Measurement: Techniques, Strategies, and Pitfalls

David Andersen CMU 15-744

Many (most) slides in this lecture from Nick Feamster's measurement lecture

Internet Measurement

- Process of collecting data that measure certain phenomena about the network
 - Should be a science
 - Today: closer to an art form
- Key goal: Reproducibility
- "Bread and butter" of networking research
 - Deceptively complex
 - Probably one of the most difficult things to do correctly

Types of Data

Active

- traceroute
- ping
- UDP probes
- TCP probes
- Application-level "probes"
 - Web downloads
 - DNS queries

Passive

- Packet traces
 - Complete
 - Headers only
 - Specific protocols
- Flow records
- · Specific data
 - Syslogs ...
 - HTTP server traces
 - DHCP logs
 - Wireless association logs
 - DNSBL lookups
 - **–** ...
- · Routing data
 - BGP updates / tables, ISIS, etc.

2

Outline: Tools and Pitfalls

- Aspects of Data Collection
 - Precision: At what granularity are measurements taken?
 - Accuracy: Does the data capture phenomenon of interest?
 - Context: How was the data collected?
- Tools
 - Active
 - Ping, traceroute, etc.
 - Accuracy pitfall example: traceroute
 - Passive
 - Packet captures (e.g., tcpdump, DAG)
 - Flow records (e.g., netflow)
 - Routing data (e.g., BGP, IS-IS, etc.)
 - Context pitfall example: eBGP multihop data collection

Outline (continued)

- Strategies
 - Cross validate
 - consistency checks
 - multiple "overlapping" measurements
 - Examine Zeroth-Order
- Database as secret weapon
- Other considerations
 - Anonymization and privacy
 - Maintaining longitudinal data

5

Active Measurement

- · Common tools:
 - Ping
 - traceroute
 - scriptroute (see homework)

Sample Question: Topology

- · What is the topology of the network?
 - At the IP router layer
 - Without "inside" knowledge or official network maps
 - Without SNMP or other privileged access

_

- · Why do we care?
 - Often need topologies for simulation and evaluation
 - Intrinsic interest in how the Internet behaves
 - "But we built it! We should understand it"
 - Emergent behavior; organic growth

7

How Traceroute Works

Send packets with increasing TTL values

- Nodes along IP layer path decrement TTL
- When TTL=0, nodes return "time exceeded" message

Problems with Traceroute

- · Can't unambiguously identify one-way outages
 - Failure to reach host : failure of reverse path?
- ICMP messages may be filtered or rate-limited
- IP address of "time exceeded" packet may be the *outgoing* interface of the *return* packet

q

Famous Traceroute Pitfall

- Question: What ASes does traffic traverse?
- Strawman approach
 - Run traceroute to destination
 - Collect IP addresses
 - Use "whois" to map IP addresses to AS numbers
- Thought Questions
 - What IP address is used to send "time exceeded" messages from routers?
 - How are interfaces numbered?
 - How accurate is whois data?

More Caveats: Topology Measurement

- Routers have multiple interfaces
- Measured topology is a function of vantage points
- Example: Node degree
 - Must "alias" all interfaces to a single node (PS 2)
 - Is topology a function of vantage point?
 - · Each vantage point forms a tree
 - · See Lakhina et al.
- (preview of homework! :)

11

Less Famous Traceroute Pitfall

- Host sends out a sequence of packets
 - Each has a different destination port
 - Load balancers send probes along different paths
 - Equal cost multi-path
 - · Per flow load balancing

Soule et al., "Avoiding Traceroute Anomalies with Paris Traceroute", IMC 2006

Designing for Measurement

- What mechanisms should routers incorporate to make traceroutes more useful?
 - Source IP address to "loopback" interface
 - AS number in time-exceeded message
 - ??
- More general question: How should the network support measurement (and management)?

13

Passive Measurement

Two Main Approaches

- · Packet-level Monitoring
 - Keep packet-level statistics
 - Examine (and potentially, log) variety of packet-level statistics. Essentially, anything in the packet.
 - Timing
- Flow-level Monitoring
 - Monitor packet-by-packet (though sometimes sampled)
 - Keep aggregate statistics on a flow

15

Packet Capture: tcpdump/bpf

- Put interface in promiscuous mode
- Use bpf to extract packets of interest

Accuracy Issues

- · Packets may be dropped by filter
 - Failure of topdump to keep up with filter
 - Failure of filter to keep up with dump speeds

Question: How to recover lost information from packet drops?

Traffic Flow Statistics

- SNMP (Simple Network Management Protocol)
 - Get # of packets across interface per 5min
 - or other similar very coarse stats

_

- Flow monitoring (e.g., Cisco Netflow)
 - Statistics about groups of related packets (e.g., same IP/TCP headers and close in time)
 - Records header information, counts, and time
 - May be sampled

17

What is a flow?

- Source IP address
- Destination IP address
- Source port
- Destination port
- Layer 3 protocol type
- TOS byte (DSCP)
- Input logical interface (ifIndex)

Flow Record Contents

Basic information about the flow...

- Source and Destination, IP address and port
- Packet and byte counts
- Start and end times
- · ToS, TCP flags

...plus, information related to routing

- Next-hop IP address
- Source and destination AS
- · Source and destination prefix

19

Aggregating Packets into Flows

- Chreina 1! Set of packets that "belong together"
 - Source/destination IP addresses and port numbers
 - Same protocol, ToS bits, ...
 - Same input/output interfaces at a router (if known)
- Criteria 2: Packets that are "close" together in time
 - Maximum inter-packet spacing (e.g., 15 sec, 30 sec)
 - Example: flows 2 and 4 are different flows due to time

Packet Sampling

- Packet sampling before flow creation (Sampled Netflow)
 - 1-out-of-m sampling of individual packets (e.g., m=100)
 - Create of flow records over the sampled packets
- Reducing overhead
 - Avoid per-packet overhead on (m-1)/m packets
 - Avoid creating records for a large number of small flows
- Increasing overhead (in some cases)
 - May split some long transfers into multiple flow records
 - ... due to larger time gaps between successive packets

21

Problems with Packet Sampling

- Determining size of original flows is tricky
- Flow records can be lost
- Small flows may be eradicated entirely
- Flow sampling can provide better accuracy
 - But requires measuring every packet still
- Lots of research looking at sampling techniques, etc.

Routing Data

- Collection methods
 - eBGP (typically "multihop")
 - iBGP
- Table dumps: Periodic, complete routing table state (direct dump from router)
- Routing updates: Continuous, incremental, best route only

23

Why Trust Your Data?

- Measurement requires a degree of suspicion
 - Why should I trust your data? Why should you?
- Resolving that...
 - Use current best practices
 - e.g., paris-traceroute, CAIDA topologies, etc.
 - Don't trust the data until forced to
 - · Sanity checks and cross-validation
 - Spot checks (when applicable)

Context Pitfall: AS-Level Topologies

- Question: What is the Internet's AS-level topology?
- Strawman approach
 - Routeviews routing table dumps
 - Adjacency for each pair of ASes in the AS path
- Problems with the approach?
 - Completeness: Many edges could be missing. Why?
 - · Single-path routing
 - · Policy: ranking and filtering
 - · Limited vantage points
 - Accuracy
 - Coarseness

25

Context Pitfall: Routing Instability

- Question: Does worm propagation cause routing instability?
- Strawman approach:
 - Observe routing data collected at RIPE RIRs
 - Correlate routing update traffic in logs with time of worm spread
 - Finding: Lots of routing updates at the time of the worm sprreading!
 - (Bogus) conclusion: Worm spreading causes route instability

Figure 5: A zoom-in on the BGP message storm of 18-22 September.

Cowie et al., "Global Routing Instabilities Triggered by Code Red II and Nimda Worm Attacks"

Missing/Ignored Context: Instability + eBGP multihop ...

Strategy: Examine the Zeroth-Order

- Paxson calls this "looking at spikes and outliers"
- More general: Look at the data, not just aggregate statistics
 - Tempting/dangerous to blindly compute aggregates
 - Timeseries plots are telling (gaps, spikes, etc.)
 - Basics
 - Are the raw trace files empty?
 - Need not be 0-byte files (e.g., BGP update logs have state messages but no updates)
 - Metadata/context: Did weird things happen during collection (machine crash, disk full, etc.)

27

Strategy: Cross-Validation

- · Paxson breaks cross validation into two aspects
 - Self-consistency checks (and sanity checks)
 - Independent observations
 - Looking at same phenomenon in multiple ways
- What are some other examples of each of these?

Example Sanity Checks

- · Is time moving backwards?
 - Paxson's probing example
 - Typical cause: Clock synchro

- Has the the speed of light increased?
 - E.g., 10ms cross-country latencies
- Do values make sense?
 - IP addresses that look like 0.0.1.2 indicate bug

29

Cross-Validation Example

- Traceroutes captured in parallel with BGP routing updates
- Puzzle
 - Route monitor sees route withdrawal for prefix
 - Routing table has no route to the prefix
 - IP addresses within prefix still reachable from within the IP address space (i.e., traceroute goes through)
- Why?
 - Collection bugs ... or
 - Broken mental model of routing setup: A default route!

Databases: Secret Weapon

- Easy way to get lots of summary statistics
 - Regular first-order stats (cf. Paxson's recommendation)
 - Latest timestamp, number of updates, etc.
 - Cross-validation becomes easier (quick and dirty SQL)
 - Joint analysis of diverse datasets is a common need

Caveats!

- Insertion must be done properly
 - Always, always save raw data

31

Horror Story #1: Buggy Postprocessing

- Logs maintained at each host
- Files collected and merged to compute one-way delays

Example RON Monitoring Logs

1103659228.224614 S 14b13270 0 8 18.7.14.168 66.26.83.103 1103659228.252509 R 14b13270 1 8 18.7.14.168 66.26.83.103 1103659229.388441 S 55a4b9a1 0 8 18.7.14.168 192.249.24.10 1103659229.611096 R 55a4b9a1 1 8 18.7.14.168 192.249.24.10 1103659231.200177 S bf1207a0 0 8 18.7.14.168 12.46.129.20 1103659231.270053 R bf1207a0 1 8 18.7.14.168 12.46.129.20 1103659233.109900 S 55e244c0 0 8 18.7.14.168 112.12.8.0 1103659234.308722 S 8ba24c76 0 8 18.7.14.168 18.97.168.219

- If corresponding ends of logfile missing: set receive time to zero.
 - "Does the extra effort matter?" (Paxson)
- What if the log files don't match up in time properly?
- What about missing log files?

Longitudinal measurement hard

- · Accurate distributed measurement is tricky!
- · Lots of things change:
 - Host names, IPs, software
- Lots of things break
 - hosts (temporary, permanently)
 - clocks
 - links
 - collection scripts
- · Paxson's "master script" can help a bit

33

Anonymization

- Similar questions arise here as with accuracy
- Researchers always want full packet captures with payloads
 - ...but many questions can be answered without complete information
- · Common methods:
 - Nulling out low-order IP bytes
 - hashing IP addresses
- Privacy / de-anonymization issues

PlanetLab for Network Measurement

- Nodes are largely at academic sites
 - Other alternatives: RON testbed (disadvantage: smaller, less software support)
- Repeatability of network experiments is tricky
 - Proportional sharing
 - Minimum guarantees provided by limiting the number of outstanding shares
 - Work-conserving CPU scheduler means experiment could get more resources if there is less contention