
Modify A
Write

Client 1 Client 2Server

Open BGetattr

Commit

Modify B
Write

Commit

Open CGetattr

Modify A

Client 1 Client 2Server

Modify Bspeculate

Open CGetattr
Open B speculate

Open BGetattr
speculate

Write+Commit

(a) Unmodified NFS (b) Speculative NFS

Figure 1: Example of speculative execution for NFS

processes speculatively. Encouraged by these observations,
and by the many prior successful applications of speculation
in processor design, we have added support for speculative
execution, which we call Speculator, to the Linux kernel.

In our work, the distributed file system controls when
speculations start, succeed, and fail. Speculator provides a
mechanism for correct execution of speculative code. It does
not allow a process that is executing speculatively to exter-
nalize output, e.g., make network transmissions or display
output to the screen, until the speculations on which that
output depends prove to be correct. If a speculative process
tries to execute a potentially unrecoverable operation, e.g.,
it calls the reboot system call, it is blocked until its specu-
lations are resolved. Speculator tracks causal dependencies
between kernel objects in order to share speculative state
among multiple processes. For instance, if a speculative pro-
cess sends a signal to its non-speculative parent, Speculator
checkpoints the parent and marks it as speculative before it
delivers the signal. If a speculation on which the child de-
pends fails, both the child and parent are restored to their
checkpoints (since the parent might not receive the signal
on the correct execution path). Speculator tracks depen-
dencies passed through fork, exit, signals, pipes, fifos, Unix
sockets, and files in local and distributed file systems. All
other forms of IPC currently block the speculative process
until the speculations on which it depends are resolved.

Since speculation is implemented entirely in the operating
system, no application modification is required. Speculative
state is never externally visible. In other words, the seman-
tics of the speculative version of a file system are identical to
the semantics of the non-speculative version; however, the
performance of the speculative version is better.

Results from PostMark and Andrew-style benchmarks
show that Speculator improves the performance of NFS by
more than a factor of 2 over local-area networks; over net-
works with 30ms of round-trip latency, speculation makes
NFS more than 14 times faster. We have also created a
version of the Blue File System [24] that uses Speculator
to provide single-copy semantics, in which the file consis-
tency seen by two processes sharing a file and running on
two different file clients is identical to the consistency that
they would see if they were running on the same client. In

addition, our version of BlueFS provides synchronous I/O
in which all file modifications are safe on the server’s disk
before an operation is observed to complete. Despite pro-
viding these strong guarantees, BlueFS is 66% faster than
non-speculative NFS over a LAN and more than 11 times
faster with a 30ms delay.

2. MOTIVATION: SPECULATION IN NFS
Figure 1 illustrates how Speculator improves distributed

file system performance. Two NFS version 3 clients collab-
orate on a shared project that consists of three files: A, B,
and C. At the start of the scenario, each client has up-to-
date copies of all files cached. Client 1 modifies A and B;
client 2 then opens C and B. Client 2 should see the modi-
fied version of B since that file was closed by client 1 before
it was opened by client 2.

When an application closes a file, the Linux 2.4.21 NFSv3
client first sends asynchronous write remote procedure calls
(RPCs) to the server to write back any data for that file
that is dirty in its file cache—these RPCs are necessary to
provide close-to-open consistency. After receiving replies for
all write RPCs, the client sends a synchronous commit RPC
to the server. The server replies only after it has committed
all modifications for that file to disk. The NFS client returns
from the close system call after receiving the commit reply.
The commit RPC provides a safety guarantee, namely that
no file modifications will be lost due to a server crash after
the file has been closed. Thus, a Linux application that
modifies a file in NFS incurs a performance penalty on close
of at least two network round-trips and one synchronous disk
access. Some other operating systems have NFS clients that
do not wait for a commit reply before returning from close—
these clients sacrifice safety, but improve performance since
they block only until replies for all outstanding write RPCs
have been received.

When an NFS client opens a file that it has previously
cached, it issues a getattr RPC to the server. The file at-
tributes returned by the server indicate whether the file has
been modified since it was cached (in which case the cached
copy is discarded and a new copy is fetched). Since the NFS
server is a single point of synchronization, the getattr RPC


