣1,𝑣2⟩

𝑀;𝐻 ⊢ 𝑆ℎ⇝ 𝑣ℎ 𝑀;𝐻 ⊢ 𝑆𝑡⇝ 𝑣𝑡
𝑀;𝐻 ⊢ cons(𝑆ℎ,𝑆𝑡)⇝ ⟨𝑣ℎ,𝑣𝑡⟩

𝑀;𝐻 ⊢ 𝑆0⇝ 𝑣0 𝑀;𝐻 ⊢ 𝑆1⇝ 𝑣1 𝑀;𝐻 ⊢ 𝑆2⇝ 𝑣2

𝑀;𝐻 ⊢ node(𝑆0,𝑆1,𝑆2)⇝ ⟨𝑣0,𝑣1,𝑣2⟩

Fig. 8: Concretization rules for skeletons

of the function lpairs is 𝑀 = {int1 ↦→ 0, int2 ↦→ 1, int3 ↦→ 0, int4 ↦→ 1}, and 𝐻 = {ℓ ↦→ ⟨0,⟨1,⟨0,⟨1,null⟩⟩⟩⟩}.
Then 𝑉 (𝑙) represents the list [0,1,0,1].

We also consider a restricted version of the general problem: If we know an upper bound on the
resource usage, we want to generate an input with the same resource usage as the bound indicates.

Given a program with resource-annotated signature Σ and a function 𝑓 of type 𝐴
𝑞/𝑞′
−−−−→ 𝐵 ∈ Σ(𝑓), for

a specified input skeleton 𝛾,𝜎 such that 𝜎 ⊢ 𝛾 : {𝑥𝑓 : 𝐴}, find a concretization 𝑀,𝐻 satisfying that

𝑀 ⊢ 𝜎 ⊑𝐻 , 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 , 𝑉
𝑝′
𝑝

𝑒𝑓 ⇓ 𝑣, and 𝑝 − 𝑝′ = (𝑞+Φ𝑉 (𝑥𝑓 : 𝐴))− (𝑞′ +Φ(𝑣 : 𝐵)).

Intuitively, because Thm. 3.3 guarantees the soundness of the upper bound, every input that
exposes the exact resource consumption as the upper bound is indeed a worst-case input of its shape.
Later we will prove that the solution to the restricted worst-case input generation problem is always a
solution to the general one (see §5).

Remark 4.2. This formalization might seem too restricted at a first glance. However, we find the problem
still interesting for two reasons: (i) RaML is quite precise and tight in practice [Hoffmann et al. 2017], and
our experiments also show the derived bounds are indeed the resource usage of the worst-case inputs (see
§7), and (ii) it is straightforward to modify our algorithm to generate 𝑑-bounded worst-case inputs, which
allow at most 𝑑 units of potential waste in the execution (see §5).

5 Type-Guided Worst-Case Input Generation Algorithm
In this section, we present our worst-case input generation algorithm and prove its soundness as well
as relative completeness.

14

5 TYPE-GUIDED WORST-CASE INPUT GENERATION ALGORITHM 15

5.1 Formulation
We formulate our algorithm as a set of rules. The intended purpose of these rules is to search for an
execution path with a path constraint sufficient for the input skeleton to expose the worst-case resource

usage. The worst-case input generation judgments are of the form Σ;Γ ;𝛾 ;𝜎
𝑞′
𝑞
𝑒 : 𝐴⇒

⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
where

𝛾,𝜎 form an input skeleton such that 𝜎 ⊢ 𝛾 : Γ , 𝜑 ∈ ℒ[bool𝑖 , int𝑖] is a formula in some theory of
booleans and integers with a decision procedure, and 𝑆 is a skeleton that is intended to have type
𝐴 under the skeleton heap 𝜎 ′ . In the rules, we restrict the result skeleton 𝑆 to be either primitive
skeletons or pointers to data structures in 𝜎 ′ . The intuitive meaning is that under the environment
𝑉 that is a concretization of the skeleton environment 𝛾 with the skeleton heap 𝜎 ′ and satisfies the
constraint 𝜑, it furthermore takes 𝑞 +Φ𝑉 (Γ) units of resource to evaluate 𝑒 to a value 𝑣 , which is
the corresponding concretization of 𝑆 and there are exactly 𝑞′ +Φ(𝑣 : 𝐴) units of resource left over.
These rules essentially formulate a type-guided symbolic execution of the expression 𝑒. Figs. 9 and 10
present the syntax-directed rules. We assume a fixed global signature Σ.

Most of these rules are deterministic—for a configuration of the input skeleton 𝛾,𝜎 and the expres-
sion 𝑒, the generation algorithm is usually able to pick a unique evaluation step. For example, for
the expression let(𝑒1,𝑥.𝑒2), the rule (WC-Let) first generates a candidate worst-case execution path
for 𝑒1 and then returns a path constraint 𝜑1 together with the corresponding result skeleton 𝑆1. The
rule then generates a worst-case execution path for 𝑒2 under the same skeleton environment with the
binding variable 𝑥 updated with 𝑆1. If the path constraint for 𝑒2 is 𝜑2, the conjunction of two path
constraints 𝜑1∧𝜑2 is a sufficient condition for the let-expression to expose worst-case resource usage.

The rule (WC-App) for function applications looks up the skeleton of 𝑥 in the current skeleton
environment, and passes it to the function body 𝑒𝑓 to generate a candidate worst-case execution path.
We treat inductive data structures differently from the operational cost semantics in Fig. 5. For list
and binary tree constructors, we create a fresh pointer and put the data structure in the inductive
skeleton heap. For example, the rule (WC-Node) for the expression node(𝑥0,𝑥1,𝑥2) first looks up the
skeletons of 𝑥0,𝑥1,𝑥2 in the current skeleton environment as 𝑆0,𝑆1,𝑆2, respectively. Then it creates
an inductive skeleton for a binary tree node as node(𝑆0,𝑆1,𝑆2), and puts it in a fresh location of the
skeleton heap.

There are three rules that exhibit nondeterminism: (WC-Cond-True), (WC-Cond-False), and
(WC-MatT-Tree-NonEmpty). The first two rules are nondeterministic because the predicate of a
conditional expression might not be able to resolve because the predicate might refer to indeterminate
booleans and integers. For example, for the conditional expression if(𝑥,𝑒1, 𝑒2), the rule (WC-Cond-

True) looks up the skeleton of 𝑥 in the current skeleton environment as 𝑆, and then tries to find a
path constraint 𝜑 for 𝑒1 to trigger worst-case behavior, and then return a path constraint 𝑆 ∧𝜑 that
indicates the expression evaluates the then-branch. The nondeterminism of the rule (WC-MatT-Tree-

NonEmpty) arises because the structure of the binary tree being matched is unknown. Suppose the
inductive skeleton for the tree is treeof(𝑆1, · · · ,𝑆𝑛). Because the elements are in pre-order, the element
assigned to the root of this tree is 𝑆1, and the input generation algorithm tries to partition {𝑆2, · · · ,𝑆𝑛}
into the left and right subtrees. Suppose 𝑅1 = treeof(𝑆2, · · · ,𝑆𝑚) and 𝑅2 = treeof(𝑆𝑚+1, · · · ,𝑆𝑛) are
two inductive skeletons for the left and right subtrees, respectively. Then the algorithm records the
partition in the skeleton heap and then proceeds to search path constraints for the body expression of
the match-expression.

Example 5.1. Recall the program in Fig. 1 and consider the subexpression
let(app(lpairs,𝑥𝑠′), 𝑦𝑠.cons(𝑦,𝑦𝑠)). Let an input skeleton be 𝛾 = {𝑦 ↦→ ⟨int1, int2⟩,𝑥𝑠′ ↦→ ℓ1},
𝜎 = {ℓ1 ↦→ cons(int3,cons(int4,nil))}. For the heap space metric, our algorithm derives the following

judgment for the function call: 𝑥𝑠′ : 𝐿3(int);𝛾 ;𝜎 0
2

app(lpairs,𝑥𝑠′) : 𝐿0(int × int)⇒
⟨
int3 < int4, ℓ3,𝜎1

⟩
where 𝜎1 = 𝜎 [ℓ2 ↦→ nil, ℓ3 ↦→ cons(⟨int3, int4⟩, ℓ2)]. Then for the body expression of the let-expression,
our algorithm derives the following judgment by setting the binding variable 𝑦𝑠 to ℓ3 in the skeleton

Σ;Γ ;𝛾 ;𝜎
𝑞′
𝑞
𝑒 : 𝐴⇒

⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
Under 𝛾,𝜎 , a worst-case path for 𝑒 returns 𝑆,𝜎 ′ with constraint 𝜑

(WC-Unit)

·;𝛾 ;𝜎 0
𝐾unit

⟨⟩ : unit⇒ ⟨⊤,null,𝜎⟩

(WC-Bool)

𝑏 ∈ {true, false}

·;𝛾 ;𝜎 0
𝐾bool

𝑏 : bool⇒ ⟨⊤,𝑏,𝜎⟩

(WC-Int)

𝑛 ∈Z

·;𝛾 ;𝜎 0
𝐾 int

𝑛 : int⇒ ⟨⊤,𝑛,𝜎⟩

(WC-Var)

𝑥 ∈ dom(𝛾)

𝑥 : 𝐴;𝛾 ;𝜎 0
𝐾var

𝑥 : 𝐴⇒
⟨︀
⊤,𝛾(𝑥),𝜎

⟩︀
(WC-Op)

𝑥1,𝑥2 ∈ dom(𝛾) 𝑆 = 𝛾(𝑥1)^𝛾(𝑥2)

𝑥1 :^arg1 ,𝑥2 :^arg2 ;𝛾 ;𝜎 0
𝐾op

op^(𝑥1,𝑥2) :^res⇒ ⟨⊤,𝑆,𝜎⟩

(WC-Let)

Γ1;𝛾 ;𝜎 𝑞1

𝑞
𝑒1 : 𝐴1⇒

⟨︀
𝜑1,𝑆1,𝜎1

⟩︀
Γ2,𝑥 : 𝐴1;𝛾[𝑥 ↦→ 𝑆1];𝜎1 𝑞′

𝑞1
𝑒2 : 𝐴2⇒

⟨︀
𝜑2,𝑆2,𝜎2

⟩︀
Γ1,Γ2;𝛾 ;𝜎

𝑞′
𝑞+𝐾 let

let(𝑒1,𝑥.𝑒2) : 𝐴2⇒
⟨︀
𝜑1 ∧𝜑2,𝑆2,𝜎2

⟩︀
(WC-Pair)

𝐴 = 𝐴1 ×𝐴2
𝑥1,𝑥2 ∈ dom(𝛾) 𝑆 = ⟨𝛾(𝑥1),𝛾(𝑥2)⟩

𝑥1 : 𝐴1,𝑥2 : 𝐴2;𝛾 ;𝜎 0
𝐾pair

pair(𝑥1,𝑥2) : 𝐴⇒ ⟨⊤,𝑆,𝜎⟩

(WC-MatP)

𝛾(𝑥) = ⟨𝑆1,𝑆2⟩ 𝛾𝑜 = 𝛾[𝑥1 ↦→ 𝑆1,𝑥2 ↦→ 𝑆2]

Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2;𝛾𝑜 ;𝜎
𝑞′
𝑞

𝑒 : 𝐴⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝐴1 ×𝐴2;𝛾 ;𝜎

𝑞′
𝑞+𝐾matP

matp(𝑥,𝑥1.𝑥2.𝑒) : 𝐴⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
(WC-Nil)

ℓ < dom(𝜎)

·;𝛾 ;𝜎 0
𝐾nil

nil : 𝐿𝑝(𝐴)⇒ ⟨⊤, ℓ,𝜎 [ℓ ↦→ nil]⟩

(WC-MatL-Cons)

𝛾(𝑥) = ℓ 𝜎 (ℓ) = cons(𝑆ℎ,𝑆𝑡) 𝛾 ′ = 𝛾[𝑥ℎ ↦→ 𝑆ℎ,𝑥𝑡 ↦→ 𝑆𝑡]

Γ ,𝑥ℎ : 𝐴,𝑥𝑡 : 𝐿𝑝(𝐴);𝛾 ′ ;𝜎
𝑞′

𝑞+𝑝−𝐾matLC
𝑒2 : 𝐴′ ⇒

⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝐿𝑝(𝐴);𝛾 ;𝜎

𝑞′
𝑞

matl(𝑥,𝑒1,𝑥ℎ.𝑥𝑡 .𝑒2) : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
(WC-MatL-Nil)

𝑒 = matl(𝑥,𝑒1,𝑥ℎ.𝑥𝑡 .𝑒2) 𝛾(𝑥) = ℓ

𝜎 (ℓ) = nil Γ ;𝛾 ;𝜎
𝑞′

𝑞−𝐾matLN
𝑒1 : 𝐴′ ⇒

⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝐿𝑝(𝐴);𝛾 ;𝜎

𝑞′
𝑞

𝑒 : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
(WC-App)

𝛾(𝑥) = 𝑆 𝐴1
𝑞/𝑞′
−−−−→ 𝐴2 ∈ Σ(𝑓)

𝑥𝑓 : 𝐴1;𝛾[𝑥𝑓 ↦→ 𝑆];𝜎
𝑞′
𝑞

𝑒𝑓 : 𝐴2⇒
⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
𝑥 : 𝐴1;𝛾 ;𝜎

𝑞′
𝑞+𝐾app

app(𝑓 ,𝑥) : 𝐴2⇒
⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
(WC-Cons)

𝑥ℎ,𝑥𝑡 ∈ dom(𝛾) 𝑅 = cons(𝛾(𝑥ℎ),𝛾(𝑥𝑡))
ℓ < dom(𝜎) 𝜎 ′ = 𝜎 [ℓ ↦→ 𝑅] Γ = 𝑥ℎ : 𝐴,𝑥𝑡 : 𝐿𝑝(𝐴)

Γ ;𝛾 ;𝜎 0
𝑝+𝐾cons

cons(𝑥ℎ,𝑥𝑡) : 𝐿𝑝(𝐴)⇒
⟨
⊤, ℓ,𝜎 ′

⟩
(WC-MatL-List-Empty)

𝛾(𝑥) = ℓ 𝜎 (ℓ) = listof(·) Γ ;𝛾 ;𝜎 [ℓ ↦→ nil]
𝑞′

𝑞−𝐾matLN
𝑒1 : 𝐴′ ⇒

⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝐿𝑝(𝐴);𝛾 ;𝜎

𝑞′
𝑞

matl(𝑥,𝑒1,𝑥ℎ.𝑥𝑡 .𝑒2) : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
(WC-MatL-List-NonEmpty)

𝛾(𝑥) = ℓ 𝜎 (ℓ) = listof(𝑆1, · · · ,𝑆𝑛) ℓ𝑡 < dom(𝜎) 𝑆𝑡 = listof(𝑆2, · · · ,𝑆𝑛)

Γ ,𝑥ℎ : 𝐴,𝑥𝑡 : 𝐿𝑝(𝐴);𝛾[𝑥ℎ ↦→ 𝑆1,𝑥𝑡 ↦→ ℓ𝑡];𝜎 [ℓ ↦→ cons(𝑆1, ℓ𝑡), ℓ𝑡 ↦→ 𝑆𝑡] 𝑞′
𝑞+𝑝−𝐾matLC

𝑒2 : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝐿𝑝(𝐴);𝛾 ;𝜎

𝑞′
𝑞

matl(𝑥,𝑒1,𝑥ℎ.𝑥𝑡 .𝑒2) : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
Fig. 9: Rules of the type-guided worst-case input generation algorithm (I)

16

5 TYPE-GUIDED WORST-CASE INPUT GENERATION ALGORITHM 17

Σ;Γ ;𝛾 ;𝜎
𝑞′
𝑞
𝑒 : 𝐴⇒

⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
Under 𝛾,𝜎 , a worst-case path for 𝑒 returns 𝑆,𝜎 ′ with constraint 𝜑

(WC-Leaf)

ℓ < dom(𝜎)

·;𝛾 ;𝜎 0
𝐾 leaf

leaf : 𝑇 𝑝(𝐴)⇒ ⟨⊤, ℓ,𝜎 [ℓ ↦→ leaf]⟩

(WC-MatT-Leaf)

𝛾(𝑥) = ℓ 𝜎 (ℓ) = leaf Γ ;𝛾 ;𝜎
𝑞′

𝑞−𝐾matTL
𝑒1 : 𝐴′ ⇒

⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝑇 𝑝(𝐴);𝛾 ;𝜎

𝑞′
𝑞

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
(WC-Node)

𝑥0,𝑥1,𝑥2 ∈ dom(𝛾) 𝑅 = node(𝛾(𝑥0),𝛾(𝑥1),𝛾(𝑥2)) ℓ < dom(𝜎)

𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴);𝛾 ;𝜎 0
𝑝+𝐾node

node(𝑥0,𝑥1,𝑥2) : 𝑇 𝑝(𝐴)⇒ ⟨⊤, ℓ,𝜎 [ℓ ↦→ 𝑅]⟩

(WC-MatT-Node)

𝛾(𝑥) = ℓ 𝜎 (ℓ) = node(𝑆0,𝑆1,𝑆2)

Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴);𝛾[𝑥0 ↦→ 𝑆0,𝑥1 ↦→ 𝑆1,𝑥2 ↦→ 𝑆2];𝜎
𝑞′

𝑞+𝑝−𝐾matTN
𝑒2 : 𝐴′ ⇒

⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝑇 𝑝(𝐴);𝛾 ;𝜎

𝑞′
𝑞

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
(WC-MatT-Tree-Empty)

𝛾(𝑥) = ℓ 𝜎 (ℓ) = treeof(·) Γ ;𝛾 ;𝜎 [ℓ ↦→ leaf]
𝑞′

𝑞−𝐾matTL
𝑒1 : 𝐴′ ⇒

⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝑇 𝑝(𝐴);𝛾 ;𝜎

𝑞′
𝑞

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
(WC-MatT-Tree-NonEmpty)

𝛾(𝑥) = ℓ 𝜎 (ℓ) = treeof(𝑆1, · · · ,𝑆𝑛) ℓ1, ℓ2 < dom(𝜎)
𝑅1 = treeof(𝑆2, · · · ,𝑆𝑚) 𝑅2 = treeof(𝑆𝑚+1, · · · ,𝑆𝑛) 𝜎𝑜 = 𝜎 [ℓ ↦→ node(𝑆1, ℓ1, ℓ2), ℓ1 ↦→ 𝑅1, ℓ2 ↦→ 𝑅2]

Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴);𝛾[𝑥0 ↦→ 𝑆1,𝑥1 ↦→ ℓ1,𝑥2 ↦→ ℓ2];𝜎𝑜 𝑞′
𝑞+𝑝−𝐾matTN

𝑒2 : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝑇 𝑝(𝐴);𝛾 ;𝜎

𝑞′
𝑞

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
(WC-Cond-True)

𝛾(𝑥) = 𝑆 Γ ;𝛾 ;𝜎
𝑞′

𝑞−𝐾condT
𝑒1 : 𝐴⇒

⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
Γ ,𝑥 : bool;𝛾 ;𝜎

𝑞′
𝑞

if(𝑥,𝑒1, 𝑒2) : 𝐴⇒
⟨
𝑆 ∧𝜑,𝑆 ′ ,𝜎 ′

⟩
(WC-Cond-False)

𝛾(𝑥) = 𝑆 Γ ;𝛾 ;𝜎
𝑞′

𝑞−𝐾condF
𝑒2 : 𝐴⇒

⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
Γ ,𝑥 : bool;𝛾 ;𝜎

𝑞′
𝑞

if(𝑥,𝑒1, 𝑒2) : 𝐴⇒
⟨
¬𝑆 ∧𝜑,𝑆 ′ ,𝜎 ′

⟩
(WC-Share)

𝛾(𝑥) = 𝑆 Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2;𝛾[𝑥1 ↦→ 𝑆,𝑥2 ↦→ 𝑆];𝜎
𝑞′
𝑞

𝑒 : 𝐴′ ⇒
⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
.(𝐴 | 𝐴1,𝐴2)

Γ ,𝑥 : 𝐴;𝛾 ;𝜎
𝑞′
𝑞

share(𝑥,𝑥1.𝑥2.𝑒) : 𝐴′ ⇒
⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
Fig. 10: Rules of the type-guided worst-case input generation algorithm (II)

heap 𝜎1: 𝑦 : int × int;𝑦𝑠 : 𝐿0(int × int);𝛾[𝑦𝑠 ↦→ ℓ3];𝜎1 0
4

cons(𝑦,𝑦𝑠) : 𝐿0(int × int) ⇒ ⟨⊤, ℓ4,𝜎2⟩
where 𝜎2 = 𝜎1[ℓ4 ↦→ cons(⟨int1, int2⟩, ℓ3)]. Thus by rule (WC-Let) we have the following:

𝑦 : int × int,𝑥𝑠′ ;𝛾 ;𝜎 0
6

let(app(lpairs,𝑥𝑠′), 𝑦𝑠.cons(𝑦,𝑦𝑠)) : 𝐿0(int × int) ⇒
⟨
int3 < int4, ℓ4,𝜎2

⟩
.

The list that ℓ4 points to then corresponds to [⟨int1, int2⟩,⟨int3, int4⟩].

In order to formulate our input generation algorithm for structural typing rules, we define the

Σ;Γ ;𝛾 ;𝜎
𝑞′
𝑞
𝑒 : 𝐴⇒

⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
Under 𝛾,𝜎 , a worst-case path for 𝑒 returns 𝑆,𝜎 ′ with constraint 𝜑

(WC-Weakening)

Γ ;𝛾 ;𝜎
𝑞′
𝑞

𝑒 : 𝐴′ ⇒
⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
𝛾(𝑥) = 𝑆 Φ̃𝜎 (𝑆 : 𝐴) = 0

Γ ,𝑥 : 𝐴;𝛾 ;𝜎
𝑞′
𝑞

𝑒 : 𝐴′ ⇒
⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
(WC-Relax)

Γ ;𝛾 ;𝜎
𝑝′
𝑝

𝑒 : 𝐴⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
𝑞 ≥ 𝑝 𝑞 − 𝑝 = 𝑞′ − 𝑝′

Γ ;𝛾 ;𝜎
𝑞′
𝑞

𝑒 : 𝐴⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
(WC-Subtype)

Γ ;𝛾 ;𝜎
𝑞′
𝑞

𝑒 : 𝐴⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
𝐴 <: 𝐵

Φ̃𝜎 ′ (𝑆 : 𝐴) = Φ̃𝜎 ′ (𝑆 : 𝐵)

Γ ;𝛾 ;𝜎
𝑞′
𝑞

𝑒 : 𝐵⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
(WC-Supertype)

Γ ,𝑥 : 𝐵;𝛾 ;𝜎
𝑞′
𝑞

𝑒 : 𝐶⇒
⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
𝐴 <: 𝐵

𝛾(𝑥) = 𝑆 Φ̃𝜎 (𝑆 : 𝐴) = Φ̃𝜎 (𝑆 : 𝐵)

Γ ,𝑥 : 𝐴;𝛾 ;𝜎
𝑞′
𝑞

𝑒 : 𝐶⇒
⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
Fig. 11: Rules of the resource-aware worst-case input generation algorithm (III)

potential of skeletons, written Φ̃𝜎 (𝑆 : 𝐴), as follows.

Φ̃𝜎 (𝑆 : 𝐴) = 0 where 𝐴 ∈ {unit,bool, int}
Φ̃𝜎 (𝑆 : 𝐴1 ×𝐴2) = Φ̃𝜎 (𝑆1 : 𝐴1) + Φ̃𝜎 (𝑆2 : 𝐴2) where 𝑆 = ⟨𝑆1,𝑆2⟩

Φ̃𝜎 (ℓ : 𝐴) = Φ̃𝜎 (𝑅 : 𝐴) where 𝑅 = 𝜎 (ℓ)

Φ̃𝜎 (nil : 𝐿𝑝(𝐴)) = 0

Φ̃𝜎 (cons(𝑆ℎ,𝑆𝑡) : 𝐿𝑝(𝐴)) = 𝑝+ Φ̃𝜎 (𝑆ℎ : 𝐴) + Φ̃𝜎 (𝑆𝑡 : 𝐿𝑝(𝐴))

Φ̃𝜎 (listof(𝑆1, · · · ,𝑆𝑛) : 𝐿𝑝(𝐴)) = 𝑛 · 𝑝+
∑︀𝑛

𝑖=1 Φ̃𝜎 (𝑆𝑖 : 𝐴)

Φ̃𝜎 (leaf : 𝑇 𝑝(𝐴)) = 0

Φ̃𝜎 (node(𝑆0,𝑆1,𝑆2) : 𝑇 𝑝(𝐴)) = 𝑝+ Φ̃𝜎 (𝑆0 : 𝐴) + Φ̃𝜎 (𝑆1 : 𝑇 𝑝(𝐴)) + Φ̃𝜎 (𝑆2 : 𝑇 𝑝(𝐴))

Φ̃𝜎 (treeof(𝑆1, · · · ,𝑆𝑛) : 𝑇 𝑝(𝐴)) = 𝑛 · 𝑝+
∑︀𝑛

𝑖=1 Φ̃𝜎 (𝑆𝑖 : 𝐴)

Fig. 11 shows the rules for worst-case input generation against structural rules. Our algorithm
supports structural rules but forces these rules not to waste potential. The rule (WC-Weakening)
requires the variable 𝑥 that is thrown away to carry zero potential. The rule (WC-Relax) still permits
adding some constant number to the potential functions, but the amounts added to the potential
before evaluation of an expression and after the evaluation must be identical. Sub-typing is permitted
if the skeleton has the same potential with respect to the types 𝐴,𝐵 where 𝐴 is a sub-type of 𝐵.

After the worst-case input generation algorithm establishes a judgment Σ;Γ ;𝛾 ;𝜎
𝑞′
𝑞

𝑒 : 𝐴 ⇒⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
, we use the decision procedure for ℒ[bool𝑖 , int𝑖] to find a model 𝑀 for the path constraint 𝜑.

If the model 𝑀 is found, we can then use it to concretize the input skeleton 𝛾,𝜎 to a concrete input
that will expose the worst-case resource consumption.

Example 5.2. Recall the program in Fig. 1 with the function lpairs. Let an input skeleton be 𝛾 = {𝑙 ↦→ ℓ1},
𝜎 = {ℓ1 ↦→ cons(int1,cons(int2,cons(int3,cons(int4,nil))))}. For the heap space metric, our algorithm
derives

𝑙 : 𝐿3(int);𝛾 ;𝜎 0
2

app(lpairs, 𝑙) : 𝐿0(int× int)⇒
⟨
(int1 < int2)∧ (int3 < int4), ℓ4,𝜎

′⟩
where 𝜎 ′ = 𝜎 [ℓ2 ↦→ nil, ℓ3 ↦→ cons(⟨int3, int4⟩, ℓ2), ℓ4 ↦→ cons(⟨int1, int2⟩, ℓ3)]. The constraint (int1 <
int2)∧ (int3 < int4) is satisfiable in the model 𝑀 = {int1 ↦→ 0, int2 ↦→ 1, int3 ↦→ 0, int4 ↦→ 1}. Hence our
algorithm finds a worst case input [0,1,0,1] for the function lpairs.

18

5 TYPE-GUIDED WORST-CASE INPUT GENERATION ALGORITHM 19

Remark 5.3. A practical relaxation of the formalization for worst-case input generation problem could be
that we allow a bounded amount of resource waste from the inferred resource bound. We call the problem
that allows 𝑑 units of potential waste the 𝑑-bounded worst-case input generation. It is straightforward
to extend our algorithm by adding a component to record current potential waste and forcing the waste
not to exceed the specified bound 𝑑. For example, the rule (WC-Relax) can be modified as follows where
𝑤,𝑤′ ∈Q+

0 stand for potential waste.

(WC-Relax)

Γ ;𝛾 ;𝜎
𝑝′
𝑝

𝑒 : 𝐴⇒
⟨
𝜑,𝑆,𝜎 ′ ,𝑤

⟩
𝑞 ≥ 𝑝 𝑞 − 𝑝 ≥ 𝑞′ − 𝑝′ 𝑤′ = 𝑤+ ((𝑞 − 𝑝)− (𝑞′ − 𝑝′)) 𝑤′ ≤ 𝑑

Γ ;𝛾 ;𝜎
𝑞′
𝑞

𝑒 : 𝐴⇒
⟨
𝜑,𝑆,𝜎 ′ ,𝑤′

⟩
5.2 Proof
Complete proofs are included in appendix A.

Soundness. The soundness theorem states that if for a function 𝑓 with a resource-annotated type,
the worst-case input generation algorithm terminates with

⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
under the skeleton environment

𝛾 and the skeleton heap 𝜎 , then the evaluation of the function 𝑓 under the concrete environment 𝑉
that is the concretization of 𝛾,𝜎 that satisfies 𝜑 consumes the amount of resource exactly the same as
the inferred upper bound.

Theorem 5.4 (Soundness). If Σ;𝑥𝑓 : 𝐴1;𝛾 ;𝜎
𝑞′
𝑞

𝑒𝑓 : 𝐴2⇒
⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
, 𝜎 ⊢ 𝛾 : (𝑥𝑓 : 𝐴1), 𝑀 is a model

for 𝜑, 𝑀 ⊢ 𝜎 ′ ⊑𝐻 , and 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 , then there exists a value 𝑣, satisfying 𝑉
𝑞′+Φ(𝑣:𝐴2)

𝑞+Φ𝑉 (𝑥𝑓 :𝐴1)
𝑒𝑓 ⇓ 𝑣, and

𝑀;𝐻 ⊢ 𝑆⇝ 𝑣.

To establish soundness, we prove the following generalized theorem.

Theorem 5.5. If Σ;Γ ;𝛾 ;𝜎
𝑞′
𝑞

𝑒 : 𝐴 ⇒
⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
, 𝜎 ⊢ 𝛾 : Γ , 𝑀 is a model for 𝜑, 𝑀 ⊢ 𝜎 ′ ⊑ 𝐻 , and

𝑀;𝐻 ⊢ 𝛾 ⇝ 𝑉 , then for all 𝑝,𝑟 ∈ Q+
0 such that 𝑝 = 𝑞 + Φ𝑉 (Γ) + 𝑟, there exist 𝑝′ ∈ Q+

0 and a value 𝑣,

satisfying 𝑉
𝑝′
𝑝

𝑒 ⇓ 𝑣, 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴) + 𝑟, and 𝑀;𝐻 ⊢ 𝑆⇝ 𝑣.

Proof. By induction on the derivation of Σ;Γ ;𝛾 ;𝜎
𝑞′
𝑞
𝑒 : 𝐴⇒

⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
.

Remark 5.6. Suppose 𝑓 is a function with the signature 𝐴1
𝑞/𝑞′
−−−−→ 𝐴2 ∈ Σ(𝑓) with 𝑞′ = 0 and .(𝐴2 |

𝐴2,𝐴2), i.e., the result type carries only zero potential. Given an input skeleton 𝛾,𝜎 such that 𝜎 ⊢
𝛾 : (𝑥𝑓 : 𝐴1), let Ψ = 𝑞 + Φ̃𝜎 (𝛾(𝑥𝑓) : 𝐴1), then for every concretization 𝑀,𝐻 such that 𝑀 ⊢ 𝜎 ⊑ 𝐻 ,
𝑀;𝐻 ⊢ 𝛾 ⇝ 𝑉 , we have Ψ = 𝑞 + Φ(𝑉 (𝑥𝑓) : 𝐴1) = 𝑞 + Φ𝑉 (𝑥𝑓 : 𝐴1). Hence by Thm. 3.3, for every 𝑉

such that |= 𝑉 : (𝑥𝑓 : 𝐴1), if 𝑉
𝑝′
𝑝

𝑒𝑓 ⇓ 𝑣, then 𝑝 − 𝑝′ ≤ (𝑞 + Φ𝑉 (𝑥𝑓 : 𝐴1)) − (𝑞′ + Φ(𝑣 : 𝐴2)) = Ψ . If

Σ;𝑥𝑓 : 𝐴1;𝛾 ;𝜎
𝑞′
𝑞

𝑒𝑓 : 𝐴2 ⇒
⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
, 𝑀 is a model for 𝜑, 𝑀 ⊢ 𝜎 ′ ⊑ 𝐻 , and 𝑀;𝐻 ⊢ 𝛾 ⇝ 𝑉 , then by

Thm. 5.5, there exists a value 𝑣 such that 𝑉 0
Ψ

𝑒𝑓 ⇓ 𝑣, and hence 𝑀,𝐻 exposes the resource usage that is
greater than or equal to the resource consumption of all other concretizations.

Relative Completeness. We now want to study the completeness of our worst-case input genera-
tion algorithm. Although the theory ℒ[bool𝑖 , int𝑖] for booleans and integers might be undecidable, we
prove our algorithm is complete modulo constraint solving. If a function 𝑓 with a resource-annotated
type has a worst-case input that is a concretization of the input skeleton 𝛾,𝜎 and exposes exactly the

same resource usage as the inferred upper bound, then our algorithm is able to find a path constraint
that corresponds to the concretization.

Theorem 5.7 (Completeness). If Σ;𝑥𝑓 : 𝐴1 𝑞′
𝑞
𝑒𝑓 : 𝐴2, |= 𝑉 : Γ , 𝑉

𝑞′+Φ(𝑣:𝐴2)

𝑞+Φ𝑉 (𝑥𝑓 :𝐴1)
𝑒 ⇓ 𝑣, 𝜎 ⊢ 𝛾 : (𝑥𝑓 : 𝐴1),

𝑀 ⊢ 𝜎 ⊑𝐻 , and 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 , then there exist 𝜑,𝑆,𝜎 ′ , satisfying Σ;𝑥𝑓 : 𝐴1;𝛾 ;𝜎
𝑞′
𝑞
𝑒𝑓 : 𝐴2⇒

⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
,

and 𝑀 is a model for 𝜑.

To establish completeness, we prove the following generalized theorem.

Theorem 5.8. If Σ;Γ
𝑞′
𝑞

𝑒 : 𝐴, |= 𝑉 : Γ , 𝑉
𝑝′
𝑝

𝑒 ⇓ 𝑣, 𝑝 = 𝑞 +Φ𝑉 (Γ) + 𝑟, 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴) + 𝑟, 𝜎 ⊢ 𝛾 : Γ ,

𝑀 ⊢ 𝜎 ⊑𝐻 , and 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 , then there exist 𝜑,𝑆,𝜎 ′ ,𝐻 ′ , satisfying Σ;Γ ;𝛾 ;𝜎
𝑞′
𝑞
𝑒 : 𝐴⇒

⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
, 𝑀

is a model for 𝜑, 𝐻 ⊆𝐻 ′ , 𝑀 ⊢ 𝜎 ′ ⊑𝐻 ′ , 𝑀;𝐻 ′ ⊢ 𝛾⇝ 𝑉 , and 𝑀;𝐻 ′ ⊢ 𝑆⇝ 𝑣.

Proof. By induction on the derivation of 𝑉
𝑝′
𝑝

𝑒 ⇓ 𝑣 and the derivation of Γ
𝑞′
𝑞

𝑒 : 𝐴, where the

derivation of the evaluation judgment takes priority over the typing judgment.

6 Heuristics for Compositional Input Generation
The type-guided worst-case input generation algorithm developed in §5 could become inefficient
when the input skeleton is large and there remain a lot of candidate execution paths to investigate,
even after the resource-annotated derivation has already helped prune the search space.

Let us first investigate the possible causes of inefficiency. As we already discussed in §5.1, most
of the generation rules are deterministic, except the following three rules: (WC-Cond-True), (WC-

Cond-False), and (WC-MatT-Tree-NonEmpty). For the first two rules, the nondeterminism occurs
because our algorithm does not know the actual value of the predicate of a conditional expression.
For the third rule, the nondeterminism comes from the enumeration of possible tree structures.
When the size of the input skeleton increases, the total number of combinations that come from the
nondeterministic rules is likely to exhibit an exponential blowup.

One way to improve the scalability of our input generation algorithm is to exploit compositionality—
specifically, we hope to restrict the combinations of execution paths inside the function boundaries.
Intuitively, when we search for a candidate path constraint for a function on an input skeleton, we
want to first generate feasible path constraints for function calls inside the function body on subparts
of the input skeleton, and then combine these constraints in a sound way.

Thm. 5.5 provides soundness guarantee for our input generation algorithm. The theorem implies
that even if we only enable a subset of the generation rules, the algorithm always returns correct
sufficient constraints for worst-case inputs, if it terminates with some results. This property gives
us several opportunities to devise search heuristics that can enable, disable, and prioritize partial
executions during the generation algorithm. In this section, we develop two search heuristics for
compositional input generation.

6.1 Uniform Execution
To get rid of nondeterministic rules for conditional expressions, one idea is to force the algorithm to
choose the same branch for each conditional expression. Because on worst-case inputs the program
always executes the same branch, we call this heuristic uniform execution. In this way, the algorithm
only needs to enumerate a global configuration for conditional expressions. Formally, given a global
configuration config : Exp→ {←,→}, the worst-case input generation algorithm proceeds as follows

20

6 HEURISTICS FOR COMPOSITIONAL INPUT GENERATION 21

let rec partition a = function
| []→ ([], [])
| x :: xs→
let (cs, bs) = partition a xs in
if (x:int) ≥ (a:int) then
(cs, x :: bs)

else
(x :: cs, bs)

let rec qsort = function
| []→ []
| x :: xs→
let (ys, zs) = partition x xs in
let left = qsort ys in
let right = qsort zs in
left ++ (x :: right)

(a) Original code

let rec wc_partition a = function
| []→ (⊤, ([], []))
| x :: xs→
let (𝜑, (cs, bs)) = wc_partition a xs in
(¬ (x ≥ a) ∧ 𝜑, (x :: cs, bs))

let rec wc_qsort = function
| []→ (⊤, [])
| x :: xs→
let (𝜑_p, (ys, zs)) = wc_partition x xs in
let (𝜑_l, left) = wc_qsort ys in
let (𝜑_r, right) = wc_qsort zs in
(𝜑_r ∧ 𝜑_l ∧ 𝜑_p, left ++ (x :: right))

(b) Pseudocode of compositional input generation

Fig. 12: The quicksort example

for conditional expressions.

(WC-Cond-True)

config(if(𝑥,𝑒1, 𝑒2)) =← 𝛾(𝑥) = 𝑆

Γ ;𝛾 ;𝜎
𝑞′

𝑞−𝐾condT
𝑒1 : 𝐴⇒

⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
Γ ,𝑥 : bool;𝛾 ;𝜎

𝑞′
𝑞

if(𝑥,𝑒1, 𝑒2) : 𝐴⇒
⟨
𝑆 ∧𝜑,𝑆 ′ ,𝜎 ′

⟩
(WC-Cond-False)

config(if(𝑥,𝑒1, 𝑒2)) =→ 𝛾(𝑥) = 𝑆

Γ ;𝛾 ;𝜎
𝑞′

𝑞−𝐾condF
𝑒2 : 𝐴⇒

⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
Γ ,𝑥 : bool;𝛾 ;𝜎

𝑞′
𝑞

if(𝑥,𝑒1, 𝑒2) : 𝐴⇒
⟨
¬𝑆 ∧𝜑,𝑆 ′ ,𝜎 ′

⟩
If for some function, the uniform-execution heuristic succeeds for every input skeleton then we

can extract a compositional input generation procedure from the original function by embedding our
type-guided input generation rules. In §2 we already showed the procedure wc_lpairs in Fig. 2 for
the function lpairs in Fig. 1. As another example, Fig. 12b is the pseudocode of an input generation
procedure extracted from an implementation of quicksort in Fig. 12a, where 𝑙1 ++ 𝑙2 returns the
concatenation of two lists 𝑙1, 𝑙2.

6.2 Skeleton Similarity
The uniform-execution heuristic might fail when there does not exist a global configuration of
conditional expressions such that on worst-case inputs the function always executes the same branch
of a conditional expression. However, intuitively, a function is likely to execute the same execution
path on worst-case inputs of the same shape. We then develop skeleton similarity, a heuristic that
reuses the search results for input skeletons of similar shapes.

Formally, we define the similarity relation between skeletons in Fig. 13, written 𝜎,𝜎 ′ ⊢𝜌 𝑆 ∼ 𝑆 ′ ,
where 𝜌 is a mapping between indeterminates. We omit the fixed 𝜌 from these rules. We also write
⊢𝜌 𝜑 ∼ 𝜑′ for the similarity of formulas, which is defined in an obvious way. Intuitively, if for a

function call app(𝑓 ,𝑥), we already established Σ;𝑥𝑓 : 𝐴1;𝑥𝑓 ↦→ 𝑆𝑟 ;𝜎𝑟 𝑞′
𝑞
𝑒𝑓 : 𝐴2⇒

⟨︀
𝜑𝑟 ,𝑆

′
𝑟 ,𝜎
′
𝑟
⟩︀
, and we

want to find a worst-case execution path for another input skeleton with the same shape, i.e., 𝑆,𝜎𝑆
such that 𝜎𝑆 ⊢ 𝑆 : 𝐴1, 𝜎𝑟 ,𝜎𝑆 ⊢𝜌 𝑆𝑟 ∼ 𝑆 for some mapping 𝜌, then we can use 𝜌 to substitute the boolean
and integer indeterminates in 𝑆 ′𝑟 ,𝜎

′
𝑟 as a candidate generation result, i.e., 𝜎 ′𝑟 ,𝜎

′
𝑆 ⊢𝜌 𝑆 ′𝑟 ∼ 𝑆 ′ . Formally,

we introduce the following rule, where 𝜎1 ⊗ 𝜎2 is the conjunction of two separated skeleton heaps.

(WC-App-Skel-Sim)

𝑥𝑓 : 𝐴1;𝑥𝑓 ↦→ 𝑆𝑟 ;𝜎𝑟 𝑞′
𝑞

𝑒𝑓 : 𝐴2⇒
⟨
𝜑𝑟 ,𝑆

′
𝑟 ,𝜎
′
𝑟

⟩
𝛾(𝑥) = 𝑆 𝜎𝑆 ⊢ 𝑆 : 𝐴1 𝜎𝑟 ,𝜎𝑆 ⊢𝜌 𝑆𝑟 ∼ 𝑆 𝜎 ′𝑟 ,𝜎

′
𝑆 ⊢𝜌 𝑆 ′𝑟 ∼ 𝑆 ′ ⊢𝜌 𝜑𝑟 ∼ 𝜑

𝑥 : 𝐴1;𝛾 ;𝜎 ⊗ 𝜎𝑆 𝑞′
𝑞+𝐾app

app(𝑓 ,𝑥) : 𝐴2⇒
⟨
𝜑,𝑆 ′ ,𝜎 ⊗ 𝜎 ′𝑆

⟩
Example 6.1. Recall the program in Fig. 1 which defines the function lpairs. Let 𝑆𝑟 = ℓ1, 𝜎𝑟 = {ℓ1 ↦→

cons(int1,cons(int2,nil)) be a recorded input skeleton. Then a possible generation result is 𝜑𝑟 = (int1 <
int2), 𝑆 ′𝑟 = ℓ3, 𝜎 ′𝑟 = 𝜎𝑟 [ℓ2 ↦→ nil, ℓ3 ↦→ cons(⟨int1, int2⟩, ℓ2)]. Suppose later we encounter a function call
with 𝑆 = ℓ4, 𝜎𝑆 = {ℓ4 ↦→ cons(int3,cons(int4,nil))}. Let 𝜌 = {int1 ↦→ int3, int2 ↦→ int4}, then we have
𝜎𝑟 ,𝜎𝑆 ⊢ 𝑆𝑟 ∼ 𝑆. By substitution of integer indeterminates with respect to 𝜌, we derive 𝜎 ′𝑆 = 𝜎𝑆 [ℓ5 ↦→
nil, ℓ6 ↦→ cons(⟨int3, int4⟩, ℓ5)], 𝑆 ′ = ℓ6, and 𝜑 = (int3 < int4). In this way, our algorithm proceeds without
investigating again the function body.

Theorem 6.2. The rule (WC-App-Skel-Sim) is sound.

Proof. It suffices to show 𝑥 : 𝐴1;𝛾 ;𝜎𝑆 𝑞′
𝑞+𝐾app

app(𝑓 ,𝑥) : 𝐴2⇒
⟨
𝜑,𝑆 ′ ,𝜎 ′𝑆

⟩
. The proof proceeds by

induction on the derivation of 𝑥𝑓 : 𝐴1;𝑥𝑓 ↦→ 𝑆;𝜎𝑟 𝑞′
𝑞
𝑒𝑓 : 𝐴2⇒

⟨︀
𝜑𝑟 ,𝑆

′
𝑟 ,𝜎
′
𝑟
⟩︀
.

Operationally, this heuristics can be implemented with a skeleton cache cache𝑓 for a function 𝑓 ,
such that cache𝑓 (𝑆𝑟 ,𝜎𝑟) = (𝜑𝑟 ,𝑆

′
𝑟 ,𝜎
′
𝑟). When the input generation algorithm encounters a function

call, it first looks up the cache to see if there is a similar input skeleton that has been processed. If
there is a cache record then the algorithm tries the recorded path constraint. Otherwise, it proceeds as
with the original rules and, after generating a satisfiable path constraint for the function call, records
the result into the cache.

7 Evaluation
In this section, we describe the implementation of our worst-case generation algorithm building on
RaML, a summary of an evaluation with 22 benchmark programs, and multiple detailed case studies.
The source code of the benchmark programs is included in appendix B.

𝜎,𝜎 ′ ⊢𝜌 𝑆 ∼ 𝑆 ′ Skeleton 𝑆 under 𝜎 is similar to skeleton 𝑆 ′ under 𝜎 ′

𝜎,𝜎 ′ ⊢ null ∼ null

𝑏 ∈ {true, false}
𝜎,𝜎 ′ ⊢ 𝑏 ∼ 𝑏

𝜌(bool𝑖) = bool𝑗

𝜎,𝜎 ′ ⊢ bool𝑖 ∼ bool𝑗
𝑛 ∈Z

𝜎,𝜎 ′ ⊢ 𝑛 ∼ 𝑛

𝜌(int𝑖) = int𝑗

𝜎,𝜎 ′ ⊢ int𝑖 ∼ int𝑗
𝜎,𝜎 ′ ⊢ 𝜎 (ℓ) ∼ 𝜎 ′(ℓ′)

𝜎,𝜎 ′ ⊢ ℓ ∼ ℓ′

𝜎,𝜎 ′ ⊢ nil ∼ nil

𝜎,𝜎 ′ ⊢ 𝑆ℎ ∼ 𝑆 ′ℎ 𝜎,𝜎 ′ ⊢ 𝑆𝑡 ∼ 𝑆 ′𝑡
𝜎,𝜎 ′ ⊢ cons(𝑆ℎ,𝑆𝑡) ∼ cons(𝑆 ′ℎ,𝑆

′
𝑡)

∀𝑖 ∈ {1, · · · ,𝑛} : 𝜎,𝜎 ′ ⊢ 𝑆𝑖 ∼ 𝑆 ′𝑖
𝜎,𝜎 ′ ⊢ listof(𝑆1, · · · ,𝑆𝑛) ∼ listof(𝑆 ′1, · · · ,𝑆

′
𝑛)

𝜎,𝜎 ′ ⊢ leaf ∼ leaf

∀𝑖 ∈ {0,1,2} : 𝜎,𝜎 ′ ⊢ 𝑆𝑖 ∼ 𝑆 ′𝑖
𝜎,𝜎 ′ ⊢ node(𝑆0,𝑆1,𝑆2) ∼ node(𝑆 ′0,𝑆

′
1,𝑆
′
2)

∀𝑖 ∈ {1, · · · ,𝑛} : 𝜎,𝜎 ′ ⊢ 𝑆𝑖 ∼ 𝑆 ′𝑖
𝜎,𝜎 ′ ⊢ treeof(𝑆1, · · · ,𝑆𝑛) ∼ treeof(𝑆1, · · · ,𝑆𝑛)

Fig. 13: Skeleton similarity relation

22

7 EVALUATION 23

7.1 Implementation
We integrate our type-guided worst-case input generation algorithm in the existing RaML system
[Hoffmann et al. 2017]. The algorithm is implemented in OCaml and consists of about 1600 lines
of code. To generate a worst-case input for a top-level function in a source program, the user needs
to specify a resource metric, a maximal degree of the resource bounds, and an input skeleton. We
then invoke RaML’s type inference to derive an upper bound on the resource usage and a resource-
annotated type-derivation tree. The input generation rules are implemented as a recursive function
on the derivation tree in continuation-passing style. Our implementation resolves nondeterminism
in the rules systematically via two continuations, one for generation success and one for generation
failure. When a path constraint is generated, we use the off-the-shelf SMT solver Z3 [de Moura
and Bjørner 2008] to check its satisfiability and generate models to resolve boolean and integer
indeterminates in the input skeleton. If the SMT solver succeeds, we use the generated model to
obtain a concrete heap via the relation 𝑀 ⊢ 𝜎 ⊑𝐻 and concretize the input skeleton via the relation
𝑀;𝐻 ⊢ 𝑆⇝ 𝑣. Otherwise, we continue to search for other path constraints.

We have also implemented the two heuristics for compositional worst-case input generation, which
can be enabled by the user. The uniform-execution heuristic is implemented by enumerating global
configurations for all conditional expressions in the given program before the input generation. The
skeleton-similarity heuristic is implemented by employing a hash table as the generation cache. Instead
of the similarity relation, we define signatures for input skeletons such that skeletons of the same
signature are similar to each other. Then we use the signature as the hash key in the generation cache.
When processing function calls, we extract the signature of the current input skeleton and look it up
in the cache. If a recorded generation result does not exist, we use the original rules to generate a
worst-case path constraint as well as the corresponding output skeleton, and record them in the cache.
Otherwise, we instantiate the recorded constraint and output skeleton for the current input skeleton.

We also apply several simple optimizations. First, we cache the results of potential functions
to eliminate redundant computation. Second, we try to simplify the skeletons during the input
generation via partial evaluation, in order to deduce the value of predicates in the conditional
expressions. Third, we insert satisfiability checking of path constraints during the input generation
to get rid of unsatisfiable execution paths as early as possible.

7.2 Evaluation Setup
Research Questions. We evaluate our algorithm to answer the following questions.

• RQ1: Is our algorithm able to generate worst-case inputs for OCaml programs in practice?

• RQ2: Is our algorithm scalable to large input skeletons?

• RQ3: How does our algorithm compare to existing methods in terms of effectiveness and
efficiency?

Evaluated programs. Tab. 1 gives an overview of 22 programs on which we evaluate our algo-
rithm. It lists each case study’s function name,6 description, resource metric, inferred upper bound,
and time of type inference in RaML. The functions lpairs and lpairs_alt are the running examples we
use in §2. The functions isort, qsort, and hashtbl are similar to the benchmarks used by Noller et al.’s
Badger [Noller et al. 2018]. We collect some interesting programs from RaML’s examples [Hoffmann
et al. 2017]. We also implement new benchmarks such as the functions sum_avl, dfs_avl, bfs_avl that
operate on AVL trees. In most of these functions, we specify a standard heap space metric or an
evaluation step metric. We also include some case studies where we use a customized metric (that we

6Although our implementation takes a top-level function as its input, the program can contain auxiliary
functions that could be invoked by the analyzed function.

Table 1: Case studies. In the bounds 𝑛 is the size of the first argument, 𝑚𝑖 are the sizes of the elements
of the first argument, and 𝑥 is the size of the second element.

Function Description Metric Inferred Bound Time
lpairs : 𝐿(int)→ 𝐿(int2) Example in Fig. 1 Heap space 3𝑛+ 2 0.01s
lpairs_alt : 𝐿(int)→ 𝐿(int2) Example in Fig. 3 Heap space 3𝑛+ 2 0.01s
find : int×𝐿(int)→ bool Find an element in a list Eval. steps 12𝑥+ 3 0.01s
compare : 𝐿(int)2→ int Lexicographic comparison Eval. steps 20𝑥+ 5 0.01s
opairs : 𝐿(int)→ 𝐿(int2) Generate ordered pairs Eval. steps 26

(︀𝑛
2
)︀

+ 17𝑛+ 3 0.02s
queue : 𝐿(bool× int)→ unit Functional queue Eval. steps 34.5𝑛+ 12 0.01s
eratos : 𝐿(int)→ 𝐿(int) Sieve of Eratosthenes Eval. steps 21

(︀𝑛
2
)︀

+ 25𝑛+ 3 0.02s
isort : 𝐿(int)→ 𝐿(int) Insertion sort Eval. steps 20

(︀𝑛
2
)︀

+ 15𝑛+ 10 0.02s
qsort : 𝐿(int)→ 𝐿(int) Quicksort Eval. steps 29

(︀𝑛
2
)︀

+ 28𝑛+ 10 0.04s
qsort_pairs : 𝐿(int2)→ 𝐿(int2) Tail-recursive quicksort of pairs Eval. steps 37

(︀𝑛
2
)︀

+ 32𝑛+ 13 0.04s
qsort_lists : 𝐿(𝐿(int))→ 𝐿(𝐿(int)) Lexicographic quicksort Eval. steps

∑︀
1≤𝑖<𝑗≤𝑛 20𝑚𝑗 + 39

(︀𝑛
2
)︀

+ 34𝑛+ 10 0.33s
sort_all : 𝐿(𝐿(int))→ 𝐿(𝐿(int)) Quicksort all buckets Eval. steps

∑︀
1≤𝑖≤𝑛(33

(︀𝑚𝑖
2
)︀

+ 34𝑚𝑖) + 20𝑛+ 3 0.18s
zigzag : 𝑇 (unit)→ unit Zigzag on a tree Eval. steps 11𝑛+ 3 0.01s
subtrees : 𝑇 (unit)→ 𝐿(𝑇 (unit)) Collect all subtrees Eval. steps 9

(︀𝑛
2
)︀

+ 26𝑛+ 3 0.03s
find_tree : int× 𝑇 (int)→ bool Find an element in a search tree Eval. steps 18𝑛+ 3 0.01s
build_tree : 𝐿(int)→ 𝑇 (int) Build a search tree by insertion Eval. steps 16

(︀𝑛
2
)︀

+ 15𝑛+ 3 0.02s
hashtbl : 𝐿(int8)→ 𝐿(int×𝐿(int8)) Create a hash table for 8-char strings Ticks

(︀𝑛
2
)︀

0.14s
split_sort : 𝐿(int2)→ 𝐿(int2) Group pairs by key and sort each bucket Ticks 2

(︀𝑛
2
)︀

+𝑛 0.14s
kth : int×𝐿(int)→ int Quickselect Ticks

(︀𝑥
2
)︀

0.08s
sum_avl : 𝑇 (int2)→ int Sum all nodes of an AVL tree Ticks 𝑛 0.01s
dfs_avl : 𝑇 (int2)→ 𝐿(int) Depth-first-search and sort the nodes Ticks

(︀𝑛
2
)︀

+𝑛 0.06s
bfs_avl : 𝑇 (int2)→ 𝐿(int) Breadth-first-search and sort the nodes Ticks

(︀𝑛
2
)︀

+ 9𝑛+ 4 0.27s

refer to as “ticks”), for example, for the function hashtbl we specify a metric to count the number of
hash collisions.

Experiment Execution. For all functions we ran three variations: (i) ALG: our type-guided worst-
case input generation algorithm, (ii) ALG+H1: the algorithm with the uniform-execution heuristic
enabled, and (ii) ALG+H2: the algorithm with the skeleton-similarity heuristic enabled. For each
function, we evaluated all these algorithms on four input skeletons of different sizes. We ran our
experiments fo 5 times with a 15-minute timeout and computed the 20% trimmed mean of the
running time. Tab. 2 presents the statistics of running time of all the experiments.

Evaluation Platform. Our experiments were performed on a machine with an Intel Core i7 3.6
GHz processor and 16GB of RAM under macOS High Sierra 10.13.5.

7.3 Case Studies
For every function in Tab. 1, our type-guided worst-case input generation algorithm is able to find
worst-case inputs for some input skeletons of 5–200 nodes. This suggests that the inferred bounds
by RaML are tight for all these functions. We present a detailed description of the experiments for
several functions below.

Example 1: Quicksort of Integers. We use a mutually recursive implementation of the quick-
sort algorithm in [Xi 2002]. This implementation is interesting because the worst-case inputs are not
reversely ordered lists as usual. Although ALG runs out of time for input lists of length 64, 100, and
200, both ALG+H1 and ALG+H2 are able to generate a worst-case input for each of these lengths
in 3 minutes. Intuitively, the reason why ALG fails is that the number of candidate execution paths
is 𝑂(2𝑛) where 𝑛 is the length of the input list. For example, for the input list of length 10, ALG
generates the worst-case input [0,−2,−4,−6,−8,−9,−7,−5− 3,−1].

24

7 EVALUATION 25

Table 2: Running time statistics (in seconds). “T/O” stands for timeout.

Function ALG ALG+H1 ALG+H2 ALG ALG+H1 ALG+H2 ALG ALG+H1 ALG+H2 ALG ALG+H1 ALG+H2

lpairs
𝑛 = 10 𝑛 = 50 𝑛 = 100 𝑛 = 200

0.01 0.01 0.06 0.01 0.01 0.26 0.02 0.02 0.57 0.03 0.03 1.15

lpairs_alt
𝑛 = 10 𝑛 = 30 𝑛 = 100 𝑛 = 200

0.11 0.79 0.08 321.83 T/O 0.25 T/O T/O 0.84 T/O T/O 1.73

find
𝑛 = 10 𝑛 = 50 𝑛 = 100 𝑛 = 200

0.01 0.01 0.11 0.01 0.01 0.55 0.02 0.02 1.11 0.03 0.03 2.34

compare
𝑛 = 10,𝑥 = 10 𝑛 = 50,𝑥 = 50 𝑛 = 100,𝑥 = 100 𝑛 = 200,𝑥 = 200

0.01 0.01 0.12 0.02 0.02 0.64 0.03 0.03 1.31 0.07 0.07 2.91

opairs
𝑛 = 10 𝑛 = 50 𝑛 = 100 𝑛 = 200

0.03 0.03 0.14 1.52 1.52 2.41 20.70 20.71 25.24 353.85 354.55 389.12

queue
𝑛 = 10 𝑛 = 50 𝑛 = 100 𝑛 = 200

0.04 0.09 0.15 3.54 35.33 7.77 36.90 709.71 109.35 444.64 T/O T/O

eratos
𝑛 = 10 𝑛 = 14 𝑛 = 18 𝑛 = 20

2.19 2.19 12.62 2.70 2.70 19.75 4.20 4.19 35.77 T/O T/O T/O

isort
𝑛 = 10 𝑛 = 50 𝑛 = 100 𝑛 = 200

0.02 0.02 0.14 0.29 0.26 1.24 1.33 1.20 7.07 7.74 6.97 94.81

qsort
𝑛 = 10 𝑛 = 64 𝑛 = 100 𝑛 = 200

1.38 0.07 0.19 T/O 2.99 4.84 T/O 8.67 15.34 T/O 53.23 157.21

qsort_pairs
𝑛 = 10 𝑛 = 50 𝑛 = 100 𝑛 = 200

0.03 0.03 0.25 0.51 0.50 2.07 2.56 2.50 9.35 14.96 14.79 71.68

qsort_lists
𝑛 = 10,𝑚𝑖 = 𝑛− 𝑖 + 1 𝑛 = 50,𝑚𝑖 = 𝑛− 𝑖 + 1 𝑛 = 75,𝑚𝑖 = 𝑛− 𝑖 + 1 𝑛 = 100,𝑚𝑖 = 𝑛− 𝑖 + 1

0.19 0.19 0.33 16.83 16.80 33.87 113.47 113.47 662.13 439.35 438.79 T/O

sort_all
𝑛 = 10,𝑚𝑖 = 10 𝑛 = 50,𝑚𝑖 = 10 𝑛 = 100,𝑚𝑖 = 10 𝑛 = 200,𝑚𝑖 = 10

T/O 0.32 0.67 T/O 1.46 0.73 T/O 2.95 0.89 T/O 6.52 1.66

zigzag
𝑛 = 10 𝑛 = 15 𝑛 = 100 𝑛 = 200

3.47 6.96 0.16 110.35 222.40 0.25 T/O T/O 1.74 T/O T/O 4.87

subtrees
𝑛 = 10 𝑛 = 13 𝑛 = 100 𝑛 = 200

0.23 0.23 0.12 1.75 1.76 0.16 T/O T/O 8.79 T/O T/O 112.35

find_tree
𝑛 = 10 𝑛 = 50 𝑛 = 100 𝑛 = 200

0.01 0.01 0.11 0.02 0.02 0.63 0.03 0.03 1.26 0.06 0.06 2.78

build_tree
𝑛 = 10 𝑛 = 50 𝑛 = 100 𝑛 = 200

0.02 0.02 0.23 0.32 0.32 1.48 1.55 1.53 6.69 9.22 9.16 88.56

hashtbl
𝑛 = 5 𝑛 = 10 𝑛 = 30 𝑛 = 64

0.50 0.49 0.68 2.16 2.16 16.30 3.07 3.08 60.14 7.64 7.62 181.74

split_sort
𝑛 = 10 𝑛 = 50 𝑛 = 100 𝑛 = 200

703.22 0.12 1.99 T/O 3.02 T/O T/O 14.60 T/O T/O 85.70 T/O

kth
𝑛 = 10 𝑛 = 50 𝑛 = 100 𝑛 = 200

0.03 0.03 0.11 0.35 0.35 1.24 1.60 1.57 6.02 8.78 8.67 54.36

sum_avl
𝑛 = 5 𝑛 = 10 𝑛 = 30 𝑛 = 50

0.18 0.18 0.17 70.06 70.13 0.93 T/O T/O 33.39 T/O T/O 240.88

dfs_avl
𝑛 = 5 𝑛 = 8 𝑛 = 30 𝑛 = 40

2.72 72.09 0.37 805.29 T/O 1.46 T/O T/O 260.55 T/O T/O T/O

bfs_avl
𝑛 = 5 𝑛 = 8 𝑛 = 12 𝑛 = 14

4.77 136.14 1.60 T/O T/O 16.54 T/O T/O 492.49 T/O T/O T/O

Example 2: Sequential Insertions in a Hash Table. We implement an OCaml program that
models the hash table function from Badger [Noller et al. 2018]. We insert an expression tick(1.0)
when a hash collision happens. By specifying the number of ticks as the resource metric, RaML
derives an upper bound

(︀𝑛
2
)︀

on the number of collisions, where 𝑛 is the number of insertions. In
this function, each key in the hash table has a length of 8 characters, and we model it as a tuple
type (abbreviated as int8). The hash values are in the range [0,64). We implement the DJBX33A
hash function used in a vulnerable PHP implementation [Website 2011]. The program performs 64
insertions into an empty hash table and we want to generate an insertion sequence to trigger the
worst-case number of hash collisions. ALG and ALG+H1 are able to generate a list of 64 strings of
length 8 in 20 seconds that cause the greatest number of hash collisions, i.e., all keys are different from

each other but have the same hash value, hence this insertion sequence triggers
(︀64

2
)︀

hash collisions,
while ALG+H2 takes a longer time. We think the reason why ALG+H2 runs much slower is that the
typing information is able to prune a sufficiently large part of the search space so the overheads of
caching dominate the running time.

Example 3: LexicographicQuicksort of Lists of Lists. This function is from RaML’s standard
benchmark set. It implements a standard quicksort that lexicographically sorts lists of lists. To
lexicographically compare two lists, one needs linear time in the length of the shorter list. For the
worst-case input generation, we specify input skeletons such that the lengths of inner lists are strictly
decreasing. ALG and ALG+H1 succeed in generating worst-case inputs for input lists of length 100,
while ALG+H3 runs out of time. The worst-case inputs they generate set all integers in the inner lists
to zero. However, if the inner lists of the input skeleton are not reversely ordered by length, these
algorithms report a generation failure. It suggests that the inferred bound by RaML is not tight for
these input skeletons. We think it is because currently, RaML does not support the min operator in
the resource polynomials, and in this example, it always assigns potential to the second argument of
a list comparison, hence when the first list has a shorter length, there exists potential waste.

Example 4: Zigzagging on a Binary Tree. We implement a tree traversal that visits the left
and right child alternatively. For a fixed size, the worst-case tree should arrange all its nodes on a
“zigzag” path so that the traversal needs to visit all its nodes. ALG and ALG+H1 become inefficient
when the size of the tree is 15, while ALG+H2 can easily generate a worst-case input for a tree of size
200, because a subtree of a zigzagging tree is indeed zigzagging.

Example 5: Summing up nodes of an AVL Tree. We implement another tree traversal that
simply sums up the values of all nodes but expresses some constraints on the tree structure. Basically,
we record a height in each node and then we require the height of a node should be one plus the
maximum of the heights of its children and the difference of heights of its left child and its right child
should not exceed one. This corresponds to AVL trees that are well-known balanced search trees. The
worst-case input generation algorithm is then able to generate valid AVL trees for a given size. Like
the last example, ALG and ALG+H1 time out on small input skeletons, but ALG+H2 is able to scale
to large input skeletons. The reason is that every subtree of an AVL tree is an AVL tree.

Discussion.
• RQ1: Our evaluation shows that our type-guided worst-case input generation algorithm is able

to handle a broad suite of OCaml programs, on condition that RaML infers tight bounds on
the programs. Moreover, as we discussed earlier in the paper, our algorithm is easy to modify
to handle 𝑑-bounded worst-case inputs, so if the RaML-inferred bound is not tight but only
differs from the original bound by a constant, our algorithm should also work.

• RQ2: Our evaluation shows that, in general, the time complexity of our input generation
algorithm is exponential in the size of the input skeleton. Nevertheless, the two heuristics,
uniform-execution and skeleton-similarity, can be helpful in practice. For example, if the worst-
case input data structure satisfies some inductive properties, e.g., it is a zigzagging tree or an
AVL tree, then the skeleton-similarity heuristic can scale to large input skeletons.

• RQ3: Although we do not perform a systematic comparison to existing techniques, we argue
that we make significant progress on some benchmark functions. For the quicksort and hash
table examples, Noller et al. evaluated Badger [Noller et al. 2018] on Java implementations for
5 hours, but did not generate an input that exposes worst-case resource consumption among all
possible inputs, e.g., on the hash table example, Badger produced an insertion sequence with
half of the worst-case number of hash collisions. Moreover, they only ran their tool to generate

26

8 RELATED WORK 27

inputs of size smaller or equal to 64 for sorting algorithms and hash tables. In contrast, we ran
our tool on several benchmarks including sorting algorithms with input size up to 200.

8 Related Work
Input Generation. Most closely related to our work are techniques for generating worst-case
inputs based on symbolic execution. WISE [Burnim et al. 2009] exhaustively explores all program
paths for small inputs to find worst-case paths. These paths are then used as a heuristic to limit the
search space for inputs of larger sizes. Similarly, SPF-WCA [Luckow et al. 2017] uses path policies
to prune parts of the search space during symbolic execution. It also takes into account calling
contexts and “execution histories” to guide the search. Badger [Noller et al. 2018] combines symbolic
execution with fuzz testing for generating resource intensive inputs to entirely avoid exhaustive
exploration. There are also pure fuzzers like SlowFuzz [Petsios et al. 2017] that aim at generating
inputs that cause programs to have high resource consumption. The main difference in our work
is that we use RaML’s type derivations to prune the search space. Advantages of this approach are
that it is more efficient, guarantees that the generated inputs are indeed witnesses for the worst-case
behavior, and, as a side effect, proves that the bounds derived by RaML are tight. A disadvantage is
that the technique is only applicable to programs for which RaML derives a bound.

There are tools for random testing such as QuickCheck [Claessen and Hughes 2000], Small-
check [Runciman et al. 2008], and QuickChick [Lampropoulos et al. 2018] that use type information
and additional properties to generate random tests. However, we are not aware that these tools have
been used to generate worst-case inputs or tests for exposing high resource usage.

Resource Analysis. Automatic resource bound analysis has been extensively studied.
AARA has been introduced [Hofmann and Jost 2003] for automatically deriving linear worst-

case bounds for first-order functional programs. The technique has been generalized to derive
polynomial bounds [Hoffmann et al. 2011; Hoffmann and Hofmann 2010; Hofmann and Moser 2015],
lower bounds [Ngo et al. 2017], higher-order functions [Hoffmann et al. 2017; Jost et al. 2010], lazy
functional programs [Simões et al. 2012; Vasconcelos et al. 2015], user defined data types [Hoffmann
et al. 2017; Jost et al. 2009], and numeric imperative program [Carbonneaux et al. 2017, 2015]. It also
has been integrated into separation logic [Atkey 2010] and proof assistants [Charguéraud and Pottier
2015; Nipkow 2015].

Beyond AARA, there exist many other approaches to automatic worst-case resource bound analysis.
They are based on sized types [Vasconcelos 2008], linear dependent types [Lago and Gaboardi 2011;
Lago and Petit 2013], refinement types [Çiçek et al. 2017, 2015; Wang et al. 2017], annotated type
systems [Crary and Weirich 2000; Danielsson 2008], defunctionalization [Avanzini et al. 2015],
recurrence relations [Albert et al. 2015; Danner et al. 2015; Flores-Montoya and Hähnle 2014; Kincaid
et al. 2017], abstract interpretation [Blanc et al. 2010; Gulwani et al. 2009; Sinn et al. 2014; Zuleger
et al. 2011], and techniques from term rewriting [Avanzini and Moser 2013; Brockschmidt et al. 2014;
Frohn et al. 2016; Noschinski et al. 2013].

In contrast to all the aforementioned works, we study the problem of automatically deriving
worst-case inputs. These inputs are also witnesses for the tightness of the derived bounds. We are not
aware of existing works that leverage automatically-derived bounds to compute worst-case inputs.

Symbolic Execution. A lot of techniques have been developed to improve effectiveness and
efficiency of symbolic execution in practice. Dynamic symbolic execution [Godefroid et al. 2005; Sen
et al. 2005] uses a specific concrete execution to drive the symbolic execution in the sense that the
concrete execution provides resolution of branches in the program. Selective symbolic execution
[Chipounov et al. 2012] interleaves concrete and symbolic executions in order to explore only some
components of a program. Symbolic backward execution [Chandra et al. 2009; Dinges and Agha 2014]

performs in the reverse direction of normal execution to identify an input instance to satisfy a given
post-condition. Different path selection strategies are proposed for different analysis goals [Cadar
et al. 2008; Ma et al. 2011; Zhang et al. 2015]. Our worst-case input generation algorithm essentially
performs symbolic execution with a depth-first path selection strategy, but utilizes typing derivations
to prune the search space as well as guide the search.

9 Conclusion
We have presented a type-guided worst-case input generation algorithm for functional programs
that is based on automatic amortized resource analysis. We have proved of soundness and relative
completeness of our algorithm and developed sound heuristics to find worst-case inputs more
efficiently. Finally, an implementation of our algorithm has been integrated with RaML and evaluated
with benchmark programs.

In the future, we plan to add support for negative resources to generate inputs that trigger worst-
case high-water marks. We will also work on mechanisms that use the absence of worst-case inputs
to improve the precision of resource-bound analyses. Another research direction is to support side
effects and more complex resource bounds such as those involving heights of trees. We are also
looking into symbolic execution techniques that can further improve the scalability of the worst-case
input generation algorithm.

Acknowledgments
This article is based on research supported by the United States Air Force under DARPA AA Contract
FA8750-18-C-0092 and DARPA STAC Contract FA8750-15-C-0082, and by the National Science
Foundation under SaTC Award 1801369 and SHF Award 1812876. Any opinions, findings, and
conclusions contained in this document are those of the authors and do not necessarily reflect the
views of the sponsoring organizations.

References
E. Albert, P. Arenas, S. Genaim, and G. Puebla. 2011. Closed-Form Upper Bounds in Static Cost Analysis. J.

Automated Reasoning 46 (February 2011). Issue 2.

E. Albert, J. C. Fernández, and G. Román-Díez. 2015. Non-cumulative Resource Analysis. In Tools and Algs. for the
Construct. and Anal. of Syst. (TACAS’15).

R. Atkey. 2010. Amortised Resource Analysis with Separation Logic. In European Symp. on Programming (ESOP’10).

M. Avanzini, U. D. Lago, and G. Moser. 2015. Analysing the Complexity of Functional Programs: Higher-Order
Meets First-Order. In Int. Conf. on Functional Programming (ICFP’15).

M. Avanzini and G. Moser. 2013. A Combination Framework for Complexity. In Int. Conf. on Rewriting Techniques
and Applications (RTA’13).

R. Blanc, T. A. Henzinger, T. Hottelier, and L. Kovács. 2010. ABC: Algebraic Bound Computation for Loops. In
Logic for Prog., AI., and Reasoning (LPAR’10).

M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. 2014. Alternating Runtime and Size Complexity
Analysis of Integer Programs. In Tools and Algs. for the Construct. and Anal. of Syst. (TACAS’14).

J. Burnim, S. Juvekar, and K. Sen. 2009. WISE: Automated Test Generation for Worst-case Complexity. In Int. Conf.
on Softw. Eng. (ICSE’09).

28

9 CONCLUSION 29

C. Cadar, D. Dunbar, and D. Engler. 2008. KLEE: Unassisted and Automatic Generation of High-Coverage Tests
for Complex Systems Programs. In Op. Syst. Design and Impl. (OSDI’08).

Q. Carbonneaux, J. Hoffmann, T. Reps, and Z. Shao. 2017. Automated Resource Analysis with Coq Proof Objects.
In Computer Aided Verif. (CAV’17).

Q. Carbonneaux, J. Hoffmann, and Z. Shao. 2015. Compositional Certified Resource Bounds. In Prog. Lang. Design
and Impl. (PLDI’15).

S. Chandra, S. J. Fink, and M. Sridharan. 2009. Snugglebug: A Powerful Approach To Weakest Preconditions. In
Prog. Lang. Design and Impl. (PLDI’09).

A. Charguéraud and F. Pottier. 2015. Machine-Checked Verification of the Correctness and Amortized Complexity
of an Efficient Union-Find Implementation. In Interactive Theorem Proving (ITP’15).

V. Chipounov, V. Kuznetsov, and G. Candea. 2012. The S2E Platform: Design, Implementation, and Applications.
Trans. on Comp. Syst. 30 (February 2012). Issue 1.

E. Çiçek, G. Barthe, M. Gaboardi, D. Garg, and J. Hoffmann. 2017. Relational Cost Analysis. In Princ. of Prog. Lang.
(POPL’17).

E. Çiçek, D. Garg, and U. A. Acar. 2015. Refinement Types for Incremental Computational Complexity. In
European Symp. on Programming (ESOP’15).

K. Claessen and J. Hughes. 2000. QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. In
Int. Conf. on Functional Programming (ICFP’00).

K. Crary and S. Weirich. 2000. Resource Bound Certification. In Princ. of Prog. Lang. (POPL’00).

S. A. Crosby and D. S. Wallach. 2003. Denial of Service via Algorithmic Complexity Attacks. In USENIX Sec. Symp.
(USENIX’03).

N. A. Danielsson. 2008. Lightweight Semiformal Time Complexity Analysis for Purely Functional Data Structures.
In Princ. of Prog. Lang. (POPL’08).

N. Danner, D. R. Licata, and R. Ramyaa. 2015. Denotational Cost Semantics for Functional Languages with
Inductive Types. In Int. Conf. on Functional Programming (ICFP’15).

L. de Moura and N. Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algs. for the Construct. and Anal. of
Syst. (TACAS’08).

P. Dinges and G. Agha. 2014. Targeted Test Input Generation Using Symbolic–Concrete Backward Execution. In
Automated Softw. Eng. (ASE’14).

A. Flores-Montoya and R. Hähnle. 2014. Resource Analysis of Complex Programs with Cost Equations. In Asian
Symp. on Prog. Lang. and Systems (APLAS’14).

J. E. Forrester and B. P. Miller. 2000. An Empirical Study of the Robustness of Windows NT Applications Using
Random Testing. In USENIX Windows Syst. Symp. (WSS’00).

F. Frohn, M. Naaf, J. Hensel, M. Brockschmidt, and J. Giesl. 2016. Lower Runtime Bounds for Integer Programs. In
Int. Joint Conf. on Automated Reasoning (IJCAR’16).

P. Godefroid, N. Klarlund, and K. Sen. 2005. DART: Directed Automated Random Testing. In Prog. Lang. Design
and Impl. (PLDI’05).

P. Godefroid, M. Levin, and D. Molnar. 2008. Automated Whitebox Fuzz Testing. In Network and Dist. Syst. Security
(NDSS’08).

S. Gulwani. 2009. SPEED: Symbolic Complexity Bound Analysis. In Computer Aided Verif. (CAV’09).

S. Gulwani, K. K. Mehra, and T. M. Chilimbi. 2009. SPEED: Precise and Efficient Static Estimation of Program
Computational Complexity. In Princ. of Prog. Lang. (POPL’09).

R. Harper. 2016. Practical Foundations for Programming Languages. Cambridge University Press.

J. Hoffmann, K. Aehlig, and M. Hofmann. 2011. Multivariate Amortized Resource Analysis. In Princ. of Prog. Lang.
(POPL’11).

J. Hoffmann, A. Das, and S.-C. Weng. 2017. Towards Automatic Resource Bound Analysis for OCaml. In Princ. of
Prog. Lang. (POPL’17).

J. Hoffmann and M. Hofmann. 2010. Amortized Resource Analysis with Polynomial Potential. In European Symp.
on Programming (ESOP’10).

M. Hofmann and S. Jost. 2003. Static Prediction of Heap Space Usage for First-Order Functional Programs. In
Princ. of Prog. Lang. (POPL’03).

M. Hofmann and G. Moser. 2015. Multivariate Amortised Resource Analysis for Term Rewrite Systems. In Int.
Conf. on Typed Lambda Calculi and Applications (TLCA’15).

S. Jost, K. Hammond, H.-W. Loidl, and M. Hofmann. 2010. Static Determination of Quantitative Resource Usage
for Higher-Order Programs. In Princ. of Prog. Lang. (POPL’10).

S. Jost, H.-W. Loidl, K. Hammond, N. Scaife, and M. Hofmann. 2009. Carbon Credits for Resource-Bounded
Computations using Amortised Analysis. In Symp. on Form. Meth. (FM’09).

Z. Kincaid, J. Breck, A. F. Boroujeni, and T. Reps. 2017. Compositional Recurrence Analysis Revisited. In Prog.
Lang. Design and Impl. (PLDI’17).

U. D. Lago and M. Gaboardi. 2011. Linear Dependent Types and Relative Completeness. In Logic in Computer
Science (LICS’11).

U. D. Lago and B. Petit. 2013. The Geometry of Types. In Princ. of Prog. Lang. (POPL’13).

L. Lampropoulos, Z. Paraskevopoulou, and B. C. Pierce. 2018. Generating Good Generators for Inductive Relations.
In Princ. of Prog. Lang. (POPL’18).

K. Luckow, R. Kersten, and C. Păsăreanu. 2017. Symbolic Complexity Analysis Using Context-Preserving Histories.
In Int. Conf. on Softw. Testing, Verif. and Validation (ICST’17).

K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks. 2011. Directed symbolic execution. In Static Analysis Symp.
(SAS’11).

M. D. McIlroy. 1999. A Killer Adversary for Quicksort. J. Softw.-Practice & Experience 29 (April 1999). Issue 4.

V. C. Ngo, Mario Dehesa-Azuara, M. Fredrikson, and J. Hoffmann. 2017. Verifying and Synthesizing Constant-
Resource Implementations with Types. In Symp. on Sec. and Privacy (SP’17).

T. Nipkow. 2015. Amortized Complexity Verified. In Interactive Theorem Proving (ITP’15).

Y. Noller, R. Kersten, and C. S. Păsăreanu. 2018. Badger: Complexity Analysis with Fuzzing and Symbolic
Execution. In Int. Symp. on Softw. Testing and Analysis (ISSTA’18).

L. Noschinski, F. Emmes, and J. Giesl. 2013. Analyzing Innermost Runtime Complexity of Term Rewriting by
Dependency Pairs. J. Automated Reasoning 51 (June 2013). Issue 1.

T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana. 2017. SlowFuzz: Automated Domain-Independent Detection of
Algorithmic Complexity Vulnerabilities. In Conf. on Comp. and Comm. Sec. (CCS’17).

C. Runciman, M. Naylor, and F. Lindblad. 2008. Smallcheck and Lazy Smallcheck: Automatic Exhaustive Testing
for Small Vaues. In Symp. on Haskell (Haskell’08).

K. Sen, D. Marinov, and G. Agha. 2005. CUTE: A Concolic Unit Testing Engine for C. In Found. of Softw. Eng.
(FSE’05).

30

9 CONCLUSION 31

H. R. Simões, P. B. Vasconcelos, M. Florido, S. Jost, and K. Hammond. 2012. Automatic Amortised Analysis of
Dynamic Memory Allocation for Lazy Functional Programs. In Int. Conf. on Functional Programming (ICFP’12).

M. Sinn, F. Zuleger, and H. Veith. 2014. A Simple and Scalable Approach to Bound Analysis and Amortized
Complexity Analysis. In Computer Aided Verif. (CAV’14).

R. E. Tarjan. 1985. Amortized Computational Complexity. SIAM J. Algebraic Discrete Methods 6 (August 1985).
Issue 2.

P. B. Vasconcelos. 2008. Space Cost Analysis Using Sized Types. Ph.D. Dissertation. School of Computer Science,
University of St Andrews.

P. B. Vasconcelos, S. Jost, M. Florido, and K. Hammond. 2015. Type-Based Allocation Analysis for Co-recursion in
Lazy Functional Languages. In European Symp. on Programming (ESOP’15).

D. Walker. 2002. Substructural Type Systems. In Advanced Topics in Types and Programming Languages. MIT Press.

P. Wang, D. Wang, and A. Chlipala. 2017. TiML: A Functional Language for Practical Complexity Analysis with
Invariants. In Object-Oriented Prog., Syst., Lang., and Applications (OOPSLA’17).

Website. 2011. CVE - CVE-2011-4885. Available on: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2011-4885.

Website. 2012a. PHP 5.3.8 - Hashtables Denial of Service. Available on https://www.exploit-db.com/exploits/
18296/.

Website. 2012b. PHP: PHP 5 ChangeLog. Available on http://www.php.net/ChangeLog-5.php#5.3.9.

Website. 2015. Space/Time Analysis for Cybersecurity (STAC). Available on https://www.darpa.mil/program/
space-time-analysis-for-cybersecurity.

H. Xi. 2002. Dependent Types for Program Termination Verification. J. Higher-Order and Symbolic Comp. 15 (2002).
Issue 1.

Y. Zhang, Z. Chen, J. Wang, W. Dong, and Z. Liu. 2015. Regular Property Guided Dynamic Symbolic Execution.
In Int. Conf. on Softw. Eng. (ICSE’15).

F. Zuleger, M. Sinn, S. Gulwani, and H. Veith. 2011. Bound Analysis of Imperative Programs with the Size-change
Abstraction. In Static Analysis Symp. (SAS’11).

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4885
https://www.exploit-db.com/exploits/18296/
https://www.exploit-db.com/exploits/18296/
http://www.php.net/ChangeLog-5.php#5.3.9
https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

A Proofs

A.1 Proof of Thm. 5.5
First we state three lemmas.

Lemma A.1 (Heap preservation). If Σ;Γ ;𝛾 ;𝜎
𝑞′
𝑞
𝑒 : 𝐴⇒

⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
, 𝜎 ⊢ 𝛾 : Γ , then 𝜎 ′ ⊢ 𝑆 : 𝐴.

Lemma A.2 (Heap monotonicity). If Σ;Γ ;𝛾 ;𝜎
𝑞′
𝑞

𝑒 : 𝐴 ⇒
⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
, 𝜎 ⊢ 𝛾 : Γ , 𝑀 ⊢ 𝜎 ′ ⊑ 𝐻 , then

𝑀 ⊢ 𝜎 ⊑𝐻 .

Lemma A.3 (Potential consistency).

• If 𝜎 ⊢ 𝑆 : 𝐴, 𝑀 ⊢ 𝜎 ⊑𝐻 , 𝑀;𝐻 ⊢ 𝑆⇝ 𝑣, then Φ̃𝜎 (𝑆 : 𝐴) = Φ(𝑣 : 𝐴).

• If 𝜎 ⊢ 𝑆 : 𝐴, 𝜎 ′ ⊢ 𝑆 : 𝐴, 𝑀 ⊢ 𝜎 ⊑𝐻 , 𝑀 ⊢ 𝜎 ′ ⊑𝐻 , then Φ̃𝜎 (𝑆 : 𝐴) = Φ̃𝜎 ′ (𝑆 : 𝐴).

Then we prove the soundness theorem.

Proof. By induction on the derivation of Σ;Γ ;𝛾 ;𝜎
𝑞′
𝑞
𝑒 : 𝐴⇒

⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
.

•

(WC-Unit)

·;𝛾 ;𝜎 0
𝐾unit

⟨⟩ : unit⇒ ⟨⊤,null,𝜎⟩
By assumption we know that 𝜎 ⊢ 𝛾 : ·, 𝑀 is a model for ⊤, 𝑀 ⊢ 𝜎 ⊑ 𝐻 , and 𝑀;𝐻 ⊢ 𝛾 ⇝ 𝑉 .
For all 𝑝,𝑟 ∈Q+

0 such that 𝑝 = 𝐾unit +Φ𝑉 (·) + 𝑟 = 𝐾unit + 𝑟, let 𝑝′ = 0 +Φ(null : unit) + 𝑟 = 𝑟 and
𝑣 = null. To conclude this case, we show that:

– 𝑉
𝑝′
𝑝
⟨⟩ ⇓ 𝑣: by rule (E-Triv).

– 𝑝′ = 0 +Φ(𝑣 : unit) + 𝑟: trivial.

– 𝑀;𝐻 ⊢ null⇝ 𝑣: trivial.
We omit (WC-Bool) and (WC-Int) because they are similar to this case.

•

(WC-Var)

𝑥 ∈ dom(𝛾)

𝑥 : 𝐴;𝛾 ;𝜎 0
𝐾var

𝑥 : 𝐴⇒
⟨︀
⊤,𝛾(𝑥),𝜎

⟩︀
By assumption we know that 𝜎 ⊢ 𝛾 : (𝑥 : 𝐴), 𝑀 is a model for ⊤, 𝑀 ⊢ 𝜎 ⊑𝐻 , and 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 .
For all 𝑝,𝑟 ∈Q+

0 such that 𝑝 = 𝐾var+Φ𝑉 (𝑥 : 𝐴)+𝑟 = 𝐾var+Φ(𝑉 (𝑥) : 𝐴)+𝑟, let 𝑝′ = 0+Φ(𝑉 (𝑥) : 𝐴)+𝑟
and 𝑣 = 𝑉 (𝑥). To conclude this case, we show that:

– 𝑉
𝑝′
𝑝

𝑥 ⇓ 𝑣: by rule (E-Var).

– 𝑝′ = 0 +Φ(𝑣 : 𝐴) + 𝑟: trivial.

– 𝑀;𝐻 ⊢ 𝛾(𝑥)⇝ 𝑣: by the fact that 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 .

•

(WC-Op)

𝑥1,𝑥2 ∈ dom(𝛾) 𝑆 = 𝛾(𝑥1)^𝛾(𝑥2)

𝑥1 :^arg1
,𝑥2 :^arg2

;𝛾 ;𝜎 0
𝐾op

op^(𝑥1,𝑥2) :^res⇒ ⟨⊤,𝑆,𝜎⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (𝑥1 :^arg1

,𝑥2 :^arg2
), 𝑀 is a model for ⊤, 𝑀 ⊢ 𝜎 ⊑𝐻 , and

𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 . For all 𝑝,𝑟 ∈Q+
0 such that 𝑝 = 𝐾op +Φ𝑉 (𝑥1 :^arg1

,𝑥2 :^arg2
) + 𝑟 = 𝐾op + 𝑟, let

𝑝′ = 0 +Φ(𝑉 (𝑥1)^𝑉 (𝑥2) :^res) + 𝑟 = 𝑟 and 𝑣 = 𝑉 (𝑥1)^𝑉 (𝑥2). To conclude this case, we show
that:
– 𝑉

𝑝′
𝑝

op^(𝑥1,𝑥2) ⇓ 𝑣: by rule (E-Op).

32

A PROOFS 33

– 𝑝′ = 0 +Φ(𝑣 :^res) + 𝑟: trivial.

– 𝑀;𝐻 ⊢ 𝑆⇝ 𝑣: by the fact that 𝑆 = 𝛾(𝑥1)^𝛾(𝑥2) and 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 .

•

(WC-App)

𝛾(𝑥) = 𝑆 𝐴1
𝑞/𝑞′
−−−−→ 𝐴2 ∈ Σ(𝑓) 𝑥𝑓 : 𝐴1;𝛾[𝑥𝑓 ↦→ 𝑆];𝜎

𝑞′
𝑞
𝑒𝑓 : 𝐴2⇒

⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
𝑥 : 𝐴1;𝛾 ;𝜎

𝑞′
𝑞+𝐾app

app(𝑓 ,𝑥) : 𝐴2⇒
⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (𝑥 : 𝐴1), 𝑀 is a model for 𝜑, 𝑀 ⊢ 𝜎 ′ ⊑𝐻 , and 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 .
First we show that:
– 𝜎 ⊢ 𝛾[𝑥𝑓 ↦→ 𝑆] : (𝑥𝑓 : 𝐴1): by the fact that 𝜎 ⊢ 𝛾 : (𝑥 : 𝐴1) and 𝛾(𝑥) = 𝑆.

– 𝑀 is a model for 𝜑: trivial.

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾[𝑥𝑓 ↦→ 𝑆]⇝ 𝑉 [𝑥𝑓 ↦→ 𝑉 (𝑥)]: by the fact that 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 and 𝛾(𝑥) = 𝑆.
For all 𝑝,𝑟 ∈Q+

0 such that 𝑝 = 𝑞+𝐾app +Φ𝑉 (𝑥 : 𝐴1) + 𝑟, we have 𝑝 −𝐾app = 𝑞+Φ𝑉 (𝑥 : 𝐴1) + 𝑟 =
𝑞+Φ𝑉 [𝑥𝑓 ↦→𝑉 (𝑥)](𝑥

𝑓 : 𝐴1) + 𝑟. By induction hypothesis, we know that there exist 𝑝′ ∈Q+
0 and a

value 𝑣, satisfying 𝑉 [𝑥𝑓 ↦→ 𝑉 (𝑥)]
𝑝′

𝑝−𝐾app

𝑒𝑓 ⇓ 𝑣, 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴2) + 𝑟, and 𝑀;𝐻 ⊢ 𝑆 ′⇝ 𝑣. To

conclude this case, we show that:

– 𝑉
𝑝′
𝑝

app(𝑓 ,𝑥) ⇓ 𝑣: by rule (E-App).

– 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴2) + 𝑟: trivial.

– 𝑀;𝐻 ⊢ 𝑆 ′⇝ 𝑣: trivial.

•

(WC-Let)

Γ1;𝛾 ;𝜎 𝑞1

𝑞
𝑒1 : 𝐴1⇒

⟨︀
𝜑1,𝑆1,𝜎1

⟩︀
Γ2,𝑥 : 𝐴1;𝛾[𝑥 ↦→ 𝑆1];𝜎1 𝑞′

𝑞1
𝑒2 : 𝐴2⇒

⟨︀
𝜑2,𝑆2,𝜎2

⟩︀
Γ1,Γ2;𝛾 ;𝜎

𝑞′
𝑞+𝐾 let

let(𝑒1,𝑥.𝑒2) : 𝐴2⇒
⟨︀
𝜑1 ∧𝜑2,𝑆2,𝜎2

⟩︀
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ1,Γ2), 𝑀 is a model for 𝜑1 ∧ 𝜑2, 𝑀 ⊢ 𝜎2 ⊑ 𝐻 , and
𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 . First we show that:
– 𝜎 ⊢ 𝛾 : Γ2: by the fact that 𝜎 ⊢ 𝛾 : (Γ1,Γ2).

– 𝑀 is a model for 𝜑1: by the fact that 𝑀 is a model for 𝜑1 ∧𝜑2 and 𝜑1 ∧𝜑2 =⇒ 𝜑1.

– 𝑀 ⊢ 𝜎1 ⊑𝐻 : by the fact that 𝑀 ⊢ 𝜎2 ⊑𝐻 and heap monotonicity.

– 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 : trivial.
For all 𝑝,𝑟 ∈ Q+

0 such that 𝑝 = 𝑞 + 𝐾 let + Φ𝑉 (Γ1,Γ2) + 𝑟, we have 𝑝 −𝐾 let = 𝑞 + Φ𝑉 (Γ1,Γ2) + 𝑟 =
𝑞+Φ𝑉 (Γ1)+ (Φ𝑉 (Γ2)+ 𝑟). By induction hypothesis, we know that there exist 𝑝1 ∈Q+

0 and a value

𝑣1, satisfying 𝑉 𝑝1

𝑝−𝐾 let

𝑒1 ⇓ 𝑣1, 𝑝1 = 𝑞1 +Φ(𝑣1 : 𝐴1) + (Φ𝑉 (Γ2) + 𝑟), and 𝑀;𝐻 ⊢ 𝑆1⇝ 𝑣1. Then
we show that:
– 𝜎1 ⊢ 𝛾[𝑥 ↦→ 𝑆1] : (Γ1,𝑥 : 𝐴1): by the fact the 𝜎 ⊢ 𝛾 : (Γ1,Γ2) and heap preservation (Lem. A.1).

– 𝑀 is a model for 𝜑2: by the fact that 𝑀 is a model for 𝜑1 ∧𝜑2 and 𝜑1 ∧𝜑2 =⇒ 𝜑2.

– 𝑀 ⊢ 𝜎2 ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾[𝑥 ↦→ 𝑆1]⇝ 𝑉 [𝑥 ↦→ 𝑣1]: by the fact that 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 and 𝑀;𝐻 ⊢ 𝑆1⇝ 𝑣1.
We have 𝑝1 = 𝑞1 +Φ(𝑣1 : 𝐴1)+Φ𝑉 (Γ2)+ 𝑟 = 𝑞1 +Φ𝑉 [𝑥 ↦→𝑣1](Γ2,𝑥 : 𝐴1)+ 𝑟. By induction hypothesis,

we know that there exist 𝑝′ ∈Q+
0 and a value 𝑣2, satisfying 𝑉 [𝑥 ↦→ 𝑣1]

𝑝′
𝑝1

𝑒2 ⇓ 𝑣2, 𝑝′ = 𝑞′ +Φ(𝑣2 :

𝐴2) + 𝑟, and 𝑀;𝐻 ⊢ 𝑆2⇝ 𝑣2. To conclude this case, we show that:

– 𝑉
𝑝′
𝑝

let(𝑒1,𝑥.𝑒2) ⇓ 𝑣2: by rule (E-Let).

– 𝑝′ = 𝑞′ +Φ(𝑣2 : 𝐴2) + 𝑟: trivial.

– 𝑀;𝐻 ⊢ 𝑆2⇝ 𝑣2: trivial.

•

(WC-Pair)

𝑥1,𝑥2 ∈ dom(𝛾) 𝑆 = ⟨𝛾(𝑥1),𝛾(𝑥2)⟩

𝑥1 : 𝐴1,𝑥2 : 𝐴2;𝛾 ;𝜎 0
𝐾pair

pair(𝑥1,𝑥2) : 𝐴1 ×𝐴2⇒ ⟨⊤,𝑆,𝜎⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (𝑥1 : 𝐴1,𝑥2 : 𝐴2), 𝑀 is a model for ⊤, 𝑀 ⊢ 𝜎 ⊑ 𝐻 , and
𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 . For all 𝑝,𝑟 ∈Q+

0 such that 𝑝 = 𝐾pair +Φ𝑉 (𝑥1 : 𝐴1,𝑥2 : 𝐴2) + 𝑟 = 𝐾pair +Φ(𝑉 (𝑥1) :
𝐴1)+Φ(𝑉 (𝑥2) : 𝐴2)+𝑟, let 𝑝′ = 0+Φ(⟨𝑉 (𝑥1),𝑉 (𝑥2)⟩ : 𝐴1×𝐴2)+𝑟 = Φ(𝑉 (𝑥1) : 𝐴1)+Φ(𝑉 (𝑥2) : 𝐴2)+𝑟
and 𝑣 = ⟨𝑉 (𝑥1),𝑉 (𝑥2)⟩. To conclude this case, we show that:

– 𝑉
𝑝′
𝑝

pair(𝑥1,𝑥2) ⇓ 𝑣: by rule (E-Pair).

– 𝑝′ = 0 +Φ(𝑣 : 𝐴1 ×𝐴2) + 𝑟: trivial.

– 𝑀;𝐻 ⊢ 𝑆⇝ 𝑣: by the fact that 𝑆 = ⟨𝛾(𝑥1),𝛾(𝑥2)⟩ and 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 .

•

(WC-MatP)

𝛾(𝑥) = ⟨𝑆1,𝑆2⟩ Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2;𝛾[𝑥1 ↦→ 𝑆1,𝑥2 ↦→ 𝑆2];𝜎
𝑞′
𝑞
𝑒 : 𝐴⇒

⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝐴1 ×𝐴2;𝛾 ;𝜎

𝑞′
𝑞+𝐾matP

matp(𝑥,𝑥1.𝑥2.𝑒) : 𝐴⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴1 ×𝐴2), 𝑀 is a model for 𝜑, 𝑀 ⊢ 𝜎 ′ ⊑𝐻 , and 𝑀;𝐻 ⊢
𝛾⇝ 𝑉 . Hence 𝜎 ⊢ 𝛾(𝑥) : 𝐴1 ×𝐴2 and then 𝜎 ⊢ 𝑆1 : 𝐴1, 𝜎 ⊢ 𝑆2 : 𝐴2. Also 𝑀;𝐻 ⊢ 𝛾(𝑥)⇝ 𝑉 (𝑥)
and then there exist 𝑣1 and 𝑣2 satisfying 𝑉 (𝑥) = ⟨𝑣1,𝑣2⟩ and 𝑀;𝐻 ⊢ 𝑆1⇝ 𝑣1, 𝑀;𝐻 ⊢ 𝑆2⇝ 𝑣2.
First we show that:
– 𝜎 ⊢ 𝛾[𝑥1 ↦→ 𝑆1,𝑥2 ↦→ 𝑆2] : (Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2): by the fact that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴1 × 𝐴2) and
𝜎 ⊢ 𝑆1 : 𝐴1, 𝜎 ⊢ 𝑆2 : 𝐴2.

– 𝑀 is a model for 𝜑: trivial.

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾[𝑥1 ↦→ 𝑆1,𝑥2 ↦→ 𝑆2]⇝ 𝑉 [𝑥1 ↦→ 𝑣1,𝑥2 ↦→ 𝑣2]: by the fact that 𝑀;𝐻 ⊢ 𝛾 ⇝ 𝑉 and
𝑀;𝐻 ⊢ 𝑆1⇝ 𝑣1, 𝑀;𝐻 ⊢ 𝑆2⇝ 𝑣2.

For all 𝑝,𝑟 ∈Q+
0 such that 𝑝 = 𝑞+𝐾matP +Φ𝑉 (Γ ,𝑥 : 𝐴1×𝐴2)+ 𝑟, we have 𝑝−𝐾matP = 𝑞+Φ𝑉 (Γ ,𝑥 :

𝐴1 × 𝐴2) + 𝑟 = 𝑞 + Φ𝑉 (Γ) + Φ(𝑉 (𝑥) : 𝐴1 × 𝐴2) + 𝑟 = 𝑞 + Φ𝑉 (Γ) + Φ(𝑣1 : 𝐴1) + Φ(𝑣2 : 𝐴2) + 𝑟 =
𝑞+Φ𝑉 [𝑥1 ↦→𝑣1,𝑥2 ↦→𝑣2](Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2) + 𝑟. By induction hypothesis, we know that there exist

𝑝′ ∈Q+
0 and a value 𝑣, satisfying 𝑉 [𝑥1 ↦→ 𝑣1,𝑥2 ↦→ 𝑣2]

𝑝′
𝑝−𝐾matP

𝑒 ⇓ 𝑣, 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴) + 𝑟, and

𝑀;𝐻 ⊢ 𝑆⇝ 𝑣. To conclude this case, we show that:

– 𝑉
𝑝′
𝑝

matp(𝑥,𝑥1.𝑥2.𝑒) ⇓ 𝑣: by rule (E-MatP).

– 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴) + 𝑟: trivial.

– 𝑀;𝐻 ⊢ 𝑆⇝ 𝑣: trivial.

•

(WC-Leaf)

ℓ < dom(𝜎)

·;𝛾 ;𝜎 0
𝐾 leaf

leaf : 𝑇 𝑝(𝐴)⇒ ⟨⊤, ℓ,𝜎 [ℓ ↦→ leaf]⟩
By assumption we know that 𝜎 ⊢ 𝛾 : ·, 𝑀 is a model for ⊤, 𝑀 ⊢ 𝜎 [ℓ ↦→ leaf] ⊑ 𝐻 , and 𝑀;𝐻 ⊢
𝛾⇝ 𝑉 . Hence 𝑀;𝐻 ⊢ (𝜎 [ℓ ↦→ leaf])(ℓ) ⊑𝐻(ℓ) and then 𝐻(ℓ) = null. For all 𝑝0, 𝑟 ∈Q+

0 such that
𝑝0 = 𝐾 leaf +Φ𝑉 (·) + 𝑟 = 𝐾 leaf + 𝑟, let 𝑝′ = 0 +Φ(null : 𝑇 𝑝(𝐴)) + 𝑟 = 𝑟 and 𝑣 = null. To conclude this
case, we show that:

34

A PROOFS 35

– 𝑉
𝑝′
𝑝0

leaf ⇓ 𝑣: by rule (E-Leaf).

– 𝑝′ = 0 +Φ(𝑣 : 𝑇 𝑝(𝐴)) + 𝑟: trivial.

– 𝑀;𝐻 ⊢ ℓ⇝ 𝑣: by the fact that 𝐻(ℓ) = null.
We omit (WC-Nil) because it is similar to this case.

•

(WC-Node)

𝑥0,𝑥1,𝑥2 ∈ dom(𝛾) 𝑅 = node(𝛾(𝑥0),𝛾(𝑥1),𝛾(𝑥2)) ℓ < dom(𝜎)

𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴);𝛾 ;𝜎 0
𝑝+𝐾node

node(𝑥0,𝑥1,𝑥2) : 𝑇 𝑝(𝐴)⇒ ⟨⊤, ℓ,𝜎 [ℓ ↦→ 𝑅]⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴)), 𝑀 is a model for ⊤,
𝑀 ⊢ 𝜎 [ℓ ↦→ 𝑅] ⊑ 𝐻 , and 𝑀;𝐻 ⊢ 𝛾 ⇝ 𝑉 . Hence 𝑀;𝐻 ⊢ (𝜎 [ℓ ↦→ 𝑅])(ℓ) ⊑ 𝐻(ℓ), 𝑀;𝐻 ⊢ 𝛾 ⇝ 𝑉 ,
𝑅 = node(𝛾(𝑥0),𝛾(𝑥1),𝛾(𝑥2)), and then 𝐻(ℓ) = ⟨𝑉 (𝑥0),𝑉 (𝑥1),𝑉 (𝑥2)⟩. For all 𝑝0, 𝑟 ∈Q+

0 such that
𝑝0 = 𝑝 + 𝐾node + Φ𝑉 (𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴)) + 𝑟 = 𝑝 + 𝐾node + Φ(𝑉 (𝑥0) : 𝐴) + Φ(𝑉 (𝑥1) :
𝑇 𝑝(𝐴)) + Φ(𝑉 (𝑥2) : 𝑇 𝑝(𝐴)) + 𝑟, let 𝑝′ = 0 + Φ(⟨𝑉 (𝑥0),𝑉 (𝑥1),𝑉 (𝑥2)⟩ : 𝑇 𝑝(𝐴)) + 𝑟 = 𝑝 + Φ(𝑉 (𝑥0) :
𝐴) +Φ(𝑉 (𝑥1) : 𝑇 𝑝(𝐴)) +Φ(𝑉 (𝑥2) : 𝑇 𝑝(𝐴)) + 𝑟 and 𝑣 = ⟨𝑉 (𝑥0),𝑉 (𝑥1),𝑉 (𝑥2)⟩. To conclude this case,
we show that:
– 𝑉

𝑝′
𝑝0

node(𝑥0,𝑥1,𝑥2) ⇓ 𝑣: by rule (E-Node).

– 𝑝′ = 0 +Φ(𝑣 : 𝑇 𝑝(𝐴)) + 𝑟: trivial.

– 𝑀;𝐻 ⊢ ℓ⇝ 𝑣: by the fact that 𝐻(ℓ) = ⟨𝑉 (𝑥0),𝑉 (𝑥1),𝑉 (𝑥2)⟩.
We omit (WC-Cons) because it is similar to this case.

•

(WC-MatT-Leaf)

𝛾(𝑥) = ℓ 𝜎 (ℓ) = leaf Γ ;𝛾 ;𝜎
𝑞′

𝑞−𝐾matTL

𝑒1 : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝑇 𝑝(𝐴);𝛾 ;𝜎

𝑞′
𝑞

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝑇 𝑝(𝐴)), 𝑀 is a model for 𝜑, 𝑀 ⊢ 𝜎 ′ ⊑ 𝐻 , and
𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 . By heap monotonicity we know that 𝑀 ⊢ 𝜎 ⊑𝐻 , hence 𝑀;𝐻 ⊢ leaf ⊑𝐻(ℓ) and
𝐻(ℓ) = null. Also 𝑀;𝐻 ⊢ 𝛾(𝑥)⇝ 𝑉 (𝑥) and then 𝑉 (𝑥) = 𝐻(ℓ) = null. First, we show that:
– 𝜎 ⊢ 𝛾 : Γ : by the fact that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝑇 𝑝(𝐴)).

– 𝑀 is a model for 𝜑: trivial.

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 : trivial.
For all 𝑝0, 𝑟 ∈ Q+

0 such that 𝑝0 = 𝑞 + Φ𝑉 (Γ ,𝑥 : 𝑇 𝑝(𝐴)) + 𝑟, we have 𝑝0 −𝐾matTL = 𝑞 −𝐾matTL +
Φ𝑉 (Γ) +Φ(𝑉 (𝑥) : 𝑇 𝑝(𝐴)) + 𝑟 = 𝑞 −𝐾matTL +Φ𝑉 (Γ) + 𝑟. By induction hypothesis, we know that

there exist 𝑝′ ∈ Q+
0 and a value 𝑣, satisfying 𝑉

𝑝′
𝑝0−𝐾matTL

𝑒1 ⇓ 𝑣, 𝑝′ = 𝑞′ + Φ(𝑣 : 𝐴′) + 𝑟, and

𝑀;𝐻 ⊢ 𝑆⇝ 𝑣. To conclude this case, we show that:

– 𝑉
𝑝′
𝑝0

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑥3) ⇓ 𝑣: by rule (E-MatT-Leaf).

– 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴′) + 𝑟: trivial.

– 𝑀;𝐻 ⊢ 𝑆⇝ 𝑣: trivial.
We omit (WC-MatL-Nil) because it is similar to this case.

•

(WC-MatT-Node)

𝛾(𝑥) = ℓ 𝜎 (ℓ) = node(𝑆0,𝑆1,𝑆2)

Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴);𝛾[𝑥0 ↦→ 𝑆0,𝑥1 ↦→ 𝑆1,𝑥2 ↦→ 𝑆2];𝜎
𝑞′

𝑞+𝑝−𝐾matTN

𝑒2 : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝑇 𝑝(𝐴);𝛾 ;𝜎

𝑞′
𝑞

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩

By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝑇 𝑝(𝐴)), 𝑀 is a model for 𝜑, 𝑀 ⊢ 𝜎 ′ ⊑𝐻 , and 𝑀;𝐻 ⊢
𝛾⇝ 𝑉 . By heap monotonicity we know that 𝑀 ⊢ 𝜎 ⊑𝐻 , hence 𝑀;𝐻 ⊢ node(𝑆0,𝑆1,𝑆2) ⊑𝐻(ℓ)
and there exist 𝑣0,𝑣1,𝑣2 such that 𝐻(ℓ) = ⟨𝑣0,𝑣1,𝑣2⟩ and 𝑀;𝐻 ⊢ 𝑆0 ⇝ 𝑣0, 𝑀;𝐻 ⊢ 𝑆1 ⇝ 𝑣1,
𝑀;𝐻 ⊢ 𝑆2⇝ 𝑣2. Hence 𝜎 ⊢ 𝛾(𝑥) : 𝑇 𝑝(𝐴) and then 𝜎 ⊢ 𝑆0 : 𝐴, 𝜎 ⊢ 𝑆1 : 𝑇 𝑝(𝐴), 𝜎 ⊢ 𝑆2 : 𝑇 𝑝(𝐴). Also
𝑀;𝐻 ⊢ 𝛾(𝑥)⇝ 𝑉 (𝑥) and then 𝑉 (𝑥) = 𝐻(ℓ) = ⟨𝑣0,𝑣1,𝑣2⟩. First, we show that:
– 𝜎 ⊢ 𝛾[𝑥0 ↦→ 𝑆0,𝑥1 ↦→ 𝑆1,𝑥2 ↦→ 𝑆2] : (Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴)): by the fact that 𝜎 ⊢ 𝛾 :

(Γ ,𝑥 : 𝑇 𝑝(𝐴)) and 𝜎 ⊢ 𝑆0 : 𝐴, 𝜎 ⊢ 𝑆1 : 𝑇 𝑝(𝐴), 𝜎 ⊢ 𝑆2 : 𝑇 𝑝(𝐴).

– 𝑀 is a model for 𝜑: trivial.

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾[𝑥0 ↦→ 𝑆0,𝑥1 ↦→ 𝑆1,𝑥2 ↦→ 𝑆2] ⇝ 𝑉 [𝑥0 ↦→ 𝑣0,𝑥1 ↦→ 𝑣1,𝑥2 ↦→ 𝑣2]: by the fact that
𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 and 𝑀;𝐻 ⊢ 𝑆0⇝ 𝑣0, 𝑀;𝐻 ⊢ 𝑆1⇝ 𝑣1, 𝑀;𝐻 ⊢ 𝑆2⇝ 𝑣2.

For all 𝑝0, 𝑟 ∈ Q+
0 such that 𝑝0 = 𝑞 +Φ𝑉 (Γ ,𝑥 : 𝑇 𝑝(𝐴)) + 𝑟, we have 𝑝0 −𝐾matTN = 𝑞 −𝐾matTN +

Φ𝑉 (Γ ,𝑥 : 𝑇 𝑝(𝐴)) + 𝑟 = 𝑞−𝐾matTN +Φ𝑉 (Γ) +Φ(𝑉 (𝑥) : 𝑇 𝑝(𝐴)) + 𝑟 = 𝑞−𝐾matTN +Φ𝑉 (Γ) +𝑝+Φ(𝑣0 :
𝐴) + Φ(𝑣1 : 𝑇 𝑝(𝐴)) + Φ(𝑣2 : 𝑇 𝑝(𝐴)) + 𝑟 = 𝑞 −𝐾matTN + 𝑝 + Φ𝑉 [𝑥0 ↦→𝑣0,𝑥1 ↦→𝑣1,𝑥2 ↦→𝑣2](Γ ,𝑥0 : 𝐴,𝑥1 :
𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴)) + 𝑟. By induction hypothesis, we know that there exist 𝑝′ ∈ Q

+
0 and a

value 𝑣, satisfying 𝑉 [𝑥0 ↦→ 𝑣0,𝑥1 ↦→ 𝑣1,𝑥2 ↦→ 𝑣2]
𝑝′

𝑝0−𝐾matTN

𝑒2 ⇓ 𝑣, 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴′) + 𝑟, and

𝑀;𝐻 ⊢ 𝑆⇝ 𝑣. To conclude this case, we show that:

– 𝑉
𝑝′
𝑝0

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒) ⇓ 𝑣: by rule (E-MatT-Node).

– 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴′) + 𝑟: trivial.

– 𝑀;𝐻 ⊢ 𝑆⇝ 𝑣.
We omit (WC-MatL-Cons) because it is similar to this case.

•

(WC-MatT-Tree-Empty)

𝛾(𝑥) = ℓ 𝜎 (ℓ) = treeof(·) Γ ;𝛾 ;𝜎 [ℓ ↦→ leaf]
𝑞′

𝑞−𝐾matTL

𝑒1 : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝑇 𝑝(𝐴);𝛾 ;𝜎

𝑞′
𝑞

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝑇 𝑝(𝐴)), 𝑀 is a model for 𝜑, 𝑀 ⊢ 𝜎 ′ ⊑𝐻 , and 𝑀;𝐻 ⊢
𝛾⇝ 𝑉 . By heap monotonicity we know that 𝑀 ⊢ 𝜎 [ℓ ↦→ leaf] ⊑ 𝐻 , hence 𝑀;𝐻 ⊢ leaf ⊑ 𝐻(ℓ)
and 𝐻(ℓ) = null. Also 𝑀;𝐻 ⊢ 𝛾(𝑥)⇝ 𝑉 (𝑥) and then 𝑉 (𝑥) = 𝐻(ℓ) = null. First, we show that:
– 𝜎 [ℓ ↦→ leaf] ⊢ 𝛾 : Γ : by the fact that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝑇 𝑝(𝐴)) and 𝜎 [ℓ ↦→ leaf] ⊢ leaf ∈ 𝑇 𝑝(𝐴).

– 𝑀 is a model for 𝜑: trivial.

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 : trivial.
For all 𝑝0, 𝑟 ∈ Q+

0 such that 𝑝0 = 𝑞 + Φ𝑉 (Γ ,𝑥 : 𝑇 𝑝(𝐴)) + 𝑟, we have 𝑝0 −𝐾matTL = 𝑞 −𝐾matTL +
Φ𝑉 (Γ ,𝑥 : 𝑇 𝑝(𝐴))+𝑟 = 𝑞−𝐾matTL+Φ𝑉 (Γ)+Φ(𝑉 (𝑥) : 𝑇 𝑝(𝐴))+𝑟 = 𝑞−𝐾matTL+Φ𝑉 (Γ)+𝑟. By induction

hypothesis, we know that there exist 𝑝′ ∈ Q+
0 and a value 𝑣, satisfying 𝑉

𝑝′
𝑝0−𝐾matTL

𝑒1 ⇓ 𝑣,

𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴′) + 𝑟, and 𝑀;𝐻 ⊢ 𝑆⇝ 𝑣. To conclude this case, we show that:

– 𝑉
𝑝′
𝑝0

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) ⇓ 𝑣: by rule (E-MatT-Leaf).

– 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴′) + 𝑟: trivial.

– 𝑀;𝐻 ⊢ 𝑆⇝ 𝑣.
We omit (WC-MatT-List-Empty) because it is similar to this case.

36

A PROOFS 37

•

(WC-MatT-Tree-NonEmpty)

𝛾(𝑥) = ℓ 𝜎 (ℓ) = treeof(𝑆1, · · · ,𝑆𝑛) ℓ1, ℓ2 < dom(𝜎) 𝑅1 = treeof(𝑆2, · · · ,𝑆𝑚)
𝑅2 = treeof(𝑆𝑚+1, · · · ,𝑆𝑛) 𝜎𝑜 = 𝜎 [ℓ ↦→ node(𝑆1, ℓ1, ℓ2), ℓ1 ↦→ 𝑅1, ℓ2 ↦→ 𝑅2]

Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴);𝛾[𝑥0 ↦→ 𝑆1,𝑥1 ↦→ ℓ1,𝑥2 ↦→ ℓ2];𝜎𝑜 𝑞′
𝑞+𝑝−𝐾matTN

𝑒2 : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝑇 𝑝(𝐴);𝛾 ;𝜎

𝑞′
𝑞

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝑇 𝑝(𝐴)), 𝑀 is a model for 𝜑, 𝑀 ⊢ 𝜎 ′ ⊑𝐻 , and 𝑀;𝐻 ⊢
𝛾⇝ 𝑉 . By heap monotonicity we know that 𝑀 ⊢ 𝜎𝑜 ⊑𝐻 , hence 𝑀;𝐻 ⊢ node(𝑆1, ℓ1, ℓ2) ⊑𝐻(ℓ)
and there exist 𝑣0,𝑣1,𝑣2 such that 𝐻(ℓ) = ⟨𝑣0,𝑣1,𝑣2⟩ and 𝑀;𝐻 ⊢ 𝑆1 ⇝ 𝑣0, 𝑀;𝐻 ⊢ ℓ1 ⇝ 𝑣1,
𝑀;𝐻 ⊢ ℓ2⇝ 𝑣2. Hence 𝜎 ⊢ 𝛾(𝑥) : 𝑇 𝑝(𝐴) and then 𝜎 ⊢ 𝑆𝑖 : 𝐴 for all 𝑖 ∈ {1, · · · ,𝑛}. Thus 𝜎 ⊢ 𝑅1 ∈
𝑇 𝑝(𝐴), 𝜎 ⊢ 𝑅2 ∈ 𝑇 𝑝(𝐴). Also 𝑀;𝐻 ⊢ 𝛾(𝑥)⇝ 𝑉 (𝑥) and then 𝑉 (𝑥) = 𝐻(ℓ) = ⟨𝑣0,𝑣1,𝑣2⟩. First, we
show that:
– 𝜎𝑜 ⊢ 𝛾[𝑥0 ↦→ 𝑆1,𝑥1 ↦→ ℓ1,𝑥2 ↦→ ℓ2] : (Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴)): by the fact that 𝜎 ⊢ 𝛾 :

(Γ ,𝑥 : 𝑇 𝑝(𝐴)) and 𝜎 ⊢ 𝑆1 : 𝐴, 𝜎 ⊢ 𝑅1 ∈ 𝑇 𝑝(𝐴), 𝜎 ⊢ 𝑅2 ∈ 𝑇 𝑝(𝐴), as well as 𝜎𝑜 ⊢ node(𝑆1, ℓ1, ℓ2) ∈
𝑇 𝑝(𝐴).

– 𝑀 is a model for 𝜑: trivial.

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾[𝑥0 ↦→ 𝑆1,𝑥1 ↦→ ℓ1,𝑥2 ↦→ ℓ2] ⇝ 𝑉 [𝑥0 ↦→ 𝑣0,𝑥1 ↦→ 𝑣1,𝑥2 ↦→ 𝑣2]: by the fact that
𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 and 𝑀;𝐻 ⊢ 𝑆1⇝ 𝑣0, 𝑀;𝐻 ⊢ ℓ1⇝ 𝑣1, 𝑀;𝐻 ⊢ ℓ2⇝ 𝑣2.

For all 𝑝0, 𝑟 ∈ Q+
0 such that 𝑝0 = 𝑞 +Φ𝑉 (Γ ,𝑥 : 𝑇 𝑝(𝐴)) + 𝑟, we have 𝑝0 −𝐾matTN = 𝑞 −𝐾matTN +

Φ𝑉 (Γ ,𝑥 : 𝑇 𝑝(𝐴)) + 𝑟 = 𝑞−𝐾matTN +Φ𝑉 (Γ) +Φ(𝑉 (𝑥) : 𝑇 𝑝(𝐴)) + 𝑟 = 𝑞−𝐾matTN +Φ𝑉 (Γ) +𝑝+Φ(𝑣0 :
𝐴) + Φ(𝑣1 : 𝑇 𝑝(𝐴)) + Φ(𝑣2 : 𝑇 𝑝(𝐴)) + 𝑟 = 𝑞 −𝐾matTN + 𝑝 + Φ𝑉 [𝑥0 ↦→𝑣0,𝑥1 ↦→𝑣1,𝑥2 ↦→𝑣2](Γ ,𝑥0 : 𝐴,𝑥1 :
𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴)) + 𝑟. By induction hypothesis, we know that there exist 𝑝′ ∈ Q

+
0 and a

value 𝑣, satisfying 𝑉 [𝑥0 ↦→ 𝑣0,𝑥1 ↦→ 𝑣1,𝑥2 ↦→ 𝑣2]
𝑝′

𝑝0−𝐾matTN

𝑒2 ⇓ 𝑣, 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴′) + 𝑟, and

𝑀;𝐻 ⊢ 𝑆⇝ 𝑣. To conclude this case, we show that:

– 𝑉
𝑝′
𝑝0

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) ⇓ 𝑣: by rule (E-MatT-Node).

– 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴′) + 𝑟: trivial.

– 𝑀;𝐻 ⊢ 𝑆⇝ 𝑣: trivial.
We omit (WC-MatT-List-NonEmpty) because it is similar to this case.

•

(WC-Cond-True)

𝛾(𝑥) = 𝑆 Γ ;𝛾 ;𝜎
𝑞′

𝑞−𝐾condT

𝑒1 : 𝐴⇒
⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
Γ ,𝑥 : bool;𝛾 ;𝜎

𝑞′
𝑞

if(𝑥,𝑒1, 𝑒2) : 𝐴⇒
⟨
𝑆 ∧𝜑,𝑆 ′ ,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : bool), 𝑀 is a model for 𝑆 ∧𝜑, 𝑀 ⊢ 𝜎 ′ ⊑ 𝐻 , and
𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 . Hence 𝜎 ⊢ 𝑆 : bool, 𝑀;𝐻 ⊢ 𝑆⇝ 𝑉 (𝑥), then either 𝑉 (𝑥) = true or 𝑉 (𝑥) = false.
Because 𝑀 is a model for 𝑆 ∧𝜑, we know that 𝑉 (𝑥) = true. First we show that:
– 𝜎 ⊢ 𝛾 : Γ : by the fact that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : bool).

– 𝑀 is a model for 𝜑: by the fact that 𝑀 is a model for 𝑆 ∧𝜑 and 𝑆 ∧𝜑 =⇒ 𝜑.

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 : trivial.
For all 𝑝,𝑟 ∈Q+

0 such that 𝑝 = 𝑞 +Φ𝑉 (Γ ,𝑥 : bool) + 𝑟, we have 𝑝 −𝐾condT = 𝑞 −𝐾condT +Φ𝑉 (Γ ,𝑥 :
bool)+𝑟 = 𝑞−𝐾condT +Φ𝑉 (Γ)+𝑟. By induction hypothesis, we know that there exist 𝑝′ ∈Q+

0 and

a value 𝑣, satisfying 𝑉
𝑝′

𝑝−𝐾condT

𝑒1 ⇓ 𝑣, 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴) + 𝑟, and 𝑀;𝐻 ⊢ 𝑆 ′⇝ 𝑣. To conclude

this case, we show that:

– 𝑉
𝑝′
𝑝

if(𝑥,𝑒1, 𝑒2) ⇓ 𝑣: by rule (E-Cond-True).

– 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴) + 𝑟: trivial.

– 𝑀;𝐻 ⊢ 𝑆 ′⇝ 𝑣: trivial.
We omit (WC-Cond-False) because it is similar to this case.

•

(WC-Share)

𝛾(𝑥) = 𝑆 Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2;𝛾[𝑥1 ↦→ 𝑆,𝑥2 ↦→ 𝑆];𝜎
𝑞′
𝑞
𝑒 : 𝐴′ ⇒

⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
.(𝐴 | 𝐴1,𝐴2)

Γ ,𝑥 : 𝐴;𝛾 ;𝜎
𝑞′
𝑞

share(𝑥,𝑥1.𝑥2.𝑒) : 𝐴′ ⇒
⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴), 𝑀 is a model for 𝜑, 𝑀 ⊢ 𝜎 ′ ⊑𝐻 , and 𝑀;𝐻 ⊢ 𝛾⇝
𝑉 . Hence 𝜎 ⊢ 𝑆 : 𝐴 and 𝑀;𝐻 ⊢ 𝑆⇝ 𝑉 (𝑥). First we show that:
– 𝜎 ⊢ 𝛾[𝑥1 ↦→ 𝑆,𝑥2 ↦→ 𝑆] : (Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2): by the fact that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴) and 𝜎 ⊢ 𝑆 : 𝐴,

.(𝐴 | 𝐴1,𝐴2).

– 𝑀 is a model for 𝜑: trivial.

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾[𝑥1 ↦→ 𝑆,𝑥2 ↦→ 𝑆]⇝ 𝑉 [𝑥1 ↦→ 𝑉 (𝑥),𝑥2 ↦→ 𝑉 (𝑥)]: by the fact that 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 and
𝑀;𝐻 ⊢ 𝑆⇝ 𝑉 (𝑥).

For all 𝑝,𝑟 ∈Q+
0 such that 𝑝 = 𝑞+Φ𝑉 (Γ ,𝑥 : 𝐴)+𝑟 = 𝑞+Φ𝑉 (Γ)+Φ(𝑉 (𝑥) : 𝐴)+𝑟 = 𝑞+Φ𝑉 (Γ)+Φ(𝑉 (𝑥) :

𝐴1) +Φ(𝑉 (𝑥) : 𝐴2) + 𝑟 = 𝑞 +Φ𝑉 [𝑥1 ↦→𝑉 (𝑥),𝑥2 ↦→𝑉 (𝑥)](Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2) + 𝑟, by induction hypothesis,

we know that there exist 𝑝′ ∈ Q+
0 and a value 𝑣, satisfying 𝑉 [𝑥1 ↦→ 𝑉 (𝑥),𝑥2 ↦→ 𝑉 (𝑥)]

𝑝′
𝑝

𝑒 ⇓ 𝑣,

𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴′) + 𝑟, and 𝑀;𝐻 ⊢ 𝑆 ′⇝ 𝑣. To conclude this case, we show that:

– 𝑉
𝑝′
𝑝

share(𝑥,𝑥1.𝑥2.𝑒) ⇓ 𝑣: by rule (E-Share).

– 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴′) + 𝑟: trivial.

– 𝑀;𝐻 ⊢ 𝑆 ′⇝ 𝑣: trivial.

•

(WC-Weakening)

Γ ;𝛾 ;𝜎
𝑞′
𝑞
𝑒 : 𝐴′ ⇒

⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
𝛾(𝑥) = 𝑆 Φ̃𝜎 (𝑆 : 𝐴) = 0

Γ ,𝑥 : 𝐴;𝛾 ;𝜎
𝑞′
𝑞
𝑒 : 𝐴′ ⇒

⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴), 𝑀 is a model for 𝜑, 𝑀 ⊢ 𝜎 ′ ⊑𝐻 , and 𝑀;𝐻 ⊢ 𝛾⇝
𝑉 . Hence 𝑀;𝐻 ⊢ 𝑆⇝ 𝑉 (𝑥). First we show that:
– 𝜎 ⊢ 𝛾 : Γ : by the fact that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴).

– 𝑀 is a model for 𝜑: trivial.

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 : trivial.
For all 𝑝,𝑟 ∈Q+

0 such that 𝑝 = 𝑞+Φ𝑉 (Γ ,𝑥 : 𝐴)+𝑟 = 𝑞+Φ𝑉 (Γ)+Φ(𝑉 (𝑥) : 𝐴)+𝑟 = 𝑞+Φ𝑉 (Γ)+Φ̃𝜎 ′ (𝑆 :
𝐴)+𝑟 = 𝑞+Φ𝑉 (Γ)+ Φ̃𝜎 (𝑆 : 𝐴)+𝑟 = 𝑞+Φ(Γ)+𝑟, by induction hypothesis, we know that there exist

𝑝′ ∈Q+
0 and a value 𝑣, satisfying 𝑉

𝑝′
𝑝

𝑒 ⇓ 𝑣, 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴′) + 𝑟, and 𝑀;𝐻 ⊢ 𝑆 ′⇝ 𝑣. Then we

conclude this case.

•

(WC-Relax)

Γ ;𝛾 ;𝜎
𝑝′
𝑝

𝑒 : 𝐴⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
𝑞 ≥ 𝑝 𝑞 − 𝑝 = 𝑞′ − 𝑝′

Γ ;𝛾 ;𝜎
𝑞′
𝑞
𝑒 : 𝐴⇒

⟨
𝜑,𝑆,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : Γ , 𝑀 is a model for 𝜑, 𝑀 ⊢ 𝜎 ′ ⊑𝐻 , and 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 . For
all 𝑝0, 𝑟 ∈Q+

0 such that 𝑝0 = 𝑞+Φ𝑉 (Γ) + 𝑟 = 𝑝+Φ𝑉 (Γ) + (𝑞 − 𝑝) + 𝑟, by induction hypothesis, we

38

A PROOFS 39

know that there exist 𝑝′0 ∈Q
+
0 and a value 𝑣, 𝑉

𝑝′0

𝑝0
𝑒 ⇓ 𝑣, 𝑝′0 = 𝑝′ +Φ(𝑣 : 𝐴)+(𝑞−𝑝)+ 𝑟 = 𝑝′ +Φ(𝑣 :

𝐴) + (𝑞′ − 𝑝′) + 𝑟 = 𝑞′ +Φ(𝑣 : 𝐴) + 𝑟, and 𝑀;𝐻 ⊢ 𝑆⇝ 𝑣. Then we conclude this case.

•

(WC-Subtype)

Γ ;𝛾 ;𝜎
𝑞′
𝑞
𝑒 : 𝐴⇒

⟨
𝜑,𝑆,𝜎 ′

⟩
𝐴 <: 𝐵 Φ̃𝜎 ′ (𝑆 : 𝐴) = Φ̃𝜎 ′ (𝑆 : 𝐵)

Γ ;𝛾 ;𝜎
𝑞′
𝑞
𝑒 : 𝐵⇒

⟨
𝜑,𝑆,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : Γ , 𝑀 is a model for 𝜑, 𝑀 ⊢ 𝜎 ′ ⊑ 𝐻 , and 𝑀;𝐻 ⊢ 𝛾 ⇝ 𝑉 .
For all 𝑝,𝑟 ∈Q+

0 such that 𝑝 = 𝑞+Φ𝑉 (Γ) + 𝑟, by induction hypothesis, we know that there exist

𝑝′ ∈Q+
0 and a value 𝑣, 𝑉

𝑝′
𝑝

𝑒 ⇓ 𝑣, 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴) + 𝑟 = 𝑞′ + Φ̃𝜎 ′ (𝑆 : 𝐴) + 𝑟 = 𝑞′ + Φ̃𝜎 ′ (𝑆 : 𝐵) + 𝑟 =

𝑞+Φ(𝑣 : 𝐵) + 𝑟, and 𝑀;𝐻 ⊢ 𝑆⇝ 𝑣. Then we conclude this case.

•

(WC-Supertype)

Γ ,𝑥 : 𝐵;𝛾 ;𝜎
𝑞′
𝑞
𝑒 : 𝐶⇒

⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
𝐴 <: 𝐵 𝛾(𝑥) = 𝑆 Φ̃𝜎 (𝑆 : 𝐴) = Φ̃𝜎 (𝑆 : 𝐵)

Γ ,𝑥 : 𝐴;𝛾 ;𝜎
𝑞′
𝑞
𝑒 : 𝐶⇒

⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴), 𝑀 is a model for 𝜑, 𝑀 ⊢ 𝜎 ′ ⊑𝐻 , and 𝑀;𝐻 ⊢ 𝛾⇝
𝑉 . Hence 𝑀;𝐻 ⊢ 𝑆⇝ 𝑉 (𝑥). First we show that:
– 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐵): by the fact that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴) and 𝐴 <: 𝐵.

– 𝑀 is a model for 𝜑: trivial.

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 : trivial.
For all 𝑝,𝑟 ∈Q+

0 such that 𝑝 = 𝑞+Φ𝑉 (Γ ,𝑥 : 𝐴)+𝑟 = 𝑞+Φ𝑉 (Γ)+Φ(𝑉 (𝑥) : 𝐴)+𝑟 = 𝑞+Φ𝑉 (Γ)+Φ̃𝜎 ′ (𝑆 :
𝐴) + 𝑟 = 𝑞 + Φ𝑉 (Γ) + Φ̃𝜎 (𝑆 : 𝐴) + 𝑟 = 𝑞 + Φ𝑉 (Γ) + Φ̃𝜎 (𝑆 : 𝐵) + 𝑟 = 𝑞 + Φ𝑉 (Γ) + Φ(𝑉 (𝑥) : 𝐵) + 𝑟 =
𝑞 +Φ𝑉 (Γ ,𝑥 : 𝐵) + 𝑟, by induction hypothesis, we know that there exist 𝑝′ ∈ Q+

0 and a value 𝑣,

𝑉
𝑝′
𝑝

𝑒 ⇓ 𝑣, 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐶) + 𝑟, and 𝑀;𝐻 ⊢ 𝑆 ′⇝ 𝑣. Then we conclude this case.

A.2 Proof of Lem. A.1
Proof. By induction on the derivation of Σ;Γ ;𝛾 ;𝜎

𝑞′
𝑞
𝑒 : 𝐴⇒

⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
.

• We omit (WC-Unit), (WC-Bool), (WC-Int), (WC-Var), (WC-Op), (WC-Pair), as well as the
structural rules, because these cases are straightforward to prove.

•

(WC-App)

𝛾(𝑥) = 𝑆 𝐴1
𝑞/𝑞′
−−−−→ 𝐴2 ∈ Σ(𝑓) 𝑥𝑓 : 𝐴1;𝛾[𝑥𝑓 ↦→ 𝑆];𝜎

𝑞′
𝑞
𝑒𝑓 : 𝐴2⇒

⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
𝑥 : 𝐴1;𝛾 ;𝜎

𝑞′
𝑞+𝐾app

app(𝑓 ,𝑥) : 𝐴2⇒
⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (𝑥 : 𝐴1). Then 𝜎 ⊢ 𝛾[𝑥𝑓 ↦→ 𝛾(𝑥)] : (𝑥𝑓 : 𝐴1). By induction
hypothesis, we know that 𝜎 ′ ⊢ 𝑆 ′ : 𝐴2.

•

(WC-Let)

Γ1;𝛾 ;𝜎 𝑞1

𝑞
𝑒1 : 𝐴1⇒

⟨︀
𝜑1,𝑆1,𝜎1

⟩︀
Γ2,𝑥 : 𝐴1;𝛾[𝑥 ↦→ 𝑆1];𝜎1 𝑞′

𝑞1
𝑒2 : 𝐴2⇒

⟨︀
𝜑2,𝑆2,𝜎2

⟩︀
Γ1,Γ2;𝛾 ;𝜎

𝑞′
𝑞+𝐾 let

let(𝑒1,𝑥.𝑒2) : 𝐴2⇒
⟨︀
𝜑1 ∧𝜑2,𝑆2,𝜎2

⟩︀
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ1,Γ2). Then 𝜎 ⊢ 𝛾 : Γ1 and 𝜎 ⊢ 𝛾 : Γ2. By induction
hypothesis, we know that 𝜎1 ⊢ 𝑆1 : 𝐴1. Hence 𝜎1 ⊢ 𝛾[𝑥 ↦→ 𝑆1] : (Γ2,𝑥 : 𝐴1). By induction
hypothesis, we know that 𝜎2 ⊢ 𝑆2 : 𝐴2.

•

(WC-MatP)

𝛾(𝑥) = ⟨𝑆1,𝑆2⟩ Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2;𝛾[𝑥1 ↦→ 𝑆1,𝑥2 ↦→ 𝑆2];𝜎
𝑞′
𝑞
𝑒 : 𝐴⇒

⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝐴1 ×𝐴2;𝛾 ;𝜎

𝑞′
𝑞+𝐾matP

matp(𝑥,𝑥1.𝑥2.𝑒) : 𝐴⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴1 ×𝐴2). Then 𝜎 ⊢ 𝛾[𝑥1 ↦→ 𝑆1,𝑥2 ↦→ 𝑆2] : (Γ ,𝑥1 :
𝐴1,𝑥2 : 𝐴2) because 𝛾(𝑥) = ⟨𝑆1,𝑆2⟩. By induction hypothesis, we know that 𝜎 ′ ⊢ 𝑆 : 𝐴.

•

(WC-Leaf)

ℓ < dom(𝜎)

·;𝛾 ;𝜎 0
𝐾 leaf

leaf : 𝑇 𝑝(𝐴)⇒ ⟨⊤, ℓ,𝜎 [ℓ ↦→ leaf]⟩
We conclude this case by the fact that 𝜎 [ℓ ↦→ leaf] ⊢ ℓ : 𝑇 𝑝(𝐴). We omit (WC-Nil) because it is
similar to this case.

•

(WC-Node)

𝑥0,𝑥1,𝑥2 ∈ dom(𝛾) 𝑅 = node(𝛾(𝑥0),𝛾(𝑥1),𝛾(𝑥2)) ℓ < dom(𝜎)

𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴);𝛾 ;𝜎 0
𝑝+𝐾node

node(𝑥0,𝑥1,𝑥2) : 𝑇 𝑝(𝐴)⇒ ⟨⊤, ℓ,𝜎 [ℓ ↦→ 𝑅]⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴)). Hence 𝜎 ⊢ 𝛾(𝑥0) : 𝐴,
𝜎 ⊢ 𝛾(𝑥1) : 𝑇 𝑝(𝐴), 𝜎 ⊢ 𝛾(𝑥2) : 𝑇 𝑝(𝐴). We conclude this case by the fact that 𝜎 [ℓ ↦→
node(𝛾(𝑥0),𝛾(𝑥1),𝛾(𝑥2))] ⊢ ℓ : 𝑇 𝑝(𝐴). We omit (WC-Cons) because it is similar to this case.

•

(WC-MatT-Leaf)

𝛾(𝑥) = ℓ 𝜎 (ℓ) = leaf Γ ;𝛾 ;𝜎
𝑞′

𝑞−𝐾matTL

𝑒1 : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝑇 𝑝(𝐴);𝛾 ;𝜎

𝑞′
𝑞

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝑇 𝑝(𝐴)). Hence 𝜎 ⊢ 𝛾 : Γ . By induction hypothesis, we
know that 𝜎 ′ ⊢ 𝑆 : 𝐴′ . We omit (WC-MatL-Nil) because it is similar to this case.

•

(WC-MatT-Node)

𝛾(𝑥) = ℓ 𝜎 (ℓ) = node(𝑆0,𝑆1,𝑆2)

Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴);𝛾[𝑥0 ↦→ 𝑆0,𝑥1 ↦→ 𝑆1,𝑥2 ↦→ 𝑆2];𝜎
𝑞′

𝑞+𝑝−𝐾matTN

𝑒2 : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝑇 𝑝(𝐴);𝛾 ;𝜎

𝑞′
𝑞

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝑇 𝑝(𝐴)). Hence 𝜎 ⊢ 𝛾[𝑥0 ↦→ 𝑆0,𝑥1 ↦→ 𝑆1,𝑥2 ↦→ 𝑆2] :
(Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴)) because 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝑇 𝑝(𝐴)) and 𝜎 (𝛾(𝑥)) = node(𝑆0,𝑆1,𝑆2). By
induction hypothesis, we know that 𝜎 ′ ⊢ 𝑆 : 𝐴′ . We omit (WC-MatL-Cons) because it is similar
to this case.

•

(WC-MatT-Tree-Empty)

𝛾(𝑥) = ℓ 𝜎 (ℓ) = treeof(·) Γ ;𝛾 ;𝜎 [ℓ ↦→ leaf]
𝑞′

𝑞−𝐾matTL

𝑒1 : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝑇 𝑝(𝐴);𝛾 ;𝜎

𝑞′
𝑞

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾, : (Γ : 𝑇 𝑝(𝐴)). Hence 𝜎 ⊢ 𝛾 : Γ . Because 𝜎 (ℓ) = treeof(·),
we have 𝜎 [ℓ ↦→ leaf] ⊢ 𝛾 : Γ . By induction hypothesis we know that 𝜎 ′ ⊢ 𝑆 : 𝐴′ . We omit
(WC-MatL-List-Empty) because it is similar to this case.

•

(WC-MatT-Tree-NonEmpty)

𝛾(𝑥) = ℓ 𝜎 (ℓ) = treeof(𝑆1, · · · ,𝑆𝑛) ℓ1, ℓ2 < dom(𝜎) 𝑅1 = treeof(𝑆2, · · · ,𝑆𝑚)
𝑅2 = treeof(𝑆𝑚+1, · · · ,𝑆𝑛) 𝜎𝑜 = 𝜎 [ℓ ↦→ node(𝑆1, ℓ1, ℓ2), ℓ1 ↦→ 𝑅1, ℓ2 ↦→ 𝑅2]

Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴);𝛾[𝑥0 ↦→ 𝑆1,𝑥1 ↦→ ℓ1,𝑥2 ↦→ ℓ2];𝜎𝑜 𝑞′
𝑞+𝑝−𝐾matTN

𝑒2 : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝑇 𝑝(𝐴);𝛾 ;𝜎

𝑞′
𝑞

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
40

A PROOFS 41

By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝑇 𝑝(𝐴)). Hence 𝜎 ⊢ 𝛾(𝑥) : 𝑇 𝑝(𝐴), thus 𝜎 ⊢ 𝑆𝑖 : 𝐴 for
every 𝑖 ∈ {1, · · · ,𝑛}. Also 𝜎 ⊢ 𝑅1 : 𝑇 𝑝(𝐴), 𝜎 ⊢ 𝑅2 : 𝑇 𝑝(𝐴). Thus 𝜎𝑜 ⊢ ℓ1 : 𝑇 𝑝(𝐴), 𝜎𝑜 ⊢ ℓ2 : 𝑇 𝑝(𝐴).
Then we have 𝜎𝑜 ⊢ 𝛾[𝑥0 ↦→ 𝑆1,𝑥1 ↦→ ℓ1,𝑥2 ↦→ ℓ2] : (Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴)). By induction
hypothesis, we know that 𝜎 ′ ⊢ 𝑆 : 𝐴′ . We omit (WC-MatL-List-NonEmpty) because it is similar
to this case.

•

(WC-Cond-True)

𝛾(𝑥) = 𝑆 Γ ;𝛾 ;𝜎
𝑞′

𝑞−𝐾condT

𝑒1 : 𝐴⇒
⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
Γ ,𝑥 : bool;𝛾 ;𝜎

𝑞′
𝑞

if(𝑥,𝑒1, 𝑒2) : 𝐴⇒
⟨
𝑆 ∧𝜑,𝑆 ′ ,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : bool). Hence 𝜎 ⊢ 𝛾 : Γ . By induction hypothesis, we
know that 𝜎 ′ ⊢ 𝑆 ′ : 𝐴. We omit (WC-Cond-False) because it is similar to this case.

•

(WC-Share)

𝛾(𝑥) = 𝑆 Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2;𝛾[𝑥1 ↦→ 𝑆,𝑥2 ↦→ 𝑆];𝜎
𝑞′
𝑞
𝑒 : 𝐴′ ⇒

⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
.(𝐴 | 𝐴1,𝐴2)

Γ ,𝑥 : 𝐴;𝛾 ;𝜎
𝑞′
𝑞

share(𝑥,𝑥1.𝑥2.𝑒) : 𝐴′ ⇒
⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴). Hence 𝜎 ⊢ 𝛾[𝑥1 ↦→ 𝑆,𝑥2 ↦→ 𝑆] : (Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2)
because 𝛾(𝑥) = 𝑆 and .(𝐴 | 𝐴1,𝐴2). By induction hypothesis, we know that 𝜎 ′ ⊢ 𝑆 ′ : 𝐴′ .

A.3 Proof of Lem. A.2
Proof. By induction on the derivation of Σ;Γ ;𝛾 ;𝜎

𝑞′
𝑞
𝑒 : 𝐴⇒

⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
.

• We omit (WC-Unit), (WC-Bool), (WC-Int), (WC-Var), (WC-Op), (WC-Pair), because these rules
do not change 𝜎 . We also omit structural rules (WC-Weakening), (WC-Relax), (WC-Subtype),
(WC-Supertype), because these cases are straightforward to prove.

•

(WC-App)

𝛾(𝑥) = 𝑆 𝐴1
𝑞/𝑞′
−−−−→ 𝐴2 ∈ Σ(𝑓) 𝑥𝑓 : 𝐴1;𝛾[𝑥𝑓 ↦→ 𝑆];𝜎

𝑞′
𝑞
𝑒𝑓 : 𝐴2⇒

⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
𝑥 : 𝐴1;𝛾 ;𝜎

𝑞′
𝑞+𝐾app

app(𝑓 ,𝑥) : 𝐴2⇒
⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (𝑥 : 𝐴1), 𝑀 ⊢ 𝜎 ′ ⊑𝐻 . First we show that:

– 𝜎 ⊢ 𝛾[𝑥𝑓 ↦→ 𝛾(𝑥)] : (𝑥𝑓 : 𝐴1): by the fact that 𝜎 ⊢ 𝛾 : (𝑥 : 𝐴1).

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 : trivial.
By induction hypothesis, we know that 𝑀 ⊢ 𝜎 ⊑𝐻 .

•

(WC-Let)

Γ1;𝛾 ;𝜎 𝑞1

𝑞
𝑒1 : 𝐴1⇒

⟨︀
𝜑1,𝑆1,𝜎1

⟩︀
Γ2,𝑥 : 𝐴1;𝛾[𝑥 ↦→ 𝑆1];𝜎1 𝑞′

𝑞1
𝑒2 : 𝐴2⇒

⟨︀
𝜑2,𝑆2,𝜎2

⟩︀
Γ1,Γ2;𝛾 ;𝜎

𝑞′
𝑞+𝐾 let

let(𝑒1,𝑥.𝑒2) : 𝐴2⇒
⟨︀
𝜑1 ∧𝜑2,𝑆2,𝜎2

⟩︀
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ1,Γ2), 𝑀 ⊢ 𝜎2 ⊑𝐻 . First we show that:
– 𝜎 ⊢ 𝛾[𝑥 ↦→ 𝑆1] : (Γ2,𝑥 : 𝐴1): by the fact that 𝜎 ⊢ 𝛾 : (Γ1,Γ2) and heap preservation (Lem. A.1).

– 𝑀 ⊢ 𝜎2 ⊑𝐻 .
By induction hypothesis, we know that 𝑀 ⊢ 𝜎1 ⊑𝐻 . Then we show that:
– 𝜎 ⊢ 𝛾 : Γ1: by the fact that 𝜎 ⊢ 𝛾 : (Γ1,Γ2).

– 𝑀 ⊢ 𝜎1 ⊑𝐻 .
By induction hypothesis we know that 𝑀 ⊢ 𝜎 ⊑𝐻 .

•

(WC-MatP)

𝛾(𝑥) = ⟨𝑆1,𝑆2⟩ Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2;𝛾[𝑥1 ↦→ 𝑆1,𝑥2 ↦→ 𝑆2];𝜎
𝑞′
𝑞
𝑒 : 𝐴⇒

⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝐴1 ×𝐴2;𝛾 ;𝜎

𝑞′
𝑞+𝐾matP

matp(𝑥,𝑥1.𝑥2.𝑒) : 𝐴⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴1 ×𝐴2), 𝑀 ⊢ 𝜎 ′ ⊑𝐻 . First we show that:
– 𝜎 ⊢ 𝛾[𝑥1 ↦→ 𝑆1,𝑥2 ↦→ 𝑆2] : (Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2): by the fact that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴1 × 𝐴2 and
𝛾(𝑥) = ⟨𝑆1,𝑆2⟩.

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 : trivial.
By induction hypothesis, we know that 𝑀 ⊢ 𝜎 ⊑𝐻 .

•

(WC-Leaf)

ℓ < dom(𝜎)

·;𝛾 ;𝜎 0
𝐾 leaf

leaf : 𝑇 𝑝(𝐴)⇒ ⟨⊤, ℓ,𝜎 [ℓ ↦→ leaf]⟩
By assumption we know that 𝜎 ⊢ 𝛾 : ·, 𝑀 ⊢ 𝜎 [ℓ ↦→ leaf] ⊑𝐻 . Because ℓ < dom(𝜎), we know that
for every ℓ′ ∈ dom(𝜎), 𝑀;𝐻 ⊢ 𝜎 (ℓ′) ⊑ 𝐻(ℓ′). Thus 𝑀 ⊢ 𝜎 ⊑ 𝐻 . We omit (WC-Nil) because it is
similar to this case.

•

(WC-Node)

𝑥0,𝑥1,𝑥2 ∈ dom(𝛾) 𝑅 = node(𝛾(𝑥0),𝛾(𝑥1),𝛾(𝑥2)) ℓ < dom(𝜎)

𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴);𝛾 ;𝜎 0
𝑝+𝐾node

node(𝑥0,𝑥1,𝑥2) : 𝑇 𝑝(𝐴)⇒ ⟨⊤, ℓ,𝜎 [ℓ ↦→ 𝑅]⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴)), 𝑀 ⊢ 𝜎 [ℓ ↦→
node(𝛾(𝑥0),𝛾(𝑥1),𝛾(𝑥2)] ⊑ 𝐻 . Because ℓ < dom(𝜎), we know that for every ℓ′ ∈ dom(𝜎),
𝑀;𝐻 ⊢ 𝜎 (ℓ′) ⊑ 𝐻(ℓ′). Thus 𝑀 ⊢ 𝜎 ⊑ 𝐻 . We omit (WC-Cons) because it is similar to this
case.

•

(WC-MatT-Leaf)

𝛾(𝑥) = ℓ 𝜎 (ℓ) = leaf Γ ;𝛾 ;𝜎
𝑞′

𝑞−𝐾matTL

𝑒1 : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝑇 𝑝(𝐴);𝛾 ;𝜎

𝑞′
𝑞

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝑇 𝑝(𝐴)), 𝑀 ⊢ 𝜎 ′ ⊑𝐻 . First we show that:
– 𝜎 ⊢ 𝛾 : Γ : by the fact that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝑇 𝑝(𝐴)).

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 : trivial.
By induction hypothesis, we know that 𝑀 ⊢ 𝜎 ⊑ 𝐻 . We omit (WC-MatL-Nil) because it is
similar to this case.

•

(WC-MatT-Node)

𝛾(𝑥) = ℓ 𝜎 (ℓ) = node(𝑆0,𝑆1,𝑆2)

Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴);𝛾[𝑥0 ↦→ 𝑆0,𝑥1 ↦→ 𝑆1,𝑥2 ↦→ 𝑆2];𝜎
𝑞′

𝑞+𝑝−𝐾matTN

𝑒2 : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝑇 𝑝(𝐴);𝛾 ;𝜎

𝑞′
𝑞

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝑇 𝑝(𝐴)), 𝑀 ⊢ 𝜎 ′ ⊑𝐻 . First we show that:
– 𝜎 ⊢ 𝛾[𝑥0 ↦→ 𝑆0,𝑥1 ↦→ 𝑆1,𝑥2 ↦→ 𝑆2] : (Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴)): by the fact that 𝜎 ⊢ 𝛾 :

(Γ ,𝑥 : 𝑇 𝑝(𝐴)) and 𝜎 (𝛾(𝑥)) = node(𝑆0,𝑆1,𝑆2).
By induction hypothesis, we know that 𝑀 ⊢ 𝜎 ⊑ 𝐻 . We omit (WC-MatL-Cons) because it is
similar to this case.

•

(WC-MatT-Tree-Empty)

𝛾(𝑥) = ℓ 𝜎 (ℓ) = treeof(·) Γ ;𝛾 ;𝜎 [ℓ ↦→ leaf]
𝑞′

𝑞−𝐾matTL

𝑒1 : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝑇 𝑝(𝐴);𝛾 ;𝜎

𝑞′
𝑞

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝑇 𝑝(𝐴)), 𝑀 ⊢ 𝜎 ′ ⊑𝐻 . First we show that:

42

A PROOFS 43

– 𝜎 [ℓ ↦→ leaf] ⊢ 𝛾 : Γ : by the fact that 𝜎 ⊢ 𝛾 : Γ , and 𝜎 ⊢ leaf ∈ 𝑇 𝑝(𝐴).

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 : trivial.
By induction hypothesis, we know that 𝑀 ⊢ 𝜎 [ℓ ↦→ leaf] ⊑ 𝐻 . It suffices to show that if
𝑀;𝐻 ⊢ leaf ⊑𝐻(ℓ), then 𝑀;𝐻 ⊢ treeof(·) ⊑𝐻(ℓ), which is trivial to prove. We omit (WC-MatL-

List-Empty) because it is similar to this case.

•

(WC-MatT-Tree-NonEmpty)

𝛾(𝑥) = ℓ 𝜎 (ℓ) = treeof(𝑆1, · · · ,𝑆𝑛) ℓ1, ℓ2 < dom(𝜎) 𝑅1 = treeof(𝑆2, · · · ,𝑆𝑚)
𝑅2 = treeof(𝑆𝑚+1, · · · ,𝑆𝑛) 𝜎𝑜 = 𝜎 [ℓ ↦→ node(𝑆1, ℓ1, ℓ2), ℓ1 ↦→ 𝑅1, ℓ2 ↦→ 𝑅2]

Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴);𝛾[𝑥0 ↦→ 𝑆1,𝑥1 ↦→ ℓ1,𝑥2 ↦→ ℓ2];𝜎𝑜 𝑞′
𝑞+𝑝−𝐾matTN

𝑒2 : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
Γ ,𝑥 : 𝑇 𝑝(𝐴);𝛾 ;𝜎

𝑞′
𝑞

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) : 𝐴′ ⇒
⟨
𝜑,𝑆,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝑇 𝑝(𝐴)), 𝑀 ⊢ 𝜎 ′ ⊑𝐻 . First, we show that:
– 𝜎𝑜 ⊢ 𝛾[𝑥0 ↦→ 𝑆1,𝑥1 ↦→ ℓ1,𝑥2 ↦→ ℓ2] : (Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝(𝐴),𝑥2 : 𝑇 𝑝(𝐴)): by the fact that 𝜎 ⊢
𝛾 : (Γ ,𝑥 : 𝑇 𝑝(𝐴)), thus 𝜎 ⊢ 𝑆𝑖 : 𝐴 for every 𝑖 ∈ {1, · · · ,𝑛}, and 𝑅1 = treeof(𝑆2, · · · ,𝑆𝑚), 𝑅2 =
treeof(𝑆𝑚+1, · · · ,𝑆𝑛), hence 𝜎 ⊢ 𝑅1 ∈ 𝑇 𝑝(𝐴), 𝜎 ⊢ 𝑅2 ∈ 𝑇 𝑝(𝐴).

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 : trivial.
By induction hypothesis, we know that 𝑀 ⊢ 𝜎𝑜 ⊑𝐻 . By the definition of 𝜎𝑜 it suffices to show
that if 𝑀;𝐻 ⊢ node(𝑆1, ℓ1, ℓ2) ⊑𝐻(ℓ), then 𝑀;𝐻 ⊢ treeof(𝑆1, · · · ,𝑆𝑛) ⊑𝐻(ℓ), which is trivial to
prove. We omit (WC-MatL-List-NonEmpty) because it is similar to this case.

•

(WC-Cond-True)

𝛾(𝑥) = 𝑆 Γ ;𝛾 ;𝜎
𝑞′

𝑞−𝐾condT

𝑒1 : 𝐴⇒
⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
Γ ,𝑥 : bool;𝛾 ;𝜎

𝑞′
𝑞

if(𝑥,𝑒1, 𝑒2) : 𝐴⇒
⟨
𝑆 ∧𝜑,𝑆 ′ ,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : bool), 𝑀 ⊢ 𝜎 ′ ⊑𝐻 . First we show that:
– 𝜎 ⊢ 𝛾 : Γ : by the fact that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : bool).

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 : trivial.
By induction hypothesis, we know that 𝑀 ⊢ 𝜎 ⊑ 𝐻 . We omit (WC-Cond-False) because it is
similar to this case.

•

(WC-Share)

𝛾(𝑥) = 𝑆 Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2;𝛾[𝑥1 ↦→ 𝑆,𝑥2 ↦→ 𝑆];𝜎
𝑞′
𝑞
𝑒 : 𝐴′ ⇒

⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
.(𝐴 | 𝐴1,𝐴2)

Γ ,𝑥 : 𝐴;𝛾 ;𝜎
𝑞′
𝑞

share(𝑥,𝑥1.𝑥2.𝑒) : 𝐴′ ⇒
⟨
𝜑,𝑆 ′ ,𝜎 ′

⟩
By assumption we know that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴), 𝑀 ⊢ 𝜎 ′ ⊑𝐻 . First we show that:
– 𝜎 ⊢ 𝛾[𝑥1 ↦→ 𝛾(𝑥),𝑥2 ↦→ 𝛾(𝑥)] : (Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2): by the fact that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴) and

.(𝐴 | 𝐴1,𝐴2).

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 : trivial.
By induction hypothesis, we know that 𝑀 ⊢ 𝜎 ⊑𝐻 .

A.4 Proof of Lem. A.3
Proof. We prove the first two lemmas, and the third lemma is then a direct corollary.
By mutual induction on the structure of 𝑆 and 𝑅.

• 𝑆 = null: hence 𝑣 = null and 𝐴 = unit, and Φ̃𝜎 (null : unit) = 0 = Φ(null : unit). We omit boolean
and integer constants and indeterminates, because they are similar to this case.

• 𝑆 = ⟨𝑆1,𝑆2⟩: hence there exist 𝑣1,𝑣2 such that 𝑣 = ⟨𝑣1,𝑣2⟩ and 𝑀;𝐻 ⊢ 𝑆1⇝ 𝑣1, 𝑀;𝐻 ⊢ 𝑆2⇝ 𝑣2.
By induction hypothesis, we know that Φ̃𝜎 (𝑆1 : 𝐴1) = Φ(𝑣1 : 𝐴1), Φ̃𝜎 (𝑆2 : 𝐴2) = Φ(𝑣2 : 𝐴2). Then
we conclude this case.

• 𝑆 = ℓ: hence 𝑣 = 𝐻(ℓ) and 𝑀;𝐻 ⊢ 𝜎 (ℓ) ⊑ 𝑣. By 𝜎 ⊢ ℓ : 𝐴 we have 𝜎 ⊢ 𝜎 (ℓ) ∈ 𝐴, then by induction
hypothesis we know that Φ̃𝜎 (ℓ : 𝐴) = Φ̃𝜎 (𝜎 (ℓ) ∈ 𝐴) = Φ(𝑣 : 𝐴).

• 𝑅 = leaf: hence 𝑣 = null and 𝐴 = 𝑇 𝑝(𝐴′) for some 𝐴′ and 𝑝 ∈ Q+
0 . Then Φ̃𝜎 (leaf ∈ 𝐴) = 0 =

Φ(null : 𝐴). We omit 𝑅 = nil because it is similar to this case.

• 𝑅 = node(𝑆0,𝑆1,𝑆2): hence there exist 𝑣0,𝑣1,𝑣2 such that 𝑣 = ⟨𝑣0,𝑣1,𝑣2⟩, 𝐴 = 𝑇 𝑝(𝐴′) for some
𝐴′ and 𝑝 ∈Q+

0 , and 𝜎 ⊢ 𝑆0 : 𝐴′ , 𝜎 ⊢ 𝑆1 : 𝑇 𝑝(𝐴′), 𝜎 ⊢ 𝑆2 : 𝑇 𝑝(𝐴′), 𝑀;𝐻 ⊢ 𝑆0⇝ 𝑣0, 𝑀;𝐻 ⊢ 𝑆1⇝ 𝑣1,
𝑀;𝐻 ⊢ 𝑆2 ⇝ 𝑣2. By induction hypothesis we know that Φ̃𝜎 (𝑆0 : 𝐴′) = Φ(𝑣0 : 𝐴′), Φ̃𝜎 (𝑆1 :
𝑇 𝑝(𝐴′)) = Φ(𝑣1 : 𝑇 𝑝(𝐴′)), Φ̃𝜎 (𝑆2 : 𝑇 𝑝(𝐴′)) = Φ(𝑣2 : 𝑇 𝑝(𝐴′)). Then we conclude this case by the
definition of potential functions. We omit 𝑅 = cons(𝑆ℎ,𝑆𝑡) because it is similar to this case.

• 𝑅 = treeof(𝑆1, · · · ,𝑆𝑛): hence there exist 𝑣0,𝑣1,𝑣2 such that 𝑣 = ⟨𝑣0,𝑣1,𝑣2⟩, 𝐴 = 𝑇 𝑝(𝐴′) for some
𝐴′ and 𝑝 ∈Q+

0 , and 𝜎 ⊢ 𝑆𝑖 : 𝐴′ for every 𝑖 ∈ {1, · · · ,𝑛}, 𝑀;𝐻 ⊢ treeof(𝑆2, · · · ,𝑆𝑚) ⊑ 𝑣1 and 𝑀;𝐻 ⊢
treeof(𝑆𝑚+1, · · · ,𝑆𝑛) for some 𝑚, 𝜎 ⊢ treeof(𝑆2, · · · ,𝑆𝑚) ∈ 𝑇 𝑝(𝐴′), 𝜎 ⊢ treeof(𝑆𝑚+1, · · · ,𝑆𝑛) ∈
𝑇 𝑝(𝐴′). By induction hypothesis we know that Φ̃𝜎 (𝑆1 : 𝐴′) = Φ(𝑣0 : 𝐴′), Φ̃𝜎 (treeof(𝑆2, · · · ,𝑆𝑚) ∈
𝑇 𝑝(𝐴′)) = Φ(𝑣1 : 𝑇 𝑝(𝐴′)), Φ̃𝜎 (treeof(𝑆𝑚+1, · · · ,𝑆𝑛) ∈ 𝑇 𝑝(𝐴′)) = Φ(𝑣2 : 𝑇 𝑝(𝐴′)). Then we con-
clude this case by the definition of potential functions. We omit 𝑅 = listof(𝑆1, · · · ,𝑆𝑛) because
it is similar to this case.

A.5 Proof of Thm. 5.8
First we state a lemma.

Lemma A.4 (Skeleton monotonicity).

• If 𝐻 ⊆𝐻 ′ , 𝑀 ⊢ 𝜎 ⊑𝐻 , then 𝑀 ⊢ 𝜎 ⊑𝐻 ′ .

• If 𝐻 ⊆𝐻 ′ , 𝑀;𝐻 ⊢ 𝑆⇝ 𝑣, then 𝑀;𝐻 ′ ⊢ 𝑆⇝ 𝑣.

Proof. By definition.

Then we prove the completeness theorem.

Proof. By induction on the derivation of 𝑉
𝑝′
𝑝

𝑒 ⇓ 𝑣 and the derivation of Γ
𝑞′
𝑞

𝑒 : 𝐴, where the

derivation of the evaluation judgment takes priority over the typing judgment.

•

(A-Weakening)

Γ
𝑞′
𝑞
𝑒 : 𝐴′

Γ ,𝑥 : 𝐴
𝑞′
𝑞
𝑒 : 𝐴′

By assumption we know that |= 𝑉 : (Γ ,𝑥 : 𝐴), 𝑉
𝑝′
𝑝

𝑒 ⇓ 𝑣, 𝑝 = 𝑞 +Φ𝑉 (Γ ,𝑥 : 𝐴) + 𝑟, 𝑝′ = 𝑞 +Φ(𝑣 :

𝐴′) + 𝑟, 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴), 𝑀 ⊢ 𝜎 ⊑ 𝐻 , and 𝑀;𝐻 ⊢ 𝛾 ⇝ 𝑉 . Hence 𝑝 = 𝑞 + Φ𝑉 (Γ ,𝑥 : 𝐴) + 𝑟 =
𝑞 + Φ𝑉 (Γ) + (Φ(𝑉 (𝑥) : 𝐴) + 𝑟). By the soundness of the type system, we know that 𝑝 − 𝑝′ ≤
(𝑞+Φ𝑉 (Γ))− (𝑞′ +Φ(𝑣 : 𝐴′)). Thus Φ(𝑉 (𝑥) : 𝐴) ≤ 0 and because potentials are nonnegative we
have Φ(𝑉 (𝑥) : 𝐴) = 0. First we show that:

– Γ
𝑞′
𝑞
𝑒 : 𝐴: trivial.

– |= 𝑉 : Γ : by the fact that |= 𝑉 : (Γ ,𝑥 : 𝐴).

44

A PROOFS 45

– 𝑉
𝑝′
𝑝

𝑒 ⇓ 𝑣: trivial.

– 𝑝 = 𝑞+Φ𝑉 (Γ) + 𝑟: trivial.

– 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴′) + 𝑟: trivial.

– 𝜎 ⊢ 𝛾 : Γ : by the fact that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴).

– 𝑀 ⊢ 𝜎 ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 : trivial.

By induction hypothesis, we know that there exist 𝜑,𝑆,𝜎 ′ ,𝐻 ′ , satisfying Γ ;𝛾 ;𝜎
𝑞′
𝑞

𝑒 : 𝐴′ ⇒⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
, 𝑀 is a model for 𝜑, 𝐻 ⊆ 𝐻 ′ , 𝑀 ⊢ 𝜎 ′ ⊑ 𝐻 ′ , 𝑀;𝐻 ′ ⊢ 𝛾 ⇝ 𝑉 , and 𝑀;𝐻 ′ ⊢ 𝑆 ⇝ 𝑣. To

conclude this case, we show that:

– Γ ,𝑥 : 𝐴;𝛾 ;𝜎
𝑞′
𝑞

𝑒 : 𝐴′ ⇒
⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
: By 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴) we know that there exists 𝑆 ′ such

that 𝛾(𝑥) = 𝑆 ′ and 𝜎 ⊢ 𝑆 ′ : 𝐴. By 𝑀;𝐻 ⊢ 𝛾 ⇝ 𝑉 we know that 𝑀;𝐻 ⊢ 𝑆 ′ ⇝ 𝑉 (𝑥). Thus
Φ̃𝜎 (𝑆 ′ : 𝐴) = Φ(𝑉 (𝑥) : 𝐴) = 0. We conclude by rule (WC-Weakening).

– 𝑀 is a model for 𝜑: trivial.

– 𝐻 ⊆𝐻 ′ : trivial.

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 ′ : trivial.

– 𝑀;𝐻 ′ ⊢ 𝛾⇝ 𝑉 : trivial.

– 𝑀;𝐻 ′ ⊢ 𝑆⇝ 𝑣: trivial.

•

(A-Relax)

Γ
𝑝′0

𝑝0
𝑒 : 𝐴 𝑞 ≥ 𝑝0 𝑞 − 𝑝0 ≥ 𝑞′ − 𝑝′0

Γ
𝑞′
𝑞
𝑒 : 𝐴

By assumption we know that |= 𝑉 : Γ , 𝑉
𝑝′
𝑝

𝑒 ⇓ 𝑣, 𝑝 = 𝑞 + Φ𝑉 (Γ) + 𝑟, 𝑝′ = 𝑞′ + Φ(𝑣 : 𝐴) + 𝑟,

𝜎 ⊢ 𝛾 : Γ , 𝑀 ⊢ 𝜎 ⊑ 𝐻 , and 𝑀;𝐻 ⊢ 𝛾 ⇝ 𝑉 . Hence 𝑝 = 𝑞 +Φ𝑉 (Γ) + 𝑟 = 𝑝0 +Φ𝑉 (Γ) + (𝑞 − 𝑝0 + 𝑟),
𝑝′ = 𝑞′ + Φ(𝑣 : 𝐴) + 𝑟 = 𝑝′0 + Φ(𝑣 : 𝐴) + (𝑞′ − 𝑝′0 + 𝑟), and by the soundness of the type system,
𝑝 − 𝑝′ ≤ (𝑝0 +Φ𝑉 (Γ)) − (𝑝′0 +Φ(𝑣 : 𝐴)), thus 𝑞 − 𝑝0 ≤ 𝑞′ − 𝑝′0 and then 𝑞 − 𝑝0 = 𝑞′ − 𝑝′0. First we
show that:
– Γ

𝑝′0

𝑝0
𝑒 : 𝐴: trivial.

– |= 𝑉 : Γ : trivial.

– 𝑉
𝑝′
𝑝

𝑒 ⇓ 𝑣: trivial.

– 𝑝 = 𝑝0 +Φ𝑉 (Γ) + (𝑞 − 𝑝0 + 𝑟): trivial.

– 𝑝′ = 𝑝′0 +Φ(𝑣 : 𝐴) + (𝑞 − 𝑝0 + 𝑟): trivial.

– 𝜎 ⊢ 𝛾 : Γ : trivial.

– 𝑀 ⊢ 𝜎 ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 : trivial.

By induction hypothesis, we know that there exist 𝜑,𝑆,𝜎 ′ ,𝐻 ′ , satisfying Γ ;𝛾 ;𝜎
𝑝′0

𝑝0
𝑒 : 𝐴 ⇒⟨︀

𝜑,𝑆,𝜎 ′
⟩︀
, 𝑀 is a model for 𝜑, 𝐻 ⊆ 𝐻 ′ , 𝑀 ⊢ 𝜎 ′ ⊑ 𝐻 ′ , 𝑀;𝐻 ′ ⊢ 𝛾 ⇝ 𝑉 , and 𝑀;𝐻 ′ ⊢ 𝑆 ⇝ 𝑣. To

conclude this case, we show that:

– Γ ;𝛾 ;𝜎
𝑞′
𝑞
𝑒 : 𝐴⇒

⟨︀
𝜑,𝑆,𝜎

⟩︀
: by rule (WC-Relax).

– 𝑀 is a model for 𝜑: trivial.

– 𝐻 ⊆𝐻 ′ : trivial.

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 ′ : trivial.

– 𝑀;𝐻 ′ ⊢ 𝛾⇝ 𝑉 : trivial.

– 𝑀;𝐻 ′ ⊢ 𝑆⇝ 𝑣: trivial.

•

(A-Subtype)

Γ
𝑞′
𝑞
𝑒 : 𝐴 𝐴 <: 𝐵

Γ
𝑞′
𝑞
𝑒 : 𝐵

By assumption we know that |= 𝑉 : Γ , 𝑉
𝑝′
𝑝

𝑒 ⇓ 𝑣, 𝑝 = 𝑞+Φ𝑉 (Γ) + 𝑟, 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐵) + 𝑟, 𝜎 ⊢ 𝛾 : Γ ,

𝑀 ⊢ 𝜎 ⊑ 𝐻 , and 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 . Hence 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴) + (Φ(𝑣 : 𝐵)−Φ(𝑣 : 𝐴) + 𝑟), and by the
soundness of the type system, 𝑝 − 𝑝′ ≤ (𝑞+Φ𝑉 (Γ))− (𝑞′ +Φ(𝑣 : 𝐴)), thus Φ(𝑣 : 𝐴)−Φ(𝑣 : 𝐵) ≤ 0,
and by 𝐴 <: 𝐵 we know that Φ(𝑣 : 𝐴) ≥ Φ(𝑣 : 𝐵), then Φ(𝑣 : 𝐴) = Φ(𝑣 : 𝐵). First we show that:

– Γ
𝑞′
𝑞
𝑒 : 𝐴: trivial.

– |= 𝑉 : Γ : trivial.

– 𝑉
𝑝′
𝑝

𝑒 ⇓ 𝑣: trivial.

– 𝑝 = 𝑞+Φ𝑉 (Γ) + 𝑟: trivial.

– 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴) + 𝑟: trivial.

– 𝜎 ⊢ 𝛾 : Γ : trivial.

– 𝑀 ⊢ 𝜎 ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 .

By induction hypothesis, we know that there exist 𝜑,𝑆,𝜎 ′ ,𝐻 ′ , satisfying Γ ;𝛾 ;𝜎
𝑞′
𝑞

𝑒 : 𝐴 ⇒⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
, 𝑀 is a model for 𝜑, 𝐻 ⊆ 𝐻 ′ , 𝑀 ⊢ 𝜎 ′ ⊑ 𝐻 ′ , 𝑀;𝐻 ′ ⊢ 𝛾 ⇝ 𝑉 , and 𝑀;𝐻 ′ ⊢ 𝑆 ⇝ 𝑣. To

conclude this case, we show that:

– Γ ;𝛾 ;𝜎
𝑞′
𝑞
𝑒 : 𝐵⇒

⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
: By heap preservation we know that 𝜎 ′ ⊢ 𝑆 : 𝐴. Thus Φ̃𝜎 ′ (𝑆 : 𝐵) =

Φ(𝑣 : 𝐵) = Φ(𝑣 : 𝐴) = Φ̃𝜎 ′ (𝑆 : 𝐴). We conclude by rule (WC-Subtype).

– 𝑀 is a model for 𝜑: trivial.

– 𝐻 ⊆𝐻 ′ : trivial.

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 ′ : trivial.

– 𝑀;𝐻 ′ ⊢ 𝛾⇝ 𝑉 : trivial.

– 𝑀;𝐻 ′ ⊢ 𝑆⇝ 𝑣: trivial.

•

(A-Supertype)

Γ ,𝑥 : 𝐵
𝑞′
𝑞
𝑒 : 𝐶 𝐴 <: 𝐵

Γ ,𝑥 : 𝐴
𝑞′
𝑞
𝑒 : 𝐶

By assumption we know that |= 𝑉 : (Γ ,𝑥 : 𝐴), 𝑉
𝑝′
𝑝

𝑒 ⇓ 𝑣, 𝑝 = 𝑞 +Φ𝑉 (Γ ,𝑥 : 𝐴) + 𝑟, 𝑝′ = 𝑞′ +Φ(𝑣 :

𝐶) + 𝑟, 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴), 𝑀 ⊢ 𝜎 ⊑ 𝐻 , and 𝑀;𝐻 ⊢ 𝛾 ⇝ 𝑉 . Hence 𝑝 = 𝑞 + Φ𝑉 (Γ ,𝑥 : 𝐴) + 𝑟 =
𝑞 + Φ𝑉 (Γ ,𝑥 : 𝐵) + (Φ(𝑉 (𝑥) : 𝐴) − Φ(𝑉 (𝑥) : 𝐵) + 𝑟), and by the soundness of the type system,
𝑝 − 𝑝′ ≤ (𝑞+Φ𝑉 (Γ ,𝑥 : 𝐵))− (𝑞′ +Φ(𝑣 : 𝐶)), hence Φ(𝑉 (𝑥) : 𝐴)−Φ(𝑉 (𝑥) : 𝐵) ≤ 0, and by 𝐴 <: 𝐵 we
know that Φ(𝑉 (𝑥) : 𝐴) ≥ Φ(𝑉 (𝑥) : 𝐵), then Φ(𝑉 (𝑥) : 𝐴) = Φ(𝑉 (𝑥) : 𝐵). First we show that:

– Γ ,𝑥 : 𝐵
𝑞′
𝑞
𝑒 : 𝐶: trivial.

46

A PROOFS 47

– |= 𝑉 : (Γ ,𝑥 : 𝐵): by the fact that |= 𝑉 : (Γ ,𝑥 : 𝐴) and 𝐴 <: 𝐵.

– 𝑉
𝑝′
𝑝

𝑒 ⇓ 𝑣: trivial.

– 𝑝 = 𝑞+Φ𝑉 (Γ ,𝑥 : 𝐵) + 𝑟: trivial.

– 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐶) + 𝑟: trivial.

– 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐵): by the fact that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴) and 𝐴 <: 𝐵.

– 𝑀 ⊢ 𝜎 ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 .

By induction hypothesis, we know that there exist 𝜑,𝑆,𝜎 ′ ,𝐻 ′ , satisfying Γ ,𝑥 : 𝐵;𝛾 ;𝜎
𝑞′
𝑞
𝑒 : 𝐶⇒⟨︀

𝜑,𝑆,𝜎 ′
⟩︀
, 𝑀 is a model for 𝜑, 𝐻 ⊆ 𝐻 ′ , 𝑀 ⊢ 𝜎 ′ ⊑ 𝐻 ′ , 𝑀;𝐻 ′ ⊢ 𝛾 ⇝ 𝑉 , and 𝑀;𝐻 ′ ⊢ 𝑆 ⇝ 𝑣. To

conclude this case, we show that:

– Γ ,𝑥 : 𝐴;𝛾 ;𝜎
𝑞′
𝑞

𝑒 : 𝐶 ⇒
⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
: By 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐵) we know that there exists 𝑆 ′ such

that 𝛾(𝑥) = 𝑆 ′ and 𝜎 ⊢ 𝑆 ′ : 𝐵. By 𝑀;𝐻 ⊢ 𝛾 ⇝ 𝑉 we know that 𝑀;𝐻 ⊢ 𝑆 ′ ⇝ 𝑉 (𝑥). Thus
Φ̃𝜎 (𝑆 ′ : 𝐵) = Φ(𝑉 (𝑥) : 𝐵) = Φ(𝑉 (𝑥) : 𝐴) = Φ̃𝜎 (𝑆 ′ : 𝐵). We conclude by rule (WC-Supertype).

– 𝑀 is a model for 𝜑: trivial.

– 𝐻 ⊆𝐻 ′ : trivial.

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 ′ : trivial.

– 𝑀;𝐻 ′ ⊢ 𝛾⇝ 𝑉 : trivial.

– 𝑀;𝐻 ′ ⊢ 𝑆⇝ 𝑣: trivial.

•

(A-Unit)

· 0
𝐾unit

⟨⟩ : unit

By assumption we know that |= 𝑉 : ·, 𝑉
𝑝′
𝑝
⟨⟩ ⇓ 𝑣 thus 𝑣 = null, 𝑝 = 𝐾unit +Φ𝑉 (·) + 𝑟 = 𝐾unit + 𝑟,

𝑝′ = Φ(𝑣 : unit) + 𝑟 = 𝑟, 𝜎 ⊢ 𝛾 : ·, 𝑀 ⊢ 𝜎 ⊑𝐻 , and 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 . To conclude this case, we show
that:

– ·;𝛾 ;𝜎 0
𝐾unit

⟨⟩ : unit⇒ ⟨⊤,null,𝜎⟩: by the rule (WC-Unit).

– 𝑀 is a model for ⊤: trivial.

– 𝐻 ⊆𝐻 : trivial.

– 𝑀 ⊢ 𝜎 ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 : trivial.

– 𝑀;𝐻 ⊢ null⇝ null: trivial.
We omit (WC-Bool) and (WC-Int) because they are similar to this case.

•

(A-Var)

𝑥 : 𝐴 0
𝐾var

𝑥 : 𝐴

By assumption we know that |= 𝑉 : (𝑥 : 𝐴), 𝑉
𝑝′
𝑝

𝑥 ⇓ 𝑣 thus 𝑣 = 𝑉 (𝑥), 𝑝 = 𝐾var +Φ𝑉 (𝑥 : 𝐴) + 𝑟 =

𝐾var + Φ(𝑉 (𝑥) : 𝐴) + 𝑟, 𝑝′ = Φ(𝑣 : 𝐴) + 𝑟 = Φ(𝑉 (𝑥) : 𝐴) + 𝑟, 𝜎 ⊢ 𝛾 : (𝑥 : 𝐴), 𝑀 ⊢ 𝜎 ⊑ 𝐻 , and
𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 . To conclude this case, we show that:

– 𝑥 : 𝐴;𝛾 ;𝜎 0
𝐾var

𝑥 : 𝐴⇒
⟨︀
⊤,𝛾(𝑥),𝜎

⟩︀
: by rule (WC-Var).

– 𝑀 is a model for ⊤: trivial.

– 𝐻 ⊆𝐻 : trivial.

– 𝑀 ⊢ 𝜎 ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 : trivial.

– 𝑀;𝐻 ⊢ 𝛾(𝑥)⇝ 𝑉 (𝑥): by the fact that 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 .

•

(A-Op)

𝑥1 :^arg1
,𝑥2 :^arg2 0

𝐾op
op^(𝑥1,𝑥2) :^res

By assumption we know that |= 𝑉 : (𝑥1 : ^arg1
,𝑥2 : ^arg2

), 𝑉
𝑝′
𝑝

op^(𝑥1,𝑥2) ⇓ 𝑣 thus 𝑣 =

𝑉 (𝑥1) ^ 𝑉 (𝑥2), 𝑝 = 𝐾op + Φ𝑉 (𝑥1 : ^arg1
,𝑥2 : ^arg2

) + 𝑟 = 𝐾op + 𝑟, 𝑝′ = Φ(𝑣 : ^res) + 𝑟 = 𝑟,
𝜎 ⊢ 𝛾 : (𝑥1 : ^arg1

,𝑥2 : ^arg2
), 𝑀 ⊢ 𝜎 ⊑ 𝐻 , and 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 . To conclude this case, we show

that:
– 𝑥1 :^arg1

,𝑥2 :^arg2
;𝛾 ;𝜎 0

𝐾op
op^(𝑥1,𝑥2) :^res⇒

⟨︀
⊤,𝛾(𝑥1)^𝛾(𝑥2),𝜎

⟩︀
: by rule (WC-Op).

– 𝑀 is a model for ⊤: trivial.

– 𝐻 ⊆𝐻 : trivial.

– 𝑀 ⊢ 𝜎 ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 : trivial.

– 𝑀;𝐻 ⊢ 𝛾(𝑥1)^𝛾(𝑥2)⇝ 𝑉 (𝑥1)^𝑉 (𝑥2): by the fact that 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 .

•

(A-App)

𝐴1
𝑞/𝑞′
−−−−→ 𝐴2 ∈ Σ(𝑓)

𝑥 : 𝐴1 𝑞′
𝑞+𝐾app

app(𝑓 ,𝑥) : 𝐴2

By assumption we know that |= 𝑉 : (𝑥 : 𝐴1), 𝑉
𝑝′
𝑝

app(𝑓 ,𝑥) ⇓ 𝑣, 𝑝 = 𝑞 +𝐾app +Φ𝑉 (𝑥 : 𝐴1) + 𝑟,

𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴2)+𝑟, 𝜎 ⊢ 𝛾 : (𝑥 : 𝐴1), 𝑀 ⊢ 𝜎 ⊑𝐻 , and 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 . Hence 𝑝−𝐾app = 𝑞+Φ𝑉 (𝑥 :
𝐴1) + 𝑟 = 𝑞+Φ𝑉 [𝑥𝑓 ↦→𝑉 (𝑥)](𝑥

𝑓 : 𝐴1) + 𝑟. By inversion on the evaluation judgment, we know that

𝑉 [𝑥𝑓 ↦→ 𝑉 (𝑥)]
𝑝′

𝑝−𝐾app

𝑒𝑓 ⇓ 𝑣. First we show that:

– 𝑥𝑓 : 𝐴1 𝑞′
𝑞
𝑒𝑓 : 𝐴2: by the global signature 𝐴1

𝑞/𝑞′
−−−−→ 𝐴2 ∈ Σ(𝑓).

– |= 𝑉 [𝑥𝑓 ↦→ 𝑉 (𝑥)] : (𝑥𝑓 : 𝐴1): by the fact that |= 𝑉 : (𝑥 : 𝐴1).

– 𝑉 [𝑥𝑓 ↦→ 𝑉 (𝑥)]
𝑝′

𝑝−𝐾app

𝑒𝑓 ⇓ 𝑣: trivial.

– 𝑝 −𝐾app = 𝑞+Φ𝑉 [𝑥𝑓 ↦→𝑉 (𝑥)](𝑥
𝑓 : 𝐴1) + 𝑟: trivial.

– 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴2) + 𝑟: trivial.

– 𝜎 ⊢ 𝛾[𝑥𝑓 ↦→ 𝛾(𝑥)] : (𝑥𝑓 : 𝐴1): by the fact that 𝜎 ⊢ 𝛾 : (𝑥 : 𝐴1).

– 𝑀 ⊢ 𝜎 ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾[𝑥𝑓 ↦→ 𝛾(𝑥)]⇝ 𝑉 [𝑥𝑓 ↦→ 𝑉 (𝑥)]: by the fact that 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 .

By induction hypothesis, we know that there exist 𝜑,𝑆,𝜎 ′ ,𝐻 ′ , satisfying 𝑥𝑓 : 𝐴1;𝛾[𝑥𝑓 ↦→
𝛾(𝑥)];𝜎

𝑞′
𝑞

𝑒𝑓 : 𝐴2 ⇒
⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
, 𝑀 is a model for 𝜑, 𝐻 ⊆ 𝐻 ′ , 𝑀 ⊢ 𝜎 ′ ⊑ 𝐻 ′ , 𝑀;𝐻 ′ ⊢ 𝛾[𝑥𝑓 ↦→

𝛾(𝑥)]⇝ 𝑉 [𝑥𝑓 ↦→ 𝑉 (𝑥)], and 𝑀;𝐻 ′ ⊢ 𝑆⇝ 𝑣. To conclude this case, we show that:

– 𝑥 : 𝐴1;𝛾 ;𝜎
𝑞′

𝑞+𝐾app

app(𝑓 ,𝑥) : 𝐴2⇒
⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
: by rule (WC-App).

– 𝑀 is a model for 𝜑: trivial.

48

A PROOFS 49

– 𝐻 ⊆𝐻 ′ : trivial.

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 ′ : trivial.

– 𝑀;𝐻 ′ ⊢ 𝛾 ⇝ 𝑉 : by the fact that 𝑀;𝐻 ′ ⊢ 𝛾[𝑥𝑓 ↦→ 𝛾(𝑥)] ⇝ 𝑉 [𝑥𝑓 ↦→ 𝑉 (𝑥)], and because
𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 , 𝐻 ⊆𝐻 ′ , we have 𝑀;𝐻 ′ ⊢ 𝛾(𝑥𝑓)⇝ 𝑉 (𝑥𝑓).

– 𝑀;𝐻 ′ ⊢ 𝑆⇝ 𝑣: trivial.

•

(A-Let)

Γ1 𝑞1

𝑞
𝑒1 : 𝐴1 Γ2,𝑥 : 𝐴1 𝑞′

𝑞1
𝑒2 : 𝐴2

Γ1,Γ2 𝑞′
𝑞+𝐾 let

let(𝑒1,𝑥.𝑒2) : 𝐴2

By assumption we know that |= 𝑉 : (Γ1,Γ2), 𝑉
𝑝′
𝑝

let(𝑒1,𝑥.𝑒2) ⇓ 𝑣, 𝑝 = 𝑞 + 𝐾 let + Φ𝑉 (Γ1,Γ2) + 𝑟,

𝑝′ = 𝑞′ + Φ(𝑣 : 𝐴2) + 𝑟, 𝜎 ⊢ 𝛾 : (Γ1,Γ2), 𝑀 ⊢ 𝜎 ⊑ 𝐻 , and 𝑀;𝐻 ⊢ 𝛾 ⇝ 𝑉 . Hence 𝑝 − 𝐾 let =
𝑞+Φ𝑉 (Γ1,Γ2) + 𝑟 = 𝑞+Φ𝑉 (Γ1) + (Φ𝑉 (Γ2) + 𝑟). By inversion on the evaluation judgment , we know

that there exist 𝑝1 ∈Q+
0 and a value 𝑣1 such that 𝑉 𝑝1

𝑝−𝐾 let

𝑒1 ⇓ 𝑣1 and 𝑉 [𝑥 ↦→ 𝑣1]
𝑝′
𝑝1

𝑒2 ⇓ 𝑣. By

the soundness of the type system, we know that (𝑝 −𝐾 let)− 𝑝1 ≤ (𝑞 +Φ𝑉 (Γ1))− (𝑞1 +Φ(𝑣1 : 𝐴1))
and 𝑝1−𝑝′ ≤ (𝑞1 +Φ𝑉 (Γ2)+Φ(𝑣1 : 𝐴1))− (𝑞′ +Φ(𝑣 : 𝐴2)). Hence 𝑝1 = 𝑞1 +Φ(𝑣1 : 𝐴1)+(Φ𝑉 (Γ2)+𝑟).
First we show that:
– Γ1 𝑞1

𝑞
𝑒1 : 𝐴1: trivial.

– |= 𝑉 : Γ1: by the fact that |= 𝑉 : (Γ1,Γ2).

– 𝑉 𝑝1

𝑝−𝐾 let

𝑒1 ⇓ 𝑣1: trivial.

– 𝑝 −𝐾 let = 𝑞+Φ𝑉 (Γ1) + (Φ𝑉 (Γ2) + 𝑟): trivial.

– 𝑝1 = 𝑞1 +Φ(𝑣1 : 𝐴1) + (Φ𝑉 (Γ2) + 𝑟): trivial.

– 𝜎 ⊢ 𝛾 : Γ1: by the fact that 𝜎 ⊢ 𝛾 : (Γ1,Γ2).

– 𝑀 ⊢ 𝜎 ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 : trivial.

By induction hypothesis, we know that there exist 𝜑1,𝑆1,𝜎1,𝐻1, satisfying Γ1;𝛾 ;𝜎 𝑞1

𝑞
𝑒1 : 𝐴1⇒⟨︀

𝜑1,𝑆1,𝜎1
⟩︀
, 𝑀 is a model for 𝜑1, 𝐻 ⊆𝐻1, 𝑀 ⊢ 𝜎1 ⊑𝐻1, 𝑀;𝐻1 ⊢ 𝛾⇝ 𝑉 , and 𝑀;𝐻1 ⊢ 𝑆1⇝ 𝑣1.

Then we show that:
– Γ2,𝑥 : 𝐴1 𝑞′

𝑞1
𝑒2 : 𝐴2: trivial.

– |= 𝑉 [𝑥 ↦→ 𝑣1] : (Γ2,𝑥 : 𝐴1): by the fact that |= 𝑉 : (Γ1,Γ2) and type preservation.

– 𝑉 [𝑥 ↦→ 𝑣1]
𝑝′
𝑝1

𝑒2 ⇓ 𝑣: trivial.

– 𝑝1 = 𝑞1 +Φ𝑉 [𝑥 ↦→𝑣1](Γ2,𝑥 : 𝐴1) + 𝑟: trivial.

– 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴2) + 𝑟: trivial.

– 𝜎 ⊢ 𝛾[𝑥 ↦→ 𝑆1] : (Γ2,𝑥 : 𝐴1): by the fact that 𝜎 ⊢ 𝛾 : (Γ1,Γ2) and heap preservation.

– 𝑀 ⊢ 𝜎1 ⊑𝐻1: trivial.

– 𝑀;𝐻1 ⊢ 𝛾[𝑥 ↦→ 𝑆1]⇝ 𝑉 [𝑥 ↦→ 𝑣1]: by the fact that 𝑀;𝐻1 ⊢ 𝛾⇝ 𝑉 and 𝑀;𝐻1 ⊢ 𝑆1⇝ 𝑣1.
By induction hypothesis, we know that there exist 𝜑2,𝑆2,𝜎2,𝐻2, satisfying Γ2,𝑥 : 𝐴1;𝛾[𝑥 ↦→
𝑆1];𝜎1 𝑞′

𝑞1
𝑒2 : 𝐴2 ⇒

⟨︀
𝜑2,𝑆2,𝜎2

⟩︀
, 𝑀 is a model for 𝜑2, 𝐻1 ⊆ 𝐻2, 𝑀 ⊢ 𝜎2 ⊑ 𝐻2, 𝑀;𝐻2 ⊢ 𝛾[𝑥 ↦→

𝑆1]⇝ 𝑉 [𝑥 ↦→ 𝑣1], and 𝑀;𝐻2 ⊢ 𝑆2⇝ 𝑣. To conclude this case, we show that:

– Γ1,Γ2;𝛾 ;𝜎
𝑞′

𝑞+𝐾 let

let(𝑒1,𝑥.𝑒2) : 𝐴2⇒
⟨︀
𝜑1 ∧𝜑2,𝑆2,𝜎2

⟩︀
: by rule (WC-Let).

– 𝑀 is a model for 𝜑1 ∧𝜑2: by the fact that 𝑀 is a model for both 𝜑1 and 𝜑2.

– 𝐻 ⊆𝐻2: by the fact that 𝐻 ⊆𝐻1 and 𝐻1 ⊆𝐻2.

– 𝑀 ⊢ 𝜎2 ⊑𝐻2: trivial.

– 𝑀;𝐻2 ⊢ 𝛾⇝ 𝑉 : by the fact that 𝑀;𝐻2 ⊢ 𝛾[𝑥 ↦→ 𝑆1]⇝ 𝑉 [𝑥 ↦→ 𝑣1], and because 𝑀;𝐻1 ⊢ 𝛾⇝
𝑉 , 𝐻1 ⊆𝐻2, we have 𝑀;𝐻2 ⊢ 𝛾(𝑥)⇝ 𝑉 (𝑥).

– 𝑀;𝐻2 ⊢ 𝑆2⇝ 𝑣: trivial.

•

(A-Pair)

𝑥1 : 𝐴1,𝑥2 : 𝐴2 0
𝐾pair

pair(𝑥1,𝑥2) : 𝐴1 ×𝐴2

By assumption we know that |= 𝑉 : (𝑥1 : 𝐴1,𝑥2 : 𝐴2), 𝑉
𝑝′
𝑝

pair(𝑥1,𝑥2) ⇓ 𝑣 thus 𝑣 =

⟨𝑉 (𝑥1),𝑉 (𝑥2)⟩, 𝑝 = 𝐾pair + Φ𝑉 (𝑥1 : 𝐴1,𝑥2 : 𝐴2) + 𝑟 = 𝐾pair + Φ(𝑉 (𝑥1) : 𝐴1) + Φ(𝑉 (𝑥2) : 𝐴2) + 𝑟,
𝑝′ = Φ(𝑣 : 𝐴1 ×𝐴2) + 𝑟 = Φ(𝑉 (𝑥1) : 𝐴1) +Φ(𝑉 (𝑥2) : 𝐴2) + 𝑟, 𝜎 ⊢ 𝛾 : (𝑥1 : 𝐴1,𝑥2 : 𝐴2), 𝑀 ⊢ 𝜎 ⊑ 𝐻 ,
and 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 . To conclude this case, we show that

– 𝑥1 : 𝐴1,𝑥2 : 𝐴2;𝛾 ;𝜎 0
𝐾pair

pair(𝑥1,𝑥2) : 𝐴1 ×𝐴2⇒
⟨︀
⊤,⟨𝛾(𝑥1),𝛾(𝑥2)⟩,𝜎

⟩︀
: by rule (WC-Pair).

– 𝑀 is a model for ⊤: trivial.

– 𝐻 ⊆𝐻 : trivial.

– 𝑀 ⊢ 𝜎 ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 : trivial.

– 𝑀;𝐻 ⊢ ⟨𝛾(𝑥1),𝛾(𝑥2)⟩⇝ ⟨𝑉 (𝑥1),𝑉 (𝑥2)⟩: by the fact that 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 .

•

(A-MatP)

Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2 𝑞′
𝑞
𝑒 : 𝐴

Γ ,𝑥 : 𝐴1 ×𝐴2 𝑞′
𝑞+𝐾matP

matp(𝑥,𝑥1.𝑥2.𝑒) : 𝐴

By assumption we know that |= 𝑉 : (Γ ,𝑥 : 𝐴1 ×𝐴2), 𝑉
𝑝′
𝑝

matp(𝑥,𝑥1.𝑥2.𝑒) ⇓ 𝑣 thus there exist

𝑣1,𝑣2 such that 𝑉 (𝑥) = ⟨𝑣1,𝑣2⟩ and 𝑉 [𝑥1 ↦→ 𝑣1,𝑥2 ↦→ 𝑣2]
𝑝′

𝑝−𝐾matP

𝑒 ⇓ 𝑣, 𝑝 = 𝑞 +𝐾matP +Φ𝑉 (Γ ,𝑥 :

𝐴1 ×𝐴2) + 𝑟, 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴) + 𝑟, 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴1 ×𝐴2), 𝑀 ⊢ 𝜎 ⊑𝐻 , and 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 . Hence
𝑝 − 𝐾matP = 𝑞 + Φ𝑉 (Γ ,𝑥 : 𝐴1 × 𝐴2) + 𝑟 = 𝑞 + Φ𝑉 [𝑥1 ↦→𝑣1,𝑥2 ↦→𝑣2](Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2) + 𝑟. Also by
𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴1 ×𝐴2) we know that there exist 𝑆1,𝑆2 such that 𝛾(𝑥) = ⟨𝑆1,𝑆2⟩ and 𝜎 ⊢ 𝑆1 : 𝐴1,
𝜎 ⊢ 𝑆2 : 𝐴2. First we show that:

– Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2 𝑞′
𝑞
𝑒 : 𝐴: trivial.

– |= 𝑉 [𝑥1 ↦→ 𝑣1,𝑥2 ↦→ 𝑣2] : (Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2): by the fact that |= 𝑉 : (Γ ,𝑥 : 𝐴1 × 𝐴2) and
𝑉 (𝑥) = ⟨𝑣1,𝑣2⟩.

– 𝑉 [𝑥1 ↦→ 𝑣1,𝑥2 ↦→ 𝑣2]
𝑝′

𝑝−𝐾matP

𝑒 ⇓ 𝑣: trivial.

– 𝑝 −𝐾matP = 𝑞+Φ𝑉 [𝑥1 ↦→𝑣1,𝑥2 ↦→𝑣2](Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2) + 𝑟: trivial.

– 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴) + 𝑟: trivial.

– 𝜎 ⊢ 𝛾[𝑥1 ↦→ 𝑆1,𝑥2 ↦→ 𝑆2] : (Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2): by the fact that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴1 × 𝐴2) and
𝜎 ⊢ 𝑆1 : 𝐴1, 𝜎 ⊢ 𝑆2 : 𝐴2.

– 𝑀 ⊢ 𝜎 ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾[𝑥1 ↦→ 𝑆1,𝑥2 ↦→ 𝑆2]⇝ 𝑉 [𝑥1 ↦→ 𝑣1,𝑥2 ↦→ 𝑣2]: by the fact that 𝑀;𝐻 ⊢ 𝛾 ⇝ 𝑉 and
𝛾(𝑥) = ⟨𝑆1,𝑆2⟩, 𝑉 (𝑥) = ⟨𝑣1,𝑣2⟩.

50

A PROOFS 51

By induction hypothesis, we know that there exist 𝜑,𝑆,𝜎 ′ ,𝐻 ′ , satisfying Γ ,𝑥1 : 𝐴1,𝑥2 :

𝐴2;𝛾[𝑥1 ↦→ 𝑆1,𝑥2 ↦→ 𝑆2];𝜎
𝑞′
𝑞

𝑒 : 𝐴 ⇒
⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
, 𝑀 is a model for 𝜑, 𝐻 ⊆ 𝐻 ′ , 𝑀 ⊢ 𝜎 ′ ⊑ 𝐻 ′ ,

𝑀;𝐻 ′ ⊢ 𝛾[𝑥1 ↦→ 𝑆1,𝑥2 ↦→ 𝑆2]⇝ 𝑉 [𝑥1 ↦→ 𝑣1,𝑥2 ↦→ 𝑣2], and 𝑀;𝐻 ′ ⊢ 𝑆⇝ 𝑣. To conclude this case,
we show that:

– Γ ,𝑥 : 𝐴1 ×𝐴2;𝛾 ;𝜎
𝑞′

𝑞+𝐾matP

matp(𝑥,𝑥1.𝑥2.𝑒) : 𝐴⇒
⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
: by rule (WC-MatP).

– 𝑀 is a model for 𝜑: trivial.

– 𝐻 ⊆𝐻 ′ : trivial.

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 ′ : trivial.

– 𝑀;𝐻 ′ ⊢ 𝛾 ⇝ 𝑉 : by the fact that 𝑀;𝐻 ′ ⊢ 𝛾[𝑥1 ↦→ 𝑆1,𝑥2 ↦→ 𝑆2]⇝ 𝑉 [𝑥1 ↦→ 𝑣1,𝑥2 ↦→ 𝑣2], and
because 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 , 𝐻 ⊆𝐻 ′ , we have 𝑀;𝐻 ′ ⊢ 𝛾(𝑥1)⇝ 𝑉 (𝑥1), 𝑀;𝐻 ′ ⊢ 𝛾(𝑥2)⇝ 𝑉 (𝑥2).

– 𝑀;𝐻 ′ ⊢ 𝑆⇝ 𝑣: trivial.

•

(A-Leaf)

· 0
𝐾 leaf

leaf : 𝑇 𝑝0 (𝐴)

By assumption we know that |= 𝑉 : ·, 𝑉
𝑝′
𝑝

leaf ⇓ 𝑣 thus 𝑣 = null, 𝑝 = 𝐾 leaf +Φ𝑉 (·) + 𝑟 = 𝐾 leaf + 𝑟,

𝑝′ = Φ(𝑣 : 𝑇 𝑝0 (𝐴)) + 𝑟 = 𝑟, 𝜎 ⊢ 𝛾 : ·, 𝑀 ⊢ 𝜎 ⊑ 𝐻 , and 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 . Let ℓ < dom(𝜎)∪ dom(𝐻),
𝜎 ′ = 𝜎 [ℓ ↦→ leaf], and 𝐻 ′ = 𝐻[ℓ ↦→ null]. To conclude this case, we show that:

– ·;𝛾 ;𝜎 0
𝐾 leaf

leaf : 𝑇 𝑝0 (𝐴)⇒
⟨︀
⊤, ℓ,𝜎 ′

⟩︀
: by rule (WC-Leaf).

– 𝑀 is a model for ⊤: trivial.

– 𝐻 ⊆𝐻 ′ : trivial.

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 ′ : by the fact that 𝑀 ⊢ 𝜎 ⊑𝐻 and 𝜎 ′(ℓ) = leaf, 𝐻 ′(ℓ) = null.

– 𝑀;𝐻 ′ ⊢ 𝛾⇝ 𝑉 : by the fact that 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 and 𝐻 ⊆𝐻 ′ .

– 𝑀;𝐻 ′ ⊢ ℓ⇝ null: trivial.
We omit (A-Nil) because it is similar to this case.

•

(A-Node)

𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝0 (𝐴),𝑥2 : 𝑇 𝑝0 (𝐴) 0
𝑝0+𝐾node

node(𝑥0,𝑥1,𝑥2) : 𝑇 𝑝0 (𝐴)

By assumption we know that |= 𝑉 : (𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝0 (𝐴),𝑥2 : 𝑇 𝑝0 (𝐴)), 𝑉
𝑝′
𝑝

node(𝑥0,𝑥1,𝑥2) ⇓ 𝑣

thus 𝑣 = ⟨𝑉 (𝑥0),𝑉 (𝑥1),𝑉 (𝑥2)⟩, 𝑝 = 𝑝0 +𝐾node +Φ𝑉 (𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝0 (𝐴),𝑥2 : 𝑇 𝑝0 (𝐴)) + 𝑟 = 𝐾node +
𝑝0+Φ(𝑉 (𝑥0) : 𝐴)+Φ(𝑉 (𝑥1) : 𝑇 𝑝0 (𝐴))+Φ(𝑉 (𝑥2) : 𝑇 𝑝0 (𝐴))+𝑟, 𝑝′ = Φ(𝑣 : 𝑇 𝑝0 (𝐴))+𝑟 = 𝑝0+Φ(𝑉 (𝑥0) :
𝐴)+Φ(𝑉 (𝑥1) : 𝑇 𝑝0 (𝐴))+Φ(𝑉 (𝑥2) : 𝑇 𝑝0 (𝐴))+𝑟, 𝜎 ⊢ 𝛾 : (𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝0 (𝐴),𝑥2 : 𝑇 𝑝0 (𝐴)), 𝑀 ⊢ 𝜎 ⊑𝐻 ,
and 𝑀;𝐻 ⊢ 𝛾 ⇝ 𝑉 . Let ℓ < dom(𝜎) ∪ dom(𝐻), 𝜎 ′ = 𝜎 [ℓ ↦→ node(𝛾(𝑥0),𝛾(𝑥1),𝛾(𝑥2))], and
𝐻 ′ = 𝐻[ℓ ↦→ ⟨𝑉 (𝑥0),𝑉 (𝑥1),𝑉 (𝑥2)⟩. To conclude this case, we show that:

– 𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝0 (𝐴),𝑥2 : 𝑇 𝑝0 (𝐴);𝛾 ;𝜎 0
𝐾node

node(𝑥0,𝑥1,𝑥2) : 𝑇 𝑝0 (𝐴)⇒
⟨︀
⊤, ℓ,𝜎 ′

⟩︀
: by rule (WC-

Node).

– 𝑀 is a model for ⊤: trivial.

– 𝐻 ⊆𝐻 ′ : trivial.

– 𝑀 ⊢ 𝜎 ′ ⊑ 𝐻 ′ : by the fact that 𝑀 ⊢ 𝜎 ⊑ 𝐻 and 𝜎 ′(ℓ) = node(𝛾(𝑥0),𝛾(𝑥1),𝛾(𝑥2)), 𝐻 ′(ℓ) =
⟨𝑉 (𝑥0),𝑉 (𝑥1),𝑉 (𝑥2)⟩, as well as 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 , 𝐻 ⊆𝐻 ′ , hence 𝑀;𝐻 ′ ⊢ 𝛾⇝ 𝑉 .

– 𝑀;𝐻 ′ ⊢ 𝛾⇝ 𝑉 : trivial.

– 𝑀;𝐻 ′ ⊢ ℓ ↦→ ⟨𝑉 (𝑥0),𝑉 (𝑥1),𝑉 (𝑥2)⟩: trivial.

We omit (A-Cons) because it is similar to this case.

•

(A-MatT)

Γ
𝑞′

𝑞−𝐾matTL

𝑒1 : 𝐴′ Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝0 (𝐴),𝑥2 : 𝑇 𝑝0 (𝐴)
𝑞′

𝑞+𝑝0−𝐾matTN

𝑒2 : 𝐴′

Γ ,𝑥 : 𝑇 𝑝0 (𝐴)
𝑞′
𝑞

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) : 𝐴′

By assumption we know that |= 𝑉 : (Γ ,𝑥 : 𝑇 𝑝0 (𝐴), 𝑉
𝑝′
𝑝

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) ⇓ 𝑣, 𝑝 = 𝑞 +

Φ𝑉 (Γ ,𝑥 : 𝑇 𝑝0 (𝐴)) + 𝑟, 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴′) + 𝑟, 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝑇 𝑝0 (𝐴)), 𝑀 ⊢ 𝜎 ⊑𝐻 , and 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 .

The only nontrivial case is when 𝑉 [𝑥0 ↦→ 𝑣0,𝑥1 ↦→ 𝑣1,𝑥2 ↦→ 𝑣2]
𝑝′

𝑝−𝐾matTN

𝑒2 ⇓ 𝑣 for some

𝑣0,𝑣1,𝑣2 such that 𝑉 (𝑥) = ⟨𝑣0,𝑣1,𝑣2⟩, 𝛾(𝑥) = ℓ for some ℓ, and 𝜎 (ℓ) = treeof(𝑆1, · · · ,𝑆𝑛) for
some 𝑆1, · · · ,𝑆𝑛. Hence 𝑝 −𝐾matTN = 𝑞 −𝐾matTN +Φ𝑉 (Γ ,𝑥 : 𝑇 𝑝0 (𝐴)) + 𝑟 = 𝑞 −𝐾matTN +Φ𝑉 (Γ) +
Φ(𝑉 (𝑥) : 𝑇 𝑝0 (𝐴)) + 𝑟 = 𝑞−𝐾matTN +Φ𝑉 (Γ) +𝑝0 +Φ(𝑣0 : 𝐴) +Φ(𝑣1 : 𝑇 𝑝0 (𝐴)) +Φ(𝑣2 : 𝑇 𝑝0 (𝐴)) + 𝑟 =
𝑞 −𝐾matTN +Φ𝑉 [𝑥0 ↦→𝑣0,𝑥1 ↦→𝑣1,𝑥2 ↦→𝑣2](Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝0 (𝐴),𝑥2 : 𝑇 𝑝0 (𝐴)) + 𝑟. Let ℓ1, ℓ2 < dom(𝜎)∪
dom(𝐻). Let 𝜎𝑜 = 𝜎 [ℓ ↦→ node(𝑆1, ℓ1, ℓ2), ℓ1 ↦→ 𝑅1, ℓ2 ↦→ 𝑅2], and 𝑅1 = treeof(𝑆2, · · · ,𝑆𝑚),
𝑅2 = treeof(𝑆𝑚+1, · · · ,𝑆𝑛) such that 𝑀;𝐻 ⊢ 𝑆1 ⇝ 𝑣0, 𝑀;𝐻 ⊢ 𝑅1 ⊑ 𝑣1, 𝑀;𝐻 ⊢ 𝑅2 ⊑ 𝑣2. Let
𝐻𝑜 = 𝐻[ℓ1 ↦→ 𝑣1, ℓ2 ↦→ 𝑣2]. First we show that:

– Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝0 (𝐴),𝑥2 : 𝑇 𝑝0 (𝐴)
𝑞′

𝑞−𝐾matTN

𝑒2 : 𝐴′ : trivial.

– |= 𝑉 [𝑥0 ↦→ 𝑣0,𝑥1 ↦→ 𝑣1,𝑥2 ↦→ 𝑣2] : (Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝0 (𝐴),𝑥2 : 𝑇 𝑝0 (𝐴)): by the fact that |= 𝑉 :
(Γ ,𝑥 : 𝑇 𝑝0 (𝐴)) and 𝑉 (𝑥) = ⟨𝑣0,𝑣1,𝑣2⟩.

– 𝑉 [𝑥0 ↦→ 𝑣0,𝑥1 ↦→ 𝑣1,𝑥2 ↦→ 𝑣2]
𝑝′

𝑝−𝐾matTN

𝑒2 ⇓ 𝑣: trivial.

– 𝑝−𝐾matTN = 𝑞−𝐾matTN +Φ𝑉 [𝑥0 ↦→𝑣0,𝑥1 ↦→𝑣1,𝑥2 ↦→𝑣2](Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝0 (𝐴),𝑥2 : 𝑇 𝑝0 (𝐴))+𝑟: trivial.

– 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴′) + 𝑟: trivial.

– 𝜎𝑜 ⊢ 𝛾[𝑥0 ↦→ 𝑆1,𝑥1 ↦→ ℓ1,𝑥2 ↦→ ℓ2] : (Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝0 (𝐴),𝑥2 : 𝑇 𝑝0 (𝐴)): by the fact that
𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝑇 𝑝0 (𝐴)) and 𝜎 (ℓ) = treeof(𝑆1, · · · ,𝑆𝑛), 𝛾(𝑥) = ℓ.

– 𝑀 ⊢ 𝜎𝑜 ⊑𝐻𝑜: by the definition of 𝜎𝑜 and 𝐻𝑜.

– 𝑀;𝐻𝑜 ⊢ 𝛾[𝑥0 ↦→ 𝑆1,𝑥1 ↦→ ℓ1,𝑥2 ↦→ ℓ2]⇝ 𝑉 [𝑥0 ↦→ 𝑣0,𝑥1 ↦→ 𝑣1,𝑥2 ↦→ 𝑣2]: by the fact that
𝑀;𝐻 ⊢ 𝛾 ⇝ 𝑉 , 𝐻 ⊆ 𝐻𝑜, and 𝑀;𝐻 ⊢ 𝑆1⇝ 𝑣0, 𝑀;𝐻 ⊢ 𝑅1 ⊑ 𝑣1, 𝑀;𝐻 ⊢ 𝑅2 ⊑ 𝑣2, 𝜎𝑜(ℓ1) = 𝑅1,
𝜎𝑜(ℓ2) = 𝑅2.

By induction hypothesis, we know that there exist 𝜑,𝑆,𝜎 ′ ,𝐻 ′ , satisfying Γ ,𝑥0 : 𝐴,𝑥1 : 𝑇 𝑝0 (𝐴),𝑥2 :

𝑇 𝑝0 (𝐴);𝛾[𝑥0 ↦→ 𝑆1,𝑥1 ↦→ ℓ1,𝑥2 ↦→ ℓ2];𝜎𝑜 𝑞′
𝑞−𝐾matTN

𝑒2 : 𝐴′ ⇒
⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
, 𝑀 is a model for 𝜑,

𝐻𝑜 ⊆ 𝐻 ′ , 𝑀 ⊢ 𝜎 ′ ⊑ 𝐻 ′ , 𝑀;𝐻 ′ ⊢ 𝛾[𝑥0 ↦→ 𝑆1,𝑥1 ↦→ ℓ1,𝑥2 ↦→ ℓ2]⇝ 𝑉 [𝑥0 ↦→ 𝑣0,𝑥1 ↦→ 𝑣1,𝑥2 ↦→ 𝑣2],
and 𝑀;𝐻 ′ ⊢ 𝑆⇝ 𝑣. To conclude this case, we show that:

– Γ ,𝑥 : 𝑇 𝑝0 (𝐴);𝛾 ;𝜎
𝑞′
𝑞

matt(𝑥,𝑒1,𝑥0.𝑥1.𝑥2.𝑒2) : 𝐴′ ⇒
⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
: by rule (WC-MatT-Tree-

NonEmpty).

– 𝑀 is a model for 𝜑: trivial.

– 𝐻 ⊆𝐻 ′ : by the fact that 𝐻 ⊆𝐻𝑜 and 𝐻𝑜 ⊆𝐻 ′ .

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 ′ : trivial.

– 𝑀;𝐻 ′ ⊢ 𝛾 ⇝ 𝑉 : by the fact that 𝑀;𝐻 ′ ⊢ 𝛾[𝑥0 ↦→ 𝑆1,𝑥1 ↦→ ℓ1,𝑥2 ↦→ ℓ2]⇝ 𝑉 [𝑥0 ↦→ 𝑣0,𝑥1 ↦→
𝑣1,𝑥2 ↦→ 𝑣2], and 𝐻 ⊆𝐻 ′ , 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 .

– 𝑀;𝐻 ′ ⊢ 𝑆⇝ 𝑣: trivial.
We omit (A-MatL) because it is similar to this case.

52

A PROOFS 53

•

(A-Cond)

Γ
𝑞′

𝑞−𝐾condT

𝑒1 : 𝐴 Γ
𝑞′

𝑞−𝐾condF

𝑒2 : 𝐴

Γ ,𝑥 : bool
𝑞′
𝑞

if(𝑥,𝑒1, 𝑒2) : 𝐴

By assumption we know that |= 𝑉 : (Γ ,𝑥 : bool), 𝑉
𝑝′
𝑝

if(𝑥,𝑒1, 𝑒2) ⇓ 𝑣, 𝑝 = 𝑞+Φ𝑉 (Γ ,𝑥 : bool) + 𝑟 =

𝑞+Φ𝑉 (Γ) + 𝑟, 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴) + 𝑟, 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : bool), 𝑀 ⊢ 𝜎 ⊑𝐻 , and 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 . We only

consider (E-Cond-True) here because (E-Cond-False) is similar. Hence 𝑉
𝑝′

𝑝−𝐾condT

𝑒1 ⇓ 𝑣 and

𝑉 (𝑥) = true. Also 𝑝 −𝐾condT = 𝑞 −𝐾condT +Φ𝑉 (Γ) + 𝑟. First we show that:

– Γ
𝑞′

𝑞−𝐾condT

𝑒1 : 𝐴: trivial.

– |= 𝑉 : Γ : by the fact that |= 𝑉 : (Γ ,𝑥 : bool).

– 𝑉
𝑝′

𝑝−𝐾condT

𝑒1 ⇓ 𝑣: trivial.

– 𝑝 = 𝑞 −𝐾condT +Φ𝑉 (Γ) + 𝑟: trivial.

– 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴) + 𝑟: trivial.

– 𝜎 ⊢ 𝛾 : Γ : by the fact that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : bool).

– 𝑀 ⊢ 𝜎 ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 : trivial.

By induction hypothesis, we know that there exist 𝜑,𝑆,𝜎 ′ ,𝐻 ′ , satisfying Γ ;𝛾 ;𝜎
𝑞′

𝑞−𝐾condT

𝑒1 :

𝐴⇒
⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
, 𝑀 is a model for 𝜑, 𝐻 ⊆ 𝐻 ′ , 𝑀 ⊢ 𝜎 ′ ⊑ 𝐻 ′ , 𝑀;𝐻 ′ ⊢ 𝛾⇝ 𝑉 , and 𝑀;𝐻 ′ ⊢ 𝑆⇝ 𝑣.

To conclude this case, we show that:

– Γ ,𝑥 : bool;𝛾 ;𝜎
𝑞′
𝑞

if(𝑥,𝑒1, 𝑒2) : 𝐴⇒
⟨︀
𝛾(𝑥)∧𝜑,𝑆,𝜎 ′

⟩︀
: by rule (WC-Cond-True).

– 𝑀 is a model for 𝛾(𝑥)∧𝜑: by the fact that 𝑀 is a model for 𝜑 and 𝑉 (𝑥) = true, 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉
thus 𝑀;𝐻 ⊢ 𝛾(𝑥)⇝ true.

– 𝐻 ⊆𝐻 ′ : trivial.

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 ′ : trivial.

– 𝑀;𝐻 ′ ⊢ 𝛾⇝ 𝑉 : trivial.

– 𝑀;𝐻 ′ ⊢ 𝑆⇝ 𝑣: trivial.

•

(A-Share)

Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2 𝑞′
𝑞
𝑒 : 𝐴′ .(𝐴 | 𝐴1,𝐴2)

Γ ,𝑥 : 𝐴
𝑞′
𝑞

share(𝑥,𝑥1.𝑥2.𝑒) : 𝐴′

By assumption we know that |= 𝑉 : (Γ ,𝑥 : 𝐴), 𝑉
𝑝′
𝑝

share(𝑥,𝑥1.𝑥2.𝑒) ⇓ 𝑣 thus 𝑉 [𝑥1 ↦→ 𝑉 (𝑥),𝑥2 ↦→

𝑉 (𝑥)]
𝑝′
𝑝

𝑒 ⇓ 𝑣 , 𝑝 = 𝑞 +Φ𝑉 (Γ ,𝑥 : 𝐴) + 𝑟, 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴′) + 𝑟, 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴), 𝑀 ⊢ 𝜎 ⊑ 𝐻 , and

𝑀;𝐻 ⊢ 𝛾 ⇝ 𝑉 . Hence 𝑝 = 𝑞 + Φ𝑉 (Γ) + Φ(𝑉 (𝑥) : 𝐴) + 𝑟 = 𝑞 + Φ𝑉 (Γ) + Φ(𝑉 (𝑥) : 𝐴1) + Φ(𝑉 (𝑥) :
𝐴2) + 𝑟 = 𝑞+Φ𝑉 [𝑥1 ↦→𝑉 (𝑥),𝑥2 ↦→𝑉 (𝑥)](Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2) + 𝑟. First we show that:

– Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2 𝑞′
𝑞
𝑒 : 𝐴′ : trivial.

– |= 𝑉 [𝑥1 ↦→ 𝑉 (𝑥),𝑥2 ↦→ 𝑉 (𝑥)] : (Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2): by the fact that |= 𝑉 : (Γ ,𝑥 : 𝐴) and .(𝐴 |
𝐴1,𝐴2).

– 𝑉 [𝑥1 ↦→ 𝑉 (𝑥),𝑥2 ↦→ 𝑉 (𝑥)]
𝑝′
𝑝

𝑒 ⇓ 𝑣: trivial.

– 𝑝 = 𝑞+Φ𝑉 [𝑥1 ↦→𝑉 (𝑥),𝑥2 ↦→𝑉 (𝑥)](Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2) + 𝑟: trivial.

– 𝑝′ = 𝑞′ +Φ(𝑣 : 𝐴′) + 𝑟: trivial.

– 𝜎 ⊢ 𝛾[𝑥1 ↦→ 𝛾(𝑥),𝑥2 ↦→ 𝛾(𝑥)] : (Γ ,𝑥1 : 𝐴1,𝑥2 : 𝐴2): by the fact that 𝜎 ⊢ 𝛾 : (Γ ,𝑥 : 𝐴) and
.(𝐴 | 𝐴1,𝐴2).

– 𝑀 ⊢ 𝜎 ⊑𝐻 : trivial.

– 𝑀;𝐻 ⊢ 𝛾[𝑥1 ↦→ 𝛾(𝑥),𝑥2 ↦→ 𝛾(𝑥)]⇝ 𝑉 [𝑥1 ↦→ 𝑉 (𝑥),𝑥2 ↦→ 𝑉 (𝑥)]: by the fact that 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 .
By induction hypothesis, we know that there exist 𝜑,𝑆,𝜎 ′ ,𝐻 ′ , satisfying Γ ,𝑥1 : 𝐴1,𝑥2 :

𝐴2;𝛾[𝑥1 ↦→ 𝛾(𝑥),𝑥2 ↦→ 𝛾(𝑥)];𝜎
𝑞′
𝑞
𝑒 : 𝑣⇒

⟨︀
𝐴′ ,𝜑,𝑆

⟩︀
𝜎 ′ , 𝑀 is a model for 𝜑, 𝐻 ⊆𝐻 ′ , 𝑀 ⊢ 𝜎 ′ ⊑𝐻 ′ ,

𝑀;𝐻 ′ ⊢ 𝛾[𝑥1 ↦→ 𝛾(𝑥),𝑥2 ↦→ 𝛾(𝑥)]⇝ 𝑉 [𝑥1 ↦→ 𝑉 (𝑥),𝑥2 ↦→ 𝑉 (𝑥)], and 𝑀;𝐻 ′ ⊢ 𝑆⇝ 𝑣. To conclude
this case, we show that:

– Γ ,𝑥 : 𝐴;𝛾 ;𝜎
𝑞′
𝑞

share(𝑥,𝑥1.𝑥2.𝑒) : 𝐴′ ⇒
⟨︀
𝜑,𝑆,𝜎 ′

⟩︀
: by rule (WC-Share).

– 𝑀 is a model for 𝜑: trivial.

– 𝐻 ⊆𝐻 ′ : trivial.

– 𝑀 ⊢ 𝜎 ′ ⊑𝐻 ′ : trivial.

– 𝑀;𝐻 ′ ⊢ 𝛾⇝ 𝑉 : by the fact that 𝑀;𝐻 ′ ⊢ 𝛾[𝑥1 ↦→ 𝛾(𝑥),𝑥2 ↦→ 𝛾(𝑥)]⇝ 𝑉 [𝑥1 ↦→ 𝑉 (𝑥),𝑥2 ↦→ 𝑉 (𝑥)],
and 𝐻 ⊆𝐻 ′ , 𝑀;𝐻 ⊢ 𝛾⇝ 𝑉 .

– 𝑀;𝐻 ′ ⊢ 𝑆⇝ 𝑣: trivial.

54

B BENCHMARKS 55

B Benchmarks

B.1 lpairs

let rec lpairs = function
| []→ []
| x1 :: xs→

match xs with
| []→ []
| x2 :: xs’→

if (x1:int) < (x2:int) then
(x1, x2) :: lpairs xs’

else
lpairs xs’

B.2 lpairs_alt

let rec lpairs_alt d = function
| []→ []
| x1 :: xs→

match xs with
| []→ []
| x2 :: xs’→

if (d && (x1:int) < (x2:int)) then
(x1, x2) :: lpairs_alt (not d) xs’

else
if ((not d) && (x1:int) > (x2:int)) then

(x1, x2) :: lpairs_alt (not d) xs’
else

lpairs_alt d xs’

B.3 find

let rec find a = function
| []→ false

| x :: xs→
if (x:int) = (a:int) then

true
else

find a xs

B.4 compare

let rec compare l1 l2 =
match l1 with
| []→

begin
match l2 with
| []→ 0

| _→ -1
end

| x :: xs→
begin

match l2 with
| []→ 1
| y :: ys→

if (x:int) < (y:int) then
-1

else
if (x:int) > (y:int) then

1
else

compare xs ys
end

B.5 opairs

let rec append l1 l2 =

match l1 with
| []→ l2
| x :: xs→

x :: (append xs l2)

let rec attach n = function

| []→ []
| x :: xs→

if (n:int) < (x:int) then
(n, x) :: attach n xs

else
attach n xs

let rec opairs = function

| []→ []
| x :: xs→ append (attach x xs) (opairs xs)

B.6 queue

exception Empty_queue

let empty () = ([], [])

let enqueue x queue =

let (inq, outq) = queue in
(x :: inq, outq)

let rec rev_append l1 l2 =
match l1 with
| []→ l2
| a :: l→ rev_append l (a :: l2)

56

B BENCHMARKS 57

let dequeue queue =
let (inq, outq) = queue in
let (inq, outq) =

match outq with
| []→ ([], rev_append inq outq)
| _→ (inq, outq)

in
match outq with
| []→ raise Empty_queue
| x :: xs→ ((inq, xs), x)

let rec process queue = function

| []→ ()
| (t, (n:int)) :: qs→

if t then
process (enqueue n queue) qs

else
let (queue’, _) = dequeue queue in
process queue’ qs

let queue qs =

process (empty ()) qs

B.7 eratos

exception Assume_failure

let assume b =
if b then () else raise Assume_failure

let rec filter p l =

match l with
| []→ []

| x :: xs→
let xs’ = filter p xs in
if (x mod p = 0) then xs’ else x :: xs’

let rec eratos l =
match l with

| []→ []
| x :: xs→ (assume (x > 0); x :: (eratos (filter x xs)))

B.8 isort

let rec insert le a = function
| []→ [a]
| x :: xs→

if le a x then
a :: x :: xs

else
x :: insert le a xs

let isort_poly le =
let rec isort_aux = function

| []→ []
| x :: xs→ insert le x (isort_aux xs)

in
isort_aux

let isort l = isort_poly (𝜆 a b→ (a:int) ≤ (b:int)) l

B.9 qsort

let rec append l1 l2 =

match l1 with
| []→ l2
| x :: xs→ x :: append xs l2

let qsort_mutual le =
let rec qsort_mutual_aux = function

| []→ []
| x :: xs→
let rec part l r = function
| []→ append (qsort_mutual_aux l) (x :: qsort_mutual_aux r)
| y :: ys→

if (le x y) then
part l (y :: r) ys

else
part (y :: l) r ys

in
part [] [] xs

in
qsort_mutual_aux

let le_int a b = (a:int) ≤ (b:int)

let qsort l = qsort_mutual le_int l

B.10 qsort_pairs

let rec partition f = function
| []→ ([], [])
| x :: xs→

let (ys, zs) = partition f xs in

if f x then
(ys, x :: zs)

else

(x :: ys, zs)

58

B BENCHMARKS 59

let qsort_tail le =
let rec qsort_tail_aux l acc =

match l with
| []→ acc
| x :: xs→

let (ys, zs) = partition (le x) xs in
let acc’ = x :: qsort_tail_aux zs acc in
qsort_tail_aux ys acc’

in
𝜆 l→ qsort_tail_aux l []

let le_pair (a : int * int) (b : int * int) =

let (a1, a2) = a in
let (b1, b2) = b in
if (not (a1 = b1)) then

(a1 < b1)
else

(a2 ≤ b2)

let qsort_pairs l = qsort_tail le_pair l

B.11 qsort_lists

let rec append l1 l2 =

match l1 with
| []→ l2
| x :: xs→ x :: append xs l2

let rec partition f = function
| []→ ([], [])

| x :: xs→
let (ys, zs) = partition f xs in
if f x then

(ys, x :: zs)

else

(x :: ys, zs)

let qsort le =
let rec qsort_aux = function

| []→ []

| x :: xs→
let (ys, zs) = partition (le x) xs in
append (qsort_aux ys) (x :: qsort_aux zs)

in
qsort_aux

let le_list a b =
let rec inner l1 l2 =

match l1 with
| []→ true

| x :: xs→
match l2 with
| []→ false
| y :: ys→
if (x:int) < (y:int) then

true
else

if (x:int) > (y:int) then
false

else
inner xs ys

in
inner a b

let qsort_lists l = qsort le_list l

B.12 sort_all

let rec append l1 l2 =
match l1 with
| []→ l2
| x :: xs→ x :: append xs l2

let rec partition f = function

| []→ ([], [])
| x :: xs→

let (ys, zs) = partition f xs in
if f x then

(ys, x :: zs)
else

(x :: ys, zs)

let qsort le =

let rec qsort_aux = function
| []→ []
| x :: xs→

let (ys, zs) = partition (le x) xs in

append (qsort_aux ys) (x :: qsort_aux zs)
in
qsort_aux

let le_int a b = (a:int) ≤ (b:int)

let qsort_ints l = qsort le_int l

let rec sort_all = function

| []→ []
| x :: xs→ qsort_ints x :: sort_all xs

60

B BENCHMARKS 61

B.13 zigzag

type tree = Leaf | Node of tree * tree

let rec zigzag dir = function
| Leaf→ ()
| Node (l, r)→

if dir then
zigzag (not dir) l

else
zigzag (not dir) r

B.14 subtrees

type tree = Leaf | Node of tree * tree

let rec append l1 l2 =

match l1 with
| []→ l2
| x :: xs→ x :: append xs l2

let rec subtrees = function
| Leaf→ []
| Node (t1, t2)→

let l1 = subtrees t1 in
let l2 = subtrees t2 in
Node (t1, t2) :: append l1 l2

B.15 find_tree

type tree = Leaf | Node of int * tree * tree

let rec find_tree n t =
match t with

| Leaf→ false
| Node (v, l, r)→

if (v = n) then true
else

if (n < v) then
find_tree n l

else

find_tree n r

B.16 build_tree

type tree = Leaf | Node of int * tree * tree

let rec insert t n =
match t with

| Leaf→ Node (n, Leaf, Leaf)
| Node (k, l, r)→

if (n:int) < (k:int) then
Node (k, insert l n, r)

else
Node (k, l, insert r n)

let rec build_tree = function
| []→ Leaf
| x :: xs→ insert (build_tree xs) x

B.17 hashtbl

exception Assume_failure

let assume b =

if b then () else raise Assume_failure

let rec fold_left f accu l =
match l with
| []→ accu
| a :: l→ fold_left f (f accu a) l

let rec for_all p = function

| []→ true
| a :: l→ p a && for_all p l

let eq

((s0, s1, s2, s3, s4, s5, s6, s7) : (int * int * int * int * int * int * int * int))
((t0, t1, t2, t3, t4, t5, t6, t7) : (int * int * int * int * int * int * int * int)) =

(s0 = t0) && (s1 = t1) && (s2 = t2) && (s3 = t3) &&
(s4 = t4) && (s5 = t5) && (s6 = t6) && (s7 = t7)

let djbx33a_hash (s0, s1, s2, s3, s4, s5, s6, s7) =

assume (for_all (𝜆 s→ s ≥ 0 && s ≤ 255) [s0; s1; s2; s3; s4; s5; s6; s7]);
fold_left (𝜆 accu a→ (accu * 33 + a) mod 64) 5381 [s0; s1; s2; s3; s4; s5; s6; s7]

let insert t s =

let key = djbx33a_hash s in
let rec aux = function

| []→ [(key, [s])]
| (key1, vals1) :: ts→

if key1 = key then

let rec inner = function
| []→ [s]
| val1 :: vals→

if not (eq s val1) then
(Raml.tick 1.0; val1 :: inner vals)

else
val1 :: vals

62

B BENCHMARKS 63

in
(key1, inner vals1) :: ts

else
(key1, vals1) :: aux ts

in
aux t

let rec process t = function
| []→ t
| s :: ss→ process (insert t s) ss

let hashtbl ss =

process [] ss

B.18 split_sort

let rec append l1 l2 =
match l1 with
| []→ l2
| x :: xs→ (Raml.tick 1.0; x :: append xs l2)

let qsort_mutual le =

let rec qsort_mutual_aux = function
| []→ []
| x :: xs→
let rec part l r = function
| []→ append (qsort_mutual_aux l) (x :: qsort_mutual_aux r)
| y :: ys→

if (le x y) then
part l (y :: r) ys

else
part (y :: l) r ys

in
part [] [] xs

in

qsort_mutual_aux

let le_int a b = (Raml.tick 1.0; (a:int) ≤ (b:int))

let qsort_ints l = qsort_mutual le_int l

let rec expand x = function
| []→ []
| y :: ys→ (x, y) :: expand x ys

let rec concat = function
| []→ []

| (key, vals) :: ls→ append (expand key vals) (concat ls)

let rec sort_all = function

| []→ []
| x :: xs→

let (key, vals) = x in
(key, qsort_ints vals) :: sort_all xs

let rec insert x l =
let (keyx, valx) = x in
match l with
| []→ [(keyx, [valx])]
| l1 :: ls→

let (key1, vals1) = l1 in
if ((key1:int) = (keyx:int)) then

(key1, valx :: vals1) :: ls
else

(key1, vals1) :: insert x ls

let rec split = function
| []→ []
| x :: xs→ insert x (split xs)

let split_sort l = concat (sort_all (split l))

B.19 kth

exception Not_found

let rec partition f = function
| []→ ([], [], 0, 0)
| x :: xs→

let (ys, zs, l1, l2) = partition f xs in
if f x then

(ys, x :: zs, l1, l2 + 1)
else

(x :: ys, zs, l1 + 1, l2)

let le_int a b = (Raml.tick 1.0; (a:int) ≤ (b:int))

let rec kth k l =
match l with
| []→ raise Not_found

| x :: xs→
let (ys, zs, s1, s2) = partition (le_int x) xs in
if (k = s1) then x

else if (k < s1) then kth k ys else kth (k - s1 - 1) zs

B.20 sum_avl

exception Assume_failure

let assume b = if b then () else raise Assume_failure

64

B BENCHMARKS 65

type avl_tree = AvlLeaf | AvlNode of int * int * avl_tree * avl_tree

let height = function
| AvlLeaf→ 0
| AvlNode (h, _, _, _)→ h

let rec sum_tree t =
match t with
| AvlLeaf→ 0
| AvlNode (h, v, l, r)→
let () =

let hl = height l in
let hr = height r in
assume (h = 1 + Raml.max hl hr);
assume (hl - hr ≤ 1 && hr - hl ≤ 1)

in
Raml.tick 1.0;
let sl = sum_tree l in
let sr = sum_tree r in
sl + v + sr

B.21 dfs_avl

exception Assume_failure

let assume b = if b then () else raise Assume_failure

type avl_tree = AvlLeaf | AvlNode of int * int * avl_tree * avl_tree

let height = function
| AvlLeaf→ 0
| AvlNode (h, _, _, _)→ h

let rec depth t acc =

match t with
| AvlLeaf→ acc
| AvlNode (h, v, l, r)→

let () =
let hl = height l in

let hr = height r in
assume (h = 1 + Raml.max hl hr);
assume (hl - hr ≤ 1 && hr - hl ≤ 1)

in
Raml.tick 1.0;
let acc’ = depth l acc in
depth r (v :: acc’)

let rec insert le a = function
| []→ [a]

| x :: xs→
if le a x then

a :: x :: xs
else
x :: insert le a xs

let isort le =
let rec isort_aux = function

| []→ []
| x :: xs→ insert le x (isort_aux xs)

in
isort_aux

let isort_ints l = isort (𝜆 a b→ (Raml.tick 1.0; (a:int) ≤ (b:int))) l

let dfs_avl t =
let acc = depth t [] in
isort_ints acc

B.22 bfs_avl

let empty () = ([], [])

let enqueue x queue =

let (inq, outq) = queue in
(Raml.tick 1.0; (x :: inq, outq))

let rec rev_append l1 l2 =
match l1 with

| []→ l2
| a :: l→ (Raml.tick 1.0; rev_append l (a :: l2))

let dequeue queue =

let (inq, outq) = queue in
let (inq, outq) =

match outq with

| []→ ([], rev_append inq outq)

| _→ (inq, outq)
in
match outq with
| []→ (([], []), [])

| x :: xs→ (Raml.tick 2.0; ((inq, xs), [x]))

exception Assume_failure

let assume b = if b then () else raise Assume_failure

type avl_tree = AvlLeaf | AvlNode of int * int * avl_tree * avl_tree

let height = function

66

B BENCHMARKS 67

| AvlLeaf→ 0
| AvlNode (h, _, _, _)→ h

let rec breadth queue acc =
let (queue’, elem) = dequeue queue in
match elem with
| []→ acc
| node :: _→

match node with
| AvlLeaf→ breadth queue’ acc
| AvlNode (h, v, l, r)→
let () =

let hl = height l in
let hr = height r in
assume (h = 1 + Raml.max hl hr);
assume (hl - hr ≤ 1 && hr - hl ≤ 1)

in
Raml.tick 1.0;
breadth (enqueue r (enqueue l queue’)) (v :: acc)

let rec insert le a = function

| []→ [a]
| x :: xs→

if le a x then
a :: x :: xs

else
x :: insert le a xs

let isort le =

let rec isort_aux = function
| []→ []
| x :: xs→ insert le x (isort_aux xs)

in
isort_aux

let isort_ints l = isort (𝜆 a b→ (Raml.tick 1.0; (a:int) ≤ (b:int))) l

let bfs_avl t =
let acc = breadth (enqueue t (empty ())) [] in

isort_ints acc

	1 Introduction
	2 Overview
	3 Setting the Stage: Resource Aware ML
	4 Problem Statement
	5 Type-Guided Worst-Case Input Generation Algorithm
	5.1 Formulation
	5.2 Proof

	6 Heuristics for Compositional Input Generation
	6.1 Uniform Execution
	6.2 Skeleton Similarity

	7 Evaluation
	7.1 Implementation
	7.2 Evaluation Setup
	7.3 Case Studies

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Proofs
	A.1 Proof of The:SynthesisSoundness
	A.2 Proof of Lem:HeapPreservation
	A.3 Proof of Lem:HeapMonotonicity
	A.4 Proof of Lem:PotentialConsistency
	A.5 Proof of The:SynthesisCompleteness

	B Benchmarks
	B.1 lpairs
	B.2 lpairs_alt
	B.3 find
	B.4 compare
	B.5 opairs
	B.6 queue
	B.7 eratos
	B.8 isort
	B.9 qsort
	B.10 qsort_pairs
	B.11 qsort_lists
	B.12 sort_all
	B.13 zigzag
	B.14 subtrees
	B.15 find_tree
	B.16 build_tree
	B.17 hashtbl
	B.18 split_sort
	B.19 kth
	B.20 sum_avl
	B.21 dfs_avl
	B.22 bfs_avl

