Placement of Function in a
Best Effort World

Course Logistics Update

» 45 total in class. Still off target.

* Prioritized waitlist now available. See me
after class.

Internet Architecture Redux

* The network is stateless (w.r.t. e2e
connection state), for survivability
* The network is unreliable

— No guarantees; 1%ish drop rate OK; may
burst to higher or have temp. outages

»End-hosts must do reliability/retransmission
« The network provides no QoS
»End-hosts must do congestion control

Things the Transport Faces

* Loss

— Congestion, corruption, routing probs, failures

» Congestion? Yup: Stat mux! Finite buffers for store-and-
forward. Bursts or excess traffic.

— Queue size is tricky: Too large == too much delay, too small
== bad statmux. More later

Variable delay
» Reordering (how can this happen?)
— Bugs, multipath
* Duplication
— Bugs, lower-layer spurious retransmissions

So: TCP?

+ Areliable, congestion-controlled, in-order
bytestream
— As mentioned last time: Not a perfect fit for
everybody. Drawbacks?
* Unreliable apps don’t need it

» May delay app processing, causing CPU/memory/disk to be
more bursty than necessary

— Known problem. Nice paper @ SIGCOMM 2006 on
DCCP, datagram congestion control: Unreliable,
congestion controlled datagrams

— Also mentioned ITP, image transport protocol:
reliable *out of order*

— Rel to end-to-end arguments?

Reliable Transfers

» Forward Error Correction: (redundancy in-band)
» Automatic Repeat reQuest (ARQ):
retransmissions. How does it know?
— Acknowledgements!
— In tcp: cumulative ACKs
* How do you detect a loss with ACKs?
— Timeout
— Or — (diagram) notice that you're getting dup ACKs

TCP Gets Older

* V1: “go-back-N" retransmissions based on
timeouts with a fixed-size sliding window

« V2: Congestion collapse!

— Van Jacobsen and Mike Karels congestion avoidance
(congestion control), better RTT estimators (why? To
set the timeout), and slow start. (Coming up later)

+ Karn & Partridge: Retransmission Ambiguity

— How do you tell if an ACK is for orig or Rx packet? If
you can't tell, your RTT estimator can break

— Next step: TCP timestamp options

TCP Variants

« TCP Tahoe: Fast retransmission + Jacobson/Karels
(slow start/cong avoid)
— First data-driven, not timeout-driven, Rxmit

+ TCP Reno: Fast recovery: The now-classic sawtooth

+ TCP NewReno: improves fast recovery to survive
multiple data losses in large windows

+ TCP SACK: Pretty close to the state of the art. Instead
of just ACKing last received seq, tell sender about other
recv’d packets too (easier to recover from weird loss
patterns)

* Most machines today are NewReno / SACK (Sally Floyd
2005 study)

TCP Principles

* Don'’t retransmit early; aoid spurious
retransmissions

— A response to congestion collapse. Part of cong.
collapse was Rx of packets that were queued, not
lost.

» Conserve packets

— Don’t blast network with extra traffic during
retransmissions.

— General technique: Count # dup acks to know how
many packets have left the network.

Timers

* How do you know when packets were
lost? If no other ACKs, must timeout.

« How long to wait? Well, depends on the
RTT.
— Easy to measure: segment -> ACK

— Problems: Variable delay, variable
processing times at receiver

— Solution: Averaging

EWMA

« Exponential Weighted Moving Averages
— A low-pass filter by another name
— Srtt = alpha * r + (1 — alpha)*srtt
* R is the current sample

« Srtt is the smoothed average
» TCP uses alpha = 1/8. Doesn’t matter too much.

— Great! We'’re done.
— Or not.

« EWMA is great to put in your toolbox

Variance

If we use srtt, then half of our transmissions are
spurious.

TCP early solution: Beta * srit (beta =~ 2)

— But what if the path has high variance?

Real solution:

— RTO = srtt + 4 * rttdev

— Rttdev = mean linear deviation (>= stddev)
+ =rttdev = gamma * dev + (1-gamma) * rttdev
* Dev = |r—srtt|. TCP uses gamma = "4

Final note: What to do on timeout?
— Exponential backoff (another good toolkit thing)

Using more information: Fast
Retransmission

» Data-driven retransmission

« What happens on loss? Duplicate ACKs

— Imagine you sent:

—1:1000, 1001:1700, 2501:3000, 3001:4000,
4001:4576

— And got ACKs 1001 1701 1701 1701 1701
— Clear that something’s going wrong!

Wither dup acks

« Why DUP acks?

— Window updates: TCP receivers have limited
space in socket buffer, so they can tell the
source to “shut up” (flow control)

— Segment loss
— Or ... segment re-ordering

» TCP says three dupacks == not re-ordered

» Works pretty well, but now forces network design
to abide by it because it works pretty well!
— Per-packet load balancing

Congestion Control

» Okay. Great. We know we had a loss
because of a timeout or dup ACKs. What
do we do?

—1: Retransmit

— 2: Adjust our congestion window
« TCP isn'’t just doing reliability...

The basics

« Slow start: Ramp up

« Congestion avoidance: Be conservative
when you’re near the limit

Fast Recovery

There’s still more information floating in the net.

If you did fast recovery, you got dup ACKs, and
will probably keep getting more.

Retransmit lost packet. Cut cong window in half.
Wait until half of the window has been ACKed,
and then send _new_ data.

Basic idea in TCP Reno.

TCP NewReno adds more tricks to deal with
multiple losses in a window, which Kills Reno.

SACK

You can get still more information!

1:1000 1001:1700 2501:3000 3001:4000
4577:5062 6000:7019

Send ACKs

1001 1701 1701 [2501-3000] 1701 [2501-4000]
1701 [4577-5062; 2501-4000] etc.

Aimed at Long Fat Networks (LFNs;

pronounced “Elephants”). Standardized in
RFC2018 after years of debate.

SACK isn't perfect! If TCP window is very small,
not enough Rx to deal with it.

Other tricks in TCP

+ Three way handshake: Establishes the sequence #
space with both sender and receiver

+ Segment size: How big can the network support?
— Path MTU discovery
— Set IP “Don’t Fragment” bit.

* Routers with smaller MTU send back ICMP error message
containing their MTU

* Low-bandwidth links: TCP Header Compression.

— Most fields in TCP header stay the same. Can be compressed
on a link-by-link basis.

* 40 byte TCP+IP header in ~3-6 bytes.

ALF

« Example: Streaming video protocol
e Consider MPEG:
— Reference frames

— Difference frames (for simplicity, vs previous
frame)

 Problem: Propagation of errors

10

Video over TCP?

« Completely reliable delivery. Solves the
problem!

« But we talked about the problems with this
earlier.

— Common issue: Real-time or quasi-real-time
playback...

— Even in delayed playback, need larger buffers

A better way

+ Some packets need to be more reliable (e.g.,
reference frames): Selective Recovery

« Eliminate delays: Out of order delivery

» Option 1: custom protocol over UDP.
+ Painful!

* Option 2: Hack TCP to do out-of-order

— Hard! Remember byte-stream abstraction. No way
for TCP to communicate about what part of data it’s
providing

11

Ergo, ALF and ADUs

Every application can define some kind of ADU

— Some are a bit awkward: telnet

— Better examples: Movie frames, JPEG 8x8 pixel
units, file blocks

Make the protocol data unit the same

— TCP’s PDU is a byte. Not the same.

ALF and ADUs are a very powerful way to think

about protocols that need out of order / selective
reliability

ALF in the real world

Hard to do in-kernel while getting the
interface right. (Application naming, etc.,
all very tied together)

In practice: A library

Best example: RTP, the Real-time
Transport Protocol

— Used for audio, video, whiteboarding, etc.
Modern example: DCCP
(These are all post-ALF protocols)

12

Benefits of ALF

 Application defines namespace

« Can send and receive data in units
meaningful to the application
« But: Library provides things like
— Congestion control / flow control
— Reliability as needed
— Multiplexing/demultiplexing
— Path MTU discovery

Summary

* Internet architecture forces smart
endpoints.

« TCP is the grab bag: in-order, reliable,
duplex, byte-stream. Timer-driven and
data-driven retransmissions. Congestion
control.

» ALF is a principle for how you might
structure a transport protocol aimed at
non-bytestream applications.

13

