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Abstract likelihood estimate\ of the model parameters, we must calculate
the conditional expectation of the likelihood given a cuatreet

of parameters\’. This is the objective functiod)(\, ") which

is then maximized in successive iterations (wh@rés the set of
state sequences adlis the observation sequence):

We describe an extension to the Baum-Welch algorithm fan-tra
ing Hidden Markov Models that uses explicit phoneme segmen-
tation to constrain the forward and backward lattice. TheMV
trained with this algorithm can be shown to improve the aacyr

of automatic phoneme segmentation. In addition, this #lyor

is significantly more computationally efficient than thd Baum- Q) = Z logP(0,¢|\) P(0,q|X)

Welch algorithm, while producing models that achieve eajeiut ) ) €9 o )

accuracy on a standard phoneme recognition task. Calculation of this expectatlon involves summation ovér al

Index Terms: speech segmentation, speech synthesis, phonemeP0ssible state sequenc€s which can be achieved in quadratic

recognition, hidden markov models time' using dynamic programming techniques, namely the for-

ward and backward algorithms. To speed computation, imgtem
; tations of Baum-Welch often constrain the set of state serpse
1. Introduction using a beam search algorithm. This is accomplished by main-
Hidden Markov Models have been shown useful for both seg- taining a list of active states at each timepoint and stodnty
mentation and recognition on word and phoneme tasks. How-those entries in the forward or backward lattice that are zemo
ever, for phoneme segmentation, such as used in buildirechpe or above the pruning threshold determined by the beam.

databases for unit-selection speech synthesis[1], tiesldbhone In our modified Baum-Welch algorithm, we introduce a phone
segmentations) produced using the standard HMM-based-alig segmentation which constrains the set of possible stateesegs
ment tools for speech recognition typically require extenband- to those that pass through the given phoneme sequence. arhis c
correction[2]. be represented as an extra variaBlm the formulation of the ob-

As well, while they may be internally consistent, the autema  jective function@Q (A, \"). We considerS to be knowna priori,
ically generated labels do not always reflect human labetiras though it is concievable that it could be estimated jointiyhvithe
of the boundaries between phonemes. This is particulatigeo other parameters, as in thedden model sequence approach to
able when context-dependent triphone models are used for au pronunciation modeling[6]. The objective function therctmes:
matic segmentation; past research[3] has indicated thaexo
independent models are preferable for segmentation tesksgh
[4] presents a novel way of compensating for the effects nfexd- QX)) = logP(0,q|, S)P(0,q|X, S)
dependency). We hypothesize that, given that the stateesequ 9€Q
and thus by extension the phoneme segmentation, is coediter
be a hidden variable in training, the Viterbi segmentatigeser-
ated by HMM-based tools reflect boundaries that are optimigl o
in a maximume-likelihood sense.

This raises the question of whether it is possible to use lin-
guistic knowledge, available in the form of manually geteda
phoneme labels, to improve the quality of.the models, angt?m d P(O,g\,S) = P(Olg,\ S)P(q|A, S)
ing so improve both phoneme segmentation and recognition. |
this paper, we describe an algorithm for doing so, and peored = P(Olg; A, 5)P(alA)P(q]S)
sults that show a marked improvement on an objective meagure r
segmentation accuracy, as well as a significant reducticorin- =[] P(otla:)P(ailgi—)Pals:)
putational complexity. t=1

Assuming independence between the parameteasd the
phone sequenc$, in addition to the standard HMM conditional
independence assumptions, the joint likelihood of the datha
state sequenagbecomes:

2. A|gorithm In our experiments, the probabilit}?(q:|s¢) is fixed at zero

) . or one depending on whether the statebelongs to the phone
In the standard EM algorithm for training HMMs[5], the state st, though it is also conceivable that these probabilitiedd:be
quence required to calculate the likelihood function issidered

to bemissing or hidden data. Thus, in order to obtain a maximum 1in practice, it often requires cubic time, as noted below.




estimated independently, or that some other function atitig the | Dataset | Model | Algorithm ][ RMSE (ms) |
correspondence between phones and states could be used. The TIMIT CD Baum-Welch 31.035
are, however, distinct computational advantages to usingre- TIMIT CD constrained 20.715
one function in the current case. TIMIT [¢]] Baum-Welch 29.258

For an arbitrary topology, the forward algorithm has a com- TIMIT | CI constrained 20.260
plexity of O(|Q|?*T) in time andO(|Q|T’) in memory. In prac- SWB CD Baum-Welch 107.730
tice, for training speech recognition systems using attefight SWB CD constrained 84.160
topology, the worst-case complexities @¢7°°) andO(T?), re- SWB Cl Baum-Welch 43.252
spectively, since the number of states in the sentence HMMgr SWB Cl constrained 30.873
linearly with the length of the observation, and the numbkr o F2B CD (2 Gau) | Baum-Welch 28.733
active states grows linearly with the number of timepoints-p F2B CD (2 Gau) | constrained 22.685
viously evaluated. However, when a phoneme sequence is used | F2B Cl (2 Gau) | Baum-Welch 28.168
to constrain evaluation, only those states belonging toctire F2B ClI (2 Gau) | constrained 19.679
rent phone can ever be active. The number of active states at [ kaltext4 | CD (2 Gau) | Baum-Welch 33.870
each timepoint is thus constant in the expected number ti#fssta kaltext4 | CD (2 Gau) | constrained 29.891
in the current phond’[| P;|], and the worst-case time complexity kaltext4 | CI Baum-Welch 25.873
is O(E*[|P|]T) = O(T). kaltext4 | CI constrained 17.998

3. Experimental Results Table 1: Phoneme segmentation results

We implemented this technique in the trainer for theH8ux-I11

I 0,
continuous speech recognition system[7], and tested ibéth | Dataset| Model | Algorithm H PER (A))|
phoneme segmentation and phoneme decoding on severataorpo TIMIT | CD Baum-Welch 31.64
of phonetically labelled speech data. TR@IT dataset[8] con- TiMIT_| CD constrained 34.13
sists of 6300 phonetically balanced sentences from 63kepea TiMIT | Cl Baum-Welch 36.72
and contains officially designated training and test setspris- TIMIT | CI constrained 41.44
ing 3.13 and 1.14 hours of data, respectively. F2B dataset SWB CD Baum-Welch 54.49
consists of one female speaker from the Boston UniversitjidRa swB | €D constrained 55.18
speech corpus[9], for whom a full set of phonetic labels @ilav SWB Cl Baum-Welch 53.35
able. It consists of 111 news items, for a total of 0.93 hofimue SwB Cl constrained 53.94
dio. TheSWB dataset is the subset of Switchboard conversational F2B Cbh Baum-Welch 22.87
telephone speech data phonetically transcribed at ICSadp F2B Cb constrained 26.22
the Switchboard Transcription Project[10]. It contain8Z2en- F2B Cl Baum-Welch 26.38
tences and 0.81 hours of audio. Finally, tkadtext4 dataset is F2B Cl constrained 28.99
a set of 534 phonetically balanced sentences (0.54 houwns) dr kaltext4 | CD Baum-Welch 30.67
single speaker collected at Cepstral LLC for use in a unéesien kaltext4 | CD constrained 31.81
speech synthesis engine. kaltext4 | ClI Baum-Welch 31.03

We performed some normalization on the phonesets used in kaltext4 | Cl constrained 35.16

the various datasets to make them consistent with each, @ber
well as to make the resulting phoneset as close to the oneiised
training our standard acoustic models. This involved ranpa
fair amount of phonetic detail in some cases, such that thdtre
ing phoneset represents a phonemic rather than a phonetiofe
transcription.

For the datasets without a designated training and tesiveet,
held out 10% of the utterances for testing. From the remginin
data, we trained acoustic models using both standard BaetohW
and phoneme-constrained Baum-Welch. Phoneme segmentatio
was done using thephi nx3_al i gn tool for Viterbi alignment.
Phoneme decoding used thghi nx3_al | phone decoder with
a trigram model for phone transition probabilities trairfeaim
the testing portion of the dataset. For each dataset, weettai
context-independent (Cl) phone models using a three-etfitto- of initial training - since we used a flat initialization ofeimodel
right topology. We also trained context-dependent (Cphiohe parameters, the beam remains extremely wide until the peteam
models using 2000 tied states. Except where noted, we used 1@egin to asymptote.

Gaussian mixture components for the output distributiamsi For comparison purposes, we also applied several exist-
models and 8 Gaussians for CD models. ing phoneme-segmentation algorithms to f#etext4 dataset,

The results of phoneme segmentation, shown in Table 1, wereand compared them with the segmentations obtained by “cross
evaluated by calculating the RMS error in milliseconds ef pine- labeling” this dataset using th&IMIT models. The algo-
dicted versus the reference labels. The phone sequencgssise rithms we compared are thdt w, sphi nxt rai n (SPHINX-II
input to segmentation were taken from the reference laheth, semi-continuous HMM), andhnm(continuous HMM)[11] meth-

Table 2: Phoneme recognition results

the timing information left out, thus ensuring a one-to-atign-
ment between the reference and hypothesis labels. For pteone
recognition, we used phoneme error rate, as calculated tisen
standard dynamic programming alignment algorithm. These r
sults are shown in Table 2.

The amount of CPU time used in training one iteration of
TIMIT context-independent phone models is shown in Figure 1
Training was done on a 1.6GHz AMD Sempron64 based worksta-
tion with 1GB of RAM, running Linux 2.6.15. The number for
Baum-Welch with one Gaussian is an average over five iterstio
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Figure 1: CPU time required to train TIMIT Cl models

ods implemented in the FestVox toolkit for building syntises
voices[12]. We also trainekal t ext 4 models, using only the

is most likely a parameter estimation issue.
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Figure 2: Bad alignments using CD TIMIT models

4. Discussion

The phoneme-constrained training algorithm consisteirtly

proved phoneme labeling in our experiments, particularhemw
the training and test set are matched. It also reduced th# fga
performance between context-dependent and context-éndiemt

word transcriptions of the dataset in the same manner as themodels for labeling, though the context-independent nsodell
sphi nxt r ai n method. The results of this comparison are shown perform better. This does not necessarily imply that cdatex

in Table 3.

dependent models are not useful; it may be that they are wimpl

For this experiment, it was necessary to perform a dynamic overfitted to the data, given the small size of the datasetd.us

programming alignment and calculate the RMS error over thdy
aligned segments. This is because, in real-world phonegmeeas
tation tasks, phonemes and silences in particular may leetats
deleted, or substituted by human labelers to match what ctas a
ally spoken. For the input to our segmentation algorithmpaed
the phone sequence predicted by the Festival text-to-Bpeec
gine, which does not always match the reference labels. €3kth
labeling algorithms, onlghnmis able to insert and delete silences
with any degree of accuracy, and therefore its slightly aigérror
rate may be misleading. We plan to incorporate more infligi-
lence handling into the8HiNX-I11 aligner in the near future. Itis
worth noting that 8HINX-I1I using context-independent models
also ran much faster than any of the comparison methods.

[ Method | # Alignments || RMSE (ms) |
TI M T (CD, Baum-Welch)|| 14869 190.167
dtw 14869 75.499
sphi nxtrain 14770 38.660
kal t ext 4 (CD, 2 Gau) 14869 35.468
kal t ext 4 (CI, 4 Gau) 14869 34.735
ehmm 14902 32.244
TI M T (CD, constrained) || 14869 32.222
TI M T (Cl, constrained) 14869 30.419
TI M T (CI, Baum-Welch) || 14869 30.263

Table 3: Cross-labeling results &altext4

Though we expected that the unconstrained context-depende
models would perform worse than the constrained ones in the

“cross-labeling” task, the magnitude of the differenceuigsising.
It appears that there are a large number of catastrophitirigher-

The results on the “cross-labeling” task seem to confirm this

Initially, it appears that using phoneme-constrainedntraj
degrades performance for phoneme recognition tasks. There
are two possible explanations for this; either the humaeltd
phoneme boundaries are suboptimal for training modelsfarg-
nition, or the training process is overly constrained, iegdo in-
ferior estimates of the model parameters.

To test this, we ran a “bootstrapping” experiment, whergsghi
context-independent models with a single Gaussian per state
trained using unconstrained Baum-Welch, and the resuMitegbi
phoneme segmentations were then used to constrain thexconte
dependent and multiple-Gaussian training. The resulthisfex-
periment are shown in Table 4. In addition to TIMIT, we also
applied this technique to the Wall Street Journal conneatedl
dictation task, using the phone segmentations producedighr
forced recognition using the initial context-independemidels
and a multiple-pronunciation dictionary.

| Dataset | Model | PERWER (%)]
TIMIT Baum-Welch 31.64
TIMIT bootstrap 31.25
TIMIT constrained 34.13
WSJO (devel5k)| Baum-Welch 8.64
WSJO0 (devel5k)| bootstrap 8.98
WSJO (testbk) | Baum-Welch 11.11
WSJO0 (testbk) | bootstrap 11.97

Table 4: Bootstrapping constrained context-dependeneiaod

The more or less comparable performance here seems to in-
dicate that it is the human-labeled phoneme boundariekgrat

rors in the alignment for these models, where one phone @xten than any data sparsity problem, which lead to poorer retiogni
over a long sequence of heterogeneous speech data, as shown performance when phoneme-constrained training is usedv- Ho
Figure 2. These are the same type of errors that show up in theever, since the initial unconstrained models are used t@lize

speaker-dependent, context-independent, and constraindels
when too many Gaussian mixtures are trained, indicatinpttie

the context-dependent training, this may be providing sewhe
ditional robustness in parameter estimation. Also, fodwaral-



uation more frequently fails to reach the final state in phose
constrained Baum-Welch, thus reducing the effective amotin
training data. This is a particularly serious problem fotadats

such a$=2B which contain very long utterances.

5. Conclusion

The phoneme-constrained training technique appears tmirap
the performance of phoneme segmentation, particularlyarcase
where the training and test data are matched. On the othel han
it does not improve the accuracy of phoneme or connected word

recognition, though with the bootstrap method, it does ae¢rely
degrade them either.
In another apparent duality, it is evident that differeatrimg

techniques for HMMs are required for the segmentation wge

nition tasks. Context-dependent models and state tyingotlap

pear to be effective for phonetic segmentation. Using pinane

constrained training mitigates their negative effects ewshat,
though context-independent models are still superiot boac-
curacy and efficiency of training and segmentation.

In future work, we plan to investigate refinements to the boot [11]

strap training technique. By dumping Viterbi alignmentsoaat-
ically from the Baum-Welch estimation program, it shouldolos-
sible to eliminate several steps of training. We also interidves-
tigate the evolution of the optimal phone boundaries acitess-
tions of training, to determine if there is some point at \ihticey

can be fixed in place without degrading the recognition amur

of the resulting models.

6. Acknowledgements

This research was supported by DARPA grant NG CH-D-03-0010.

The content of the information in this publication does netes-
sarily reflect the position or the policy of the US Governmemid
no official endorsement should be inferred. We would alse tik

thank Cepstral LLC for the use of thaltext4 dataset and Kevin
Lenzo for recording it, as well as John Kominek, Alan Blaakd a
Laura Tomokiyo for discussions on the problem of phonetg: se
mentation for speech synthesis.

(1]

(2]

(3]

(4]

(5]

7. References

John Kominek and Alan Black, “CMU ARCTIC databases
for speech synthesis,” Tech. Rep. CMU-LTI-03-177, CMU
Language Technolgies Institute, 2003.

John Kominek, Christina Bennett, and Alan Black, “Eval-
uating and correcting phoneme segmentation for unit selec-
tion synthesis,” irfProceedings of Eurospeech 2003, Geneva,
Switzerland, 2003.

John Kominek and Alan Black, “A family-of-models
approach to HMM-based segmentation for unit selection
speech synthesis,” iRroceedings of ICSLP 2004, Jeju, Ko-
rea, 2004.

Doroteo Torre Toledano, Luis A. Hernandez Gomez, and
Luis Villarrubia Grande, “Automatic phonetic segmenta-
tion,” |EEE Transactions on Speech and Audio Processing,

vol. 11, no. 6, pp. 617—625, November 2003.

Jeff Bilmes, “A gentle tutorial on the EM algorithm and it
application to parameter estimation for Gaussian mixtace a
Hidden Markov Models,” Tech. Rep., International Com-
puter Science Institute, 1997, ICSI-TR 97-021.

[6] T. Hain, Hidden Model Sequence Models for Automatic

Soeech Recognition, Ph.D. thesis, Cambridge University,
2001.

Michael Seltzer and Rita Singh, In-
structions  for using the  Sphinx3 trainer,
http://www.speech.cs.cmu.edu/sphinxman/fr4.html.

[8] John S. Garofalo, Lori F. Lamel, William M. Fisher,

Johnathan G. Fiscus, David S. Pallett, and Nancy L.
Dahlgren, The DARPA TIMIT Acoustic-Phonetic Continu-

ous Speech Corpus CDROM, Linguistic Data Consortium,
1993.

M. Ostendorf, P. J. Price, and S. Shattuck-Hufnagel, €Th
Boston University Radio News Corpus,” Tech. Rep. ECS-
95-001, Boston University, March 1995.

S. Greenberg, “Insights into spoken language gleanad f
phonetic transcription of the switchboard corpus,” Aro-
ceedings of ICSLP 1996, Philadelphia, PA, 1996, vol. sup-
plement.

Kishore Prahallad, Alan Black, and Ravishankar Mosur,
“Sub-phonetic modeling for capturing pronunciation varia
tion in conversational speech synthesis,” Piroceedings of
ICASSP 2006, Toulouse, France, 2006.

Alan Black and Kevin Lenzo, Building
\Voices in the Festival Speech Synthesis System,
http://www.festvox.org/festvox/index.html.



