
Ad Hoc Routing

CMU 15-744 David Andersen

Ad Hoc Routing

- Goal: Communication between wireless nodes
 - No external setup (self-configuring)
 - Often need multiple hops to reach dst

Challenges and Variants

- Poorly-defined "links"
 - Probabilistic delivery, etc. Kind of n^2 links
- Time-varying link characteristics
- No oracle for configuration (no ground truth configuration file of connectivity)
- Low bandwidth (relative to wired)
- Possibly mobile
- Possibly power-constrained

Goals

- #0: Provide connectivity!
- Low consumption of memory, bandwidth, {possibly power}
- · Scalable with numbers of nodes
- · Localized effects of link failure
 - (For scalability and stability)

Standard Routing: DV and LS

- DV protocols may form loops
 - Very wasteful in wireless: bandwidth, power
 - Loop avoidance sometimes complex
- LS protocols: high storage and communication overhead – particularly when potentially n^2 links!
- More links in wireless (e.g., clusters) may be redundant → higher protocol overhead

Problems Using DV or LS

- Periodic updates waste power
 - Tx sends portion of battery power into air
 - Reception requires less power, but periodic updates prevent mobile from "sleeping"
- Convergence may be slower in conventional networks but must be fast in ad-hoc networks and be done without frequent updates

Design Space

- 1) How to disseminate information about links and to send packets along a path
- 2) How to decide which path to use from many possibilities
 - (How good is a particular path?)
 - Really early models: binary
 - Early models: If deliver > x%, good
 - New models: ETX/ETT (wait for it)
- Base knowledge: Every node knows about neighbors because they can hear them directly. (Periodic beacons, transmissions, etc.)

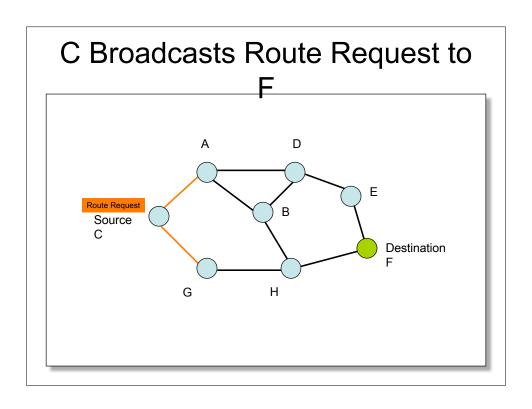
Evaluating Ad Hoc Protocols

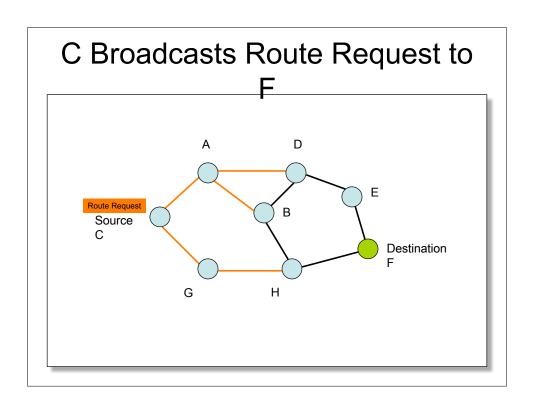
- · Parameter question: How much mobility?
 - And what mobility model?
 - Consider reality: Random waypoint? Clustered?
 - Businesspeople wandering to/from work vs. soldiers, etc.
- Link model
 - Early research all used spherical propagation, etc.
 - · Tended to binary "working" or "not working"
 - More modern uses traces from real deployments or more realistic models

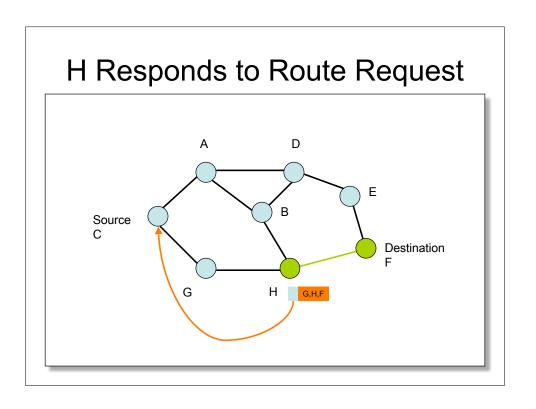
Proposed Protocols

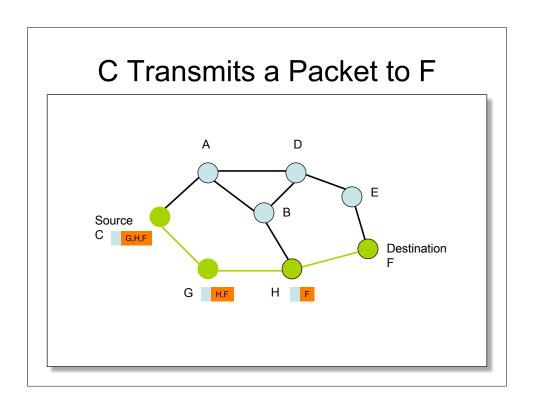
- Destination-Sequenced Distance Vector (DSDV)
 - DV protocol, destinations advertise sequence number to avoid loops, not on demand
- Temporally-Ordered Routing Algorithm (TORA)
 - On demand creation of hbh routes based on linkreversal
- Dynamic Source Routing (DSR)
 - On demand source route discovery
- Ad Hoc On-Demand Distance Vector (AODV)
 - Combination of DSR and DSDV: on demand route discovery with hbh routing

DSR Concepts


- Source routing
 - No need to maintain up-to-date info at intermediate nodes
- On-demand route discovery
 - No need for periodic route advertisements


DSR Components


- Route discovery
 - The mechanism by which a sending node obtains a route to destination
- Route maintenance
 - The mechanism by which a sending node detects that the network topology has changed and its route to destination is no longer valid


DSR Route Discovery

- Route discovery basic idea
 - Source broadcasts route-request to Destination
 - Each node forwards request by adding own address and re-broadcasting
 - Requests propagate outward until:
 - · Target is found, or
 - A node that has a route to Destination is found

Forwarding Route Requests

- A request is forwarded if:
 - Node is not the destination
 - Node not already listed in recorded source route
 - Node has not seen request with same sequence number
 - IP TTL field may be used to limit scope
- Destination copies route into a Route-reply packet and sends it back to Source

Route Cache

- All source routes learned by a node are kept in Route Cache
 - Reduces cost of route discovery
- If intermediate node receives RR for destination and has entry for destination in route cache, it responds to RR and does not propagate RR further
- Nodes overhearing RR/RP may insert routes in cache

Sending Data

- Check cache for route to destination
- If route exists then
 - If reachable in one hop
 - Send packet
 - Else insert routing header to destination and send
- If route does not exist, buffer packet and initiate route discovery

Discussion

- Source routing is good for on demand routes instead of a priori distribution
- Route discovery protocol used to obtain routes on demand
 - Caching used to minimize use of discovery
- Periodic messages avoided
- · But need to buffer packets
- How do you decide between links?

Deciding Between Links

- Most early protocols: Hop Count
 - Link-layer retransmission can mask some loss
 - But: a 50% loss rate means your link is only 50% as fast!
- · Threshold?
 - Can sacrifice connectivity. ⊗
 - Isn't a 90% path better than an 80% path?
- Real life goal: Find highest throughput paths

Forwarding Packets is expensive

- Throughput of 802.11b =~ 11Mbits/s
 - In reality, you can get about 5.
- What is throughput of a chain?
 - -A -> B -> C
 - -A -> B -> C -> D ?
 - Assume minimum power for radios.
- Routing metric should take this into account! Affects throughput

ETX

- Measure each link's delivery probability with broadcast probes (& measure reverse)
- P(delivery) = (df * dr) (ACK must be delivered too...)
- Link ETX = 1 / P(delivery)
- Route ETX = Σ link ETX
- (Assumes all hops interfere not true, but seems to work okay so far)

ETX: Sanity Checks

- ETX of perfect 1-hop path: 1
- ETX of 50% delivery 1-hop path: 2
- ETX of perfect 3-hop path: 3
- (So, e.g., a 50% loss path is better than a perfect 3-hop path! A threshold would probably fail here...)

ETT

- What if links @ different rates?
- ETT expected transmission time
 - ETX / Link rate
 - = 1 / (P(delivery) * Rate)

SampleRate

- · What is best rate for link?
 - The one that maximizes ETT for the link!
 - SampleRate is a technique to adaptively figure this out. (See new Roofnet paper)

ETX measurement results

- Delivery is probabilistic
 - A 1/r^2 model wouldn't really predict this!
 - Sharp cutoff (by spec) of "good" vs "no" reception.
 Intermediate loss range band is just a few dB wide!
- · Why?
 - Biggest factor: Multi-path interference
 - 802.11 receivers can suppress reflections < 250ns
 - Outdoor reflections delay often > 1 \mu sec
 - Delay offsets == symbol time look like valid symbols (large interferece)
 - Offsets != symbol time look like random noise
 - Small changes in delay == big changes in loss rate

Take home points

- Value of implementation & measurement
 - Simulators did not "do" multipath
 - · Routing protocols dealt with the simulation environment just fine
 - Real world behaved differently and really broke a lot of the proposed protocols that worked so well in simulation!
- Rehash: Wireless differs from wired...
- Metrics: Optimize what matters; hop count often a very bad proxy in wireless
- What we didn't look at: routing protocol overhead
 - One cool area: Geographic routing
 - See extra reading listed on Web page. ☺