
synchronous RPCs, it can increase the latency of individual
RPCs. Before a server can accept a file modification or grant
a client exclusive access to a file, it must first synchronously
revoke any callbacks or leases held by other clients. Po-
tentially, a well-connected client must wait on one or more
poorly-connected clients. Speculator would help hide the la-
tency of these expensive operations. Thus, we expect that
file systems that use leases or callbacks would see substan-
tial benefit from Speculator, even though the relative benefit
would be less than that seen by file systems that use polling.

Speculator also reduces the cost of providing safety guar-
antees. AFS, Coda (in its strongly-connected mode), and
NFS write file modifications synchronously to the server
on close. Directory caching in these file systems is write-
through. Speculator would substantially improve write per-
formance in these file systems by hiding the latency of these
synchronous operations. Since file modifications may not be
written back to the server until the file is closed, data can
be lost in the event of a system crash. Echo caches mod-
ifications for longer periods of time and writes back mod-
ifications asynchronously (unless a lease is revoked). This
improves performance by reducing the number of synchro-
nous RPCs but increases the size of the window during which
data can be lost due to system crashes.

To date, file system designers have had to choose whether
to provide strong consistency guarantees, strong safety guar-
antees, or good performance. Speculative execution changes
this equation by eliminating synchronous communication.
As our BlueFS results in the next section demonstrate: a
distributed file system using Speculator can provide the
safety of synchronous I/O, as well as single-copy semantics,
and still perform better than current file systems.

8. EVALUATION
Our evaluation answers two questions:
• How much does Speculator improve the performance

of an existing file system (NFS)?

• With Speculator, what is the performance impact of
providing single-copy file semantics and synchronous
I/O (in BlueFS)?

8.1 Methodology
We use two Dell Precision 370 desktops as the client and

file server. Each machine has a 3 GHz Pentium 4 processor,
2 GB DRAM, and a 160 GB disk. We run RedHat Enterprise
Linux release 3 with kernel version 2.4.21. To insert delays,
we route packets through a Dell Optiplex GX270 desktop
running the NISTnet [4] network emulator. All comput-
ers communicate via 100 Mb/s Ethernet switches—the mea-
sured ping time between client and server is 229 µs.

SpecNFS mounts with the -o tcp option to use TCP as
the transport protocol. For comparison, we run the non-
speculative version of NFS with both UDP and TCP. Al-
though results were roughly equivalent, we always report
the best of the two results for non-speculative NFS. While
BlueFS can cache data on local disk and portable storage,
it uses only the Linux file cache in these experiments—this
provides a fair comparison with NFS, which uses only the file
cache. The client /tmp directory is a RAMFS memory-only
file system for all tests.

We ran each experiment in two configurations: one with
no latency, and the other with 15 ms of latency added be-
tween client and server (for a 30 ms round-trip time). The

No delay

0

5

10

15

Ti
m

e 
(s

ec
on

ds
)

30ms delay

0

100

200

300

NFS
SpecNFS
BlueFS

This figure shows the time to run the PostMark benchmark.
Each value is the mean of 5 trials—the error bars are 90%
confidence intervals. Note that the scale of the y-axis differs
between the two graphs.

Figure 4: PostMark file system benchmark

former configuration represents the LAN environments in
which current distributed file systems perform relatively
well, and the latter configuration represents a wide-area link
over which current distributed file systems perform poorly.

8.2 PostMark
We first ran the PostMark benchmark, which was designed

to replicate the small-file workloads seen in electronic mail,
netnews, and web-based commerce [16]. We used PostMark
version 1.5, running in its default configuration that creates
500 files, performs 500 transactions consisting of file reads,
writes, creates, and deletes, and then removes all files.

The left graph in Figure 4 shows benchmark results with
no additional delay inserted between the file client and
server. The difference between the first two bars shows that
NFS is 2.5 times faster with speculation. This speedup is
a result of using speculative group commit and the abil-
ity to pipeline previously sequential file system operations.
Because PostMark is a single process that performs little
computation, this benchmark does not show the benefit of
propagating speculative state within the OS or the benefit
of overlapping communication and computation.

The right graph in Figure 4 shows results with a 30ms
delay. The adverse impact of latency on NFS is apparent
by the difference in scales between the two graphs: NFS
without speculation is 41 times slower with 30ms round-trip
time than in a LAN environment. In contrast, SpecNFS is
much less affected by network latency since it does not block
on most remote operations. Thus, it runs the PostMark
benchmark 24 times faster than NFS without speculation.

The benefits of speculative execution are even more ap-
parent for BlueFS. BlueFS runs the PostMark benchmark
53% faster than the non-speculative version of NFS with
no delay, and BlueFS is 49 times faster with a 30ms de-
lay. This performance improvement is realized even though
BlueFS provides single-copy file semantics and synchronous
I/O. Interestingly, BlueFS outperforms the speculative ver-
sion of NFS with a 30 ms delay. This is attributable to two


