
1

Big, Fast Routers

Dave Andersen
CMU CS 15-744

Router Architecture

• Data Plane
– How packets get forwarded

• Control Plane
– How routing protocols establish routes/etc.

2

Processing: Fast Path vs. Slow
Path

• Optimize for common case
– BBN router: 85 instructions for fast-path code
– Fits entirely in L1 cache

• Non-common cases handled on slow path
– Route cache misses
– Errors (e.g., ICMP time exceeded)
– IP options
– Fragmented packets
– Mullticast packets

Route
TableCPU Buffer

Memory

Line
Interface

MAC

Line
Interface

MAC

Line
Interface

MAC

Typically <0.5Gb/s aggregate capacity

Shared Bus

LineInterface

CPU

Memory

First Generation Routers
Off-chip Buffer

Line card DMAs into buffer, CPU
examines header, has output DMA out

3

Route
TableCPU

Line
Card

Buffer
Memory

Line
Card

MAC

Buffer
Memory

Line
Card

MAC

Buffer
Memory

Fwding
Cache

Fwding
Cache

Fwding
Cache

MAC

Buffer
Memory

Typically <5Gb/s aggregate capacity

Second Generation Routers

Bypasses memory
bus with direct
transfer over bus
between line cards

Moves forwarding
decisions local to
card to reduce
CPU pain

Punt to CPU for
“slow” operations

Control Plane & Data Plane

• Control plane must remember lots of
routing info (BGP tables, etc.)

• Data plane only needs to know the “FIB”
(Forwarding Information Base)
– Smaller, less information, etc.
– Simplifies line cards vs the network processor

4

Bus-based
• Some improvements possible

– Cache bits of forwarding table in line cards,
send directly over bus to outbound line card

• But shared bus was big bottleneck
– E.g., modern PCI bus (PCIx16) is only

32Gbit/sec (in theory)
– Almost-modern cisco (XR 12416) is

320Gbit/sec.
– Ow! How do we get there?

Third Generation Routers

Line
Card

MAC

Local
Buffer

Memory

CPU
Card

Line
Card

MAC

Local
Buffer

Memory

“Crossbar”: Switched Backplane

LineInterface

CPU
Memory Fwding

Table

Routing
Table

Fwding
Table

Typically <50Gb/s aggregate capacity

Periodic

Control

updates

5

Crossbars
• N input ports, N output ports

– (One per line card usually)
• Every line card has its own forwarding

table/classifier/etc – removes CPU bottleneck
• Scheduler

– Decides which input/output port to connect in a given
time slot

– Crossbar constraint:
• If input I is connected to output j, no other input connected to

j, no other output connected to input I
• Scheduling is bipartite matching…

What’s so hard here?
• Back-of-the-envelope numbers

– Line cards can be 40 Gbit/sec today (OC-768)
• Undoubtedly faster in a few more years, so scale these #s

appropriately!
– To handle minimum-sized packets (~40b)

• 125 Mpps, or 8ns per packet
• But note that this can be deeply pipelined, at the cost of

buffering and complexity. Some lookup chips do this, though
still with SRAM, not DRAM. Good lookup algos needed still.

• For every packet, you must:
– Do a routing lookup (where to send it)
– Schedule the crossbar
– Maybe buffer, maybe QoS, maybe filtering by ACLs

6

Routing Lookups
• Routing tables: 200,000 – 1M entries

– Router must be able to handle routing table load 5
years hence. Maybe 10.

• So, how to do it?
– DRAM (Dynamic RAM, ~50ns latency)

• Cheap, slow
– SRAM (Static RAM, <5ns latency)

• Fast, $$
– TCAM (Ternary Content Addressable Memory –

parallel lookups in hardware)
• Really fast, quite $$, lots of power

Longest-Prefix Match

• Not just one entry that matches a dst
– 128.2.0.0/16 vs 128.2.153.0/24
– Must take the “longest” (most specific) prefix

7

Method 1: Trie

0 1
Root

P5 P4
0 1

P1
0

0
P6

P7

P8

0

0

0

P2
0

0

1
P3

• P1 = 10*
• P2 = 111*
• P3 = 11001*
• P4 = 1*
• P5 = 0*
• P6 = 1000*
• P7 =

100000*
• P8 =

1000000*

Sample DatabaseTrie

1

Skip Count vs. Path
Compression

P1

P2

P3 P4

0

0

0 1

1

1

1

P1

P2

P3 P4

0

0

0 1

(Skip count)
Skip 2

or

11 (path
compressed)

1

• Removing one way branches ensures # of trie nodes is at most
twice # of prefixes

• Using a skip count requires exact match at end and backtracking
on failure  path compression simpler

8

LPM with PATRICIA Tries

128.2/16

10

16

19
128.32/16

128.32.130/240 128.32.150/24

default
0/0

0

• Traditional method – Patricia Tree
• Arrange route entries into a series of bit tests

• Worst case = 32 bit tests
• Problem: memory speed, even w/SRAM!

Bit to test – 0 = left child,1 = right child

How can we speed LPM up?

• Two general approaches:
– Shrink the table so it fits in really fast memory

(cache)
• Degermark et al.; optional reading
• Complete prefix tree (node has 2 or 0 kids) can be

compressed well. 3 stages:
– Match 16 bits; match next 8; match last 8

– Drastically reduce the # of memory lookups
• WUSTL algorithm ca. same time (Binary search on

prefixes)

9

TCAMs for LPM

• Content addressable memory (CAM)
– Hardware-based route lookup
– Input = tag, output = value
– Requires exact match with tag

• Multiple cycles (1 per prefix) with single CAM
• Multiple CAMs (1 per prefix) searched in parallel

– Ternary CAM
• (0,1,don’t care) values in tag match
• Priority (i.e., longest prefix) by order of entries

– Very expensive, lots of power, but fast! Some
commercial routers use it

Skipping LPMs with
caching

• Caching
– Packet trains exhibit temporal locality
– Many packets to same destination.

Problems?
• Cisco Express Forwarding

10

Problem 2: Crossbar Scheduling

• Find a bipartite matching
– In under 8ns

• First issue: Head-of-line blocking with input
queues
– If only 1 queue per input
– Max throughput <= (2-sqrt(2)) =~ 58%

• Solution? Virtual output queueing
– In input line card, one queue per dst. Card
– Requires N queues; more if QoS
– The Way It’s Done Now ™

Head-of-Line Blocking

Output 1

Output 2

Output 3

Input 1

Input 2

Input 3

Problem: The packet at the front of the queue experiences
contention for the output queue, blocking all packets behind it.

Maximum throughput in such a switch: 2 – sqrt(2)

11

Early Crossbar Scheduling
Algorithm

• Wavefront algorithm

Problems: Fairness, speed, …

Slow!

(36 “cycles”)

Observation:

2,1 1,2 don’t
conflict with
each other

(11 “cycles”)

Do in groups, with
groups in parallel

(5 “cycles”)

Can find opt group
size, etc.

Alternatives to the Wavefront
Scheduler

• PIM: Parallel Iterative Matching
– Request: Each input sends requests to all outputs for

which it has packets
– Grant: Output selects an input at random and grants
– Accept: Input selects from its received grants

• Problem: Matching may not be maximal
• Solution: Run several times

• Problem: Matching may not be “fair”
• Solution: Grant/accept in round robin instead of

random

12

iSLIP – Round-robin PIM

• Each input maintains round-robin list of outputs
• Each output maints round-robin list of inputs
• Request phase: Inputs send to all desired

output
• Grant phase: Output picks first input in round-

robin sequence
– Input picks first output from its RR seq
– Output updates RR seq only if it’s chosen

• Good fairness in simulation

100% Throughput?

• Why does it matter?
– Guaranteed behavior regardless of load!
– Same reason moved away from cache-based

router architectures
• Cool result:

– Dai & Prabhakar: Any maximal matching
scheme in a crossbar with 2x speedup gets
100% throughput

– Speedup: Run internal crossbar links at 2x
the input & output link speeds

13

Filling in the (painful) details

• Routers do more than just LPM & crossbar
– Packet classification (L3 and up!)
– Counters & stats for measurement & debugging
– IPSec and VPNs
– QoS, packet shaping, policing
– IPv6
– Access control and filtering
– IP multicast
– AQM: RED, etc. (maybe)
– Serious QoS: DiffServ (sometimes), IntServ (not)

Other challenges in Routing

• Fast Classification
– src, dst, sport, dport, {other stuff} ->

• accept, deny, which class/queue, etc.

– Even with TCAMs, hard
• efficient use of limited entries, etc.

• Routing correctness
– We’ll get back to this a bit later

• Architecture w.r.t. management
– Also later. How do you manage a collection of 100s

of routers?

14

Going Forward

• Today’s highest-end: Multi-rack routers
– Measured in Tb/sec
– One scenario: Big optical switch connecting

multiple electrical switches
• Cool design: McKeown sigcomm 2003 paper

• BBN MGR: Normal CPU for forwarding
– Modern routers: Several ASICs

