
1

Placement of Function in a
Best Effort World

Course Logistics Update

• 45 total in class. Still off target.
• Prioritized waitlist now available. See me

after class.

2

Internet Architecture Redux

• The network is stateless (w.r.t. e2e
connection state), for survivability

• The network is unreliable
– No guarantees; 1%ish drop rate OK; may

burst to higher or have temp. outages
End-hosts must do reliability/retransmission

• The network provides no QoS
End-hosts must do congestion control

Things the Transport Faces
• Loss

– Congestion, corruption, routing probs, failures
• Congestion? Yup: Stat mux! Finite buffers for store-and-

forward. Bursts or excess traffic.
– Queue size is tricky: Too large == too much delay, too small

== bad statmux. More later

• Variable delay
• Reordering (how can this happen?)

– Bugs, multipath
• Duplication

– Bugs, lower-layer spurious retransmissions

3

So: TCP?
• A reliable, congestion-controlled, in-order

bytestream
– As mentioned last time: Not a perfect fit for

everybody. Drawbacks?
• Unreliable apps don’t need it
• May delay app processing, causing CPU/memory/disk to be

more bursty than necessary
– Known problem. Nice paper @ SIGCOMM 2006 on

DCCP, datagram congestion control: Unreliable,
congestion controlled datagrams

– Also mentioned ITP, image transport protocol:
reliable *out of order*

– Rel to end-to-end arguments?

Reliable Transfers

• Forward Error Correction: (redundancy in-band)
• Automatic Repeat reQuest (ARQ):

retransmissions. How does it know?
– Acknowledgements!
– In tcp: cumulative ACKs

• How do you detect a loss with ACKs?
– Timeout
– Or – (diagram) notice that you’re getting dup ACKs

4

TCP Gets Older

• V1: “go-back-N” retransmissions based on
timeouts with a fixed-size sliding window

• V2: Congestion collapse!
– Van Jacobsen and Mike Karels congestion avoidance

(congestion control), better RTT estimators (why? To
set the timeout), and slow start. (Coming up later)

• Karn & Partridge: Retransmission Ambiguity
– How do you tell if an ACK is for orig or Rx packet? If

you can’t tell, your RTT estimator can break
– Next step: TCP timestamp options

TCP Variants
• TCP Tahoe: Fast retransmission + Jacobson/Karels

(slow start/cong avoid)
– First data-driven, not timeout-driven, Rxmit

• TCP Reno: Fast recovery: The now-classic sawtooth
• TCP NewReno: improves fast recovery to survive

multiple data losses in large windows
• TCP SACK: Pretty close to the state of the art. Instead

of just ACKing last received seq, tell sender about other
recv’d packets too (easier to recover from weird loss
patterns)

• Most machines today are NewReno / SACK (Sally Floyd
2005 study)

5

TCP Principles

• Don’t retransmit early; aoid spurious
retransmissions
– A response to congestion collapse. Part of cong.

collapse was Rx of packets that were queued, not
lost.

• Conserve packets
– Don’t blast network with extra traffic during

retransmissions.
– General technique: Count # dup acks to know how

many packets have left the network.

Timers

• How do you know when packets were
lost? If no other ACKs, must timeout.

• How long to wait? Well, depends on the
RTT.
– Easy to measure: segment -> ACK
– Problems: Variable delay, variable

processing times at receiver
– Solution: Averaging

6

EWMA

• Exponential Weighted Moving Averages
– A low-pass filter by another name
– Srtt = alpha * r + (1 – alpha)*srtt

• R is the current sample
• Srtt is the smoothed average
• TCP uses alpha = 1/8. Doesn’t matter too much.

– Great! We’re done.
– Or not.

• EWMA is great to put in your toolbox

Variance
• If we use srtt, then half of our transmissions are

spurious.
• TCP early solution: Beta * srtt (beta =~ 2)

– But what if the path has high variance?
• Real solution:

– RTO = srtt + 4 * rttdev
– Rttdev = mean linear deviation (>= stddev)

• = rttdev = gamma * dev + (1-gamma) * rttdev
• Dev = |r – srtt|. TCP uses gamma = ¼

• Final note: What to do on timeout?
– Exponential backoff (another good toolkit thing)

7

Using more information: Fast
Retransmission

• Data-driven retransmission
• What happens on loss? Duplicate ACKs

– Imagine you sent:
– 1:1000, 1001:1700, 2501:3000, 3001:4000,

4001:4576
– And got ACKs 1001 1701 1701 1701 1701
– Clear that something’s going wrong!

Wither dup acks

• Why DUP acks?
– Window updates: TCP receivers have limited

space in socket buffer, so they can tell the
source to “shut up” (flow control)

– Segment loss
– Or … segment re-ordering

• TCP says three dupacks == not re-ordered
• Works pretty well, but now forces network design

to abide by it because it works pretty well!
– Per-packet load balancing

8

Congestion Control

• Okay. Great. We know we had a loss
because of a timeout or dup ACKs. What
do we do?
– 1: Retransmit
– 2: Adjust our congestion window

• TCP isn’t just doing reliability…

The basics

• Slow start: Ramp up
• Congestion avoidance: Be conservative

when you’re near the limit

9

Fast Recovery

• There’s still more information floating in the net.
• If you did fast recovery, you got dup ACKs, and

will probably keep getting more.
• Retransmit lost packet. Cut cong window in half.

Wait until half of the window has been ACKed,
and then send _new_ data.

• Basic idea in TCP Reno.
• TCP NewReno adds more tricks to deal with

multiple losses in a window, which kills Reno.

SACK
• You can get still more information!
• 1:1000 1001:1700 2501:3000 3001:4000

4577:5062 6000:7019
• Send ACKs
• 1001 1701 1701 [2501-3000] 1701 [2501-4000]

1701 [4577-5062; 2501-4000] etc.
• Aimed at Long Fat Networks (LFNs;

pronounced “Elephants”). Standardized in
RFC2018 after years of debate.

• SACK isn’t perfect! If TCP window is very small,
not enough Rx to deal with it.

10

Other tricks in TCP
• Three way handshake: Establishes the sequence #

space with both sender and receiver
• Segment size: How big can the network support?

– Path MTU discovery
– Set IP “Don’t Fragment” bit.

• Routers with smaller MTU send back ICMP error message
containing their MTU

• Low-bandwidth links: TCP Header Compression.
– Most fields in TCP header stay the same. Can be compressed

on a link-by-link basis.
• 40 byte TCP+IP header in ~3-6 bytes.

ALF

• Example: Streaming video protocol
• Consider MPEG:

– Reference frames
– Difference frames (for simplicity, vs previous

frame)
• Problem: Propagation of errors

11

Video over TCP?

• Completely reliable delivery. Solves the
problem!

• But we talked about the problems with this
earlier.
– Common issue: Real-time or quasi-real-time

playback...
– Even in delayed playback, need larger buffers

A better way

• Some packets need to be more reliable (e.g.,
reference frames): Selective Recovery

• Eliminate delays: Out of order delivery
• Option 1: custom protocol over UDP.

• Painful!

• Option 2: Hack TCP to do out-of-order
– Hard! Remember byte-stream abstraction. No way

for TCP to communicate about what part of data it’s
providing

12

Ergo, ALF and ADUs

• Every application can define some kind of ADU
– Some are a bit awkward: telnet
– Better examples: Movie frames, JPEG 8x8 pixel

units, file blocks
• Make the protocol data unit the same

– TCP’s PDU is a byte. Not the same.
• ALF and ADUs are a very powerful way to think

about protocols that need out of order / selective
reliability

ALF in the real world

• Hard to do in-kernel while getting the
interface right. (Application naming, etc.,
all very tied together)

• In practice: A library
• Best example: RTP, the Real-time

Transport Protocol
– Used for audio, video, whiteboarding, etc.

• Modern example: DCCP
• (These are all post-ALF protocols)

13

Benefits of ALF

• Application defines namespace
• Can send and receive data in units

meaningful to the application
• But: Library provides things like

– Congestion control / flow control
– Reliability as needed
– Multiplexing/demultiplexing
– Path MTU discovery

Summary

• Internet architecture forces smart
endpoints.

• TCP is the grab bag: in-order, reliable,
duplex, byte-stream. Timer-driven and
data-driven retransmissions. Congestion
control.

• ALF is a principle for how you might
structure a transport protocol aimed at
non-bytestream applications.

