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Guest Lecture for 15-440 

Disk Array Data Organizations 
and RAID 
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Plan for today 

  Why have multiple disks? 
  Storage capacity, performance capacity, reliability 

  Load distribution 
  problem and approaches 
  disk striping 

  Fault tolerance 
  replication 
  parity-based protection 

  “RAID” and the Disk Array Matrix 
  Rebuild 
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Why multi-disk systems? 

  A single storage device may not provide enough 
  storage capacity, performance capacity, reliability 

So, what is the simplest arrangement? 
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Just a bunch of disks (JBOD) 

  Yes, it’s a goofy name 
  industry really does sell “JBOD enclosures” 
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Disk Subsystem Load Balancing 

  I/O requests are almost never evenly distributed 
  Some data is requested more than other data 
  Depends on the apps, usage, time, …  
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Disk Subsystem Load Balancing 

  I/O requests are almost never evenly distributed 
  Some data is requested more than other data 
  Depends on the apps, usage, time, …  

  What is the right data-to-disk assignment policy? 
  Common approach: Fixed data placement 

  Your data is on disk X, period! 
  For good reasons too: you bought it or you’re paying more … 

  Fancy: Dynamic data placement 
  If some of your files are accessed a lot, the admin (or even 

system) may separate the “hot” files across multiple disks 
  In this scenario, entire files systems (or even files) are 

manually moved by the system admin to specific disks 
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Disk Subsystem Load Balancing 

  I/O requests are almost never evenly distributed 
  Some data is requested more than other data 
  Depends on the apps, usage, time, …  

  What is the right data-to-disk assignment policy? 
  Common approach: Fixed data placement 

  Your data is on disk X, period! 
  Fancy: Dynamic data placement 

  If some of your files are accessed a lot, we may separate the “hot” 
files across multiple disks 
  In this scenario, entire files systems (or even files) are 

manually moved by the system admin to specific disks 
  Alternative: Disk striping 

  Stripe all of the data across all of the disks 
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Disk Striping 

  Interleave data across multiple disks 
  Large file streaming can enjoy parallel transfers  
  High throughput requests can enjoy thorough load balancing 

  If blocks of hot files equally likely on all disks (really?) 

stripe unit  
or block 

Stripe"

File Foo: "
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Disk striping details 

  How disk striping works 
  Break up total space into fixed-size stripe units 
  Distribute the stripe units among disks in round-robin 
  Compute location of block #B as follows 

  disk# = B % N   (%=modulo, N = # of disks) 
  LBN# = B / N    (computes the LBN on given disk) 
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Now, What If A Disk Fails? 

  In a JBOD (independent disk) system 
  one or more file systems lost 

  In a striped system 
  a part of each file system lost 

  Backups can help, but 
  backing up takes time and effort (later in term) 
  backup doesn’t help recover data lost during that day 

  any data loss is a big deal to a bank or stock exchange 
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And they do fail 
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Example: 10 Devices measured over 1000 days 

Sidebar: Reliability metric 

  Mean Time Between Failures (MTBF) 
  Usually computed by dividing a length of time by the 

number of failures during that time (averaged over a large 
population of items) 

Day 0 Day 999 

MTBF 
          1000 Days     
  5 failures / 10 devices 2000 Days [per device] 

  Note: NOT a guaranteed lifetime for a particular item! 

Basically, we divide the time by 
the number of failures per 
device.  This gives us the 

average time per failure per 
device. 
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Sidebar: Availability metric 

  Fraction of time that server is able to handle requests 
  Computed from MTBF and MTTR (Mean Time To Repair) 

       MTBF   _ 
MTBF + MTTR 

Availability 

TBF1 TTR1 TBF2 TTR2 TBF3 TTR3 

Installed Fixed Fixed Fixed 

Available during these 3 
periods of time. 
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How often are failures? 

  MTBF (Mean Time Between Failures) 
  MTBFdisk ~ 1,200,00 hours (~136 years, <1% per year) 

  pretty darned good, if you believe the number 

  MTBFmutli-disk system = mean time to first disk failure 
  which is MTBFdisk / (number of disks) 
  For a striped array of 200 drives 

  MTBFarray = 136 years / 200 drives = 0.65 years 
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Tolerating and masking disk failures 

  If a disk fails, it’s data is gone 
  may be recoverable, but may not be 

  To keep operating in face of failure 
  must have some kind of data redundancy 

  Common forms of data redundancy 
  replication 
  erasure-correcting codes 
  error-correcting codes 
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  Two (or more) copies 
  mirroring, shadowing, duplexing, etc. 

  Write both, read either 
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Redundancy via replicas 
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Mirroring & Striping 

  Mirror to 2 virtual drives, where each virtual drive is 
really a set of striped drives 
  Provides reliability of mirroring 
  Provides striping for performance (with write update costs) 
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Implementing Disk Mirroring 

  Mirroring can be done in either software or hardware 
  Software solutions are available in most OS’s 

  Windows2000, Linux, Solaris 
  Hardware solutions 

  Could be done in Host Bus Adaptor(s) 
  Could be done in Disk Array Controller 



October 2010, Greg Ganger © 19 

  Single failure protecting codes 
  general single-error-correcting code is overkill 

  General code finds error and fixes it 
  disk failures are self-identifying (a.k.a. erasures) 

  Don’t have to find the error 
  fact: N-error-detecting code is also N-erasure-correcting 

  Error-detecting codes can’t find an error, just know its there 
  But if you independently know where error is, allows repair 

  Parity is single-disk-failure-correcting code 
  recall that parity is computed via XOR 
  it’s like the low bit of the sum 

Lower Cost Data Redundancy 
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  One extra disk 
  All writes update 

parity disk 
  potential 

bottleneck 
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Simplest approach: Parity Disk 
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Aside: What’s Parity? 

  Parity 
  count number of 1’s in a byte and store a parity bit with each 

byte of data 
  Solve equation XOR-sum( data bits, parity ) = 0 

  parity bit is computed as 
  If the number of 1’s is odd, store a 1 
  If the number of 1’s is even, store a 0 
  This is called even  parity (# of ones is even) 

  Example: 
0x54         == 0101  01002    (Three 1ʼs --> parity bit is set to “1”)"
Store 9 bits:   0101  0100  1 

  Enables: 
  Detection of single-bit errors (equation won’t work if one bit flipped) 
  Reconstruction of single-bit erasures (reverse equation for unknown) 
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Aside: What’s Parity (con’t) 
  Example 

0x54         == 0101  01002    (Three 1ʼs --> parity bit is set to “1”)"
Store 9 bits:   0101  0100  1 

  What if we want to update bit 3 from “1” to “0” 
  Could completely recompute the parity 
  0x54  0x44 

0x44         == 0100  01002    (Two 1ʼs --> parity bit is set to “0”)"
Store 9 bits:   0100  0100  0"

  Or, we could subtract out old data, then add in new data"
  How do we subtract out old data?"

–  oldData   XOR  oldParity"
–  1   XOR    1  == 0 " this is parity w/out dataBit3"

  How do we add in new data"
–  newData XOR newParity"
–  0    XOR    0 == 0 " " this is parity w/new dataBit3"

  Therefore, updating new data doesnʼt require one to re-read all of 
the data"
  Or, for each data bit that “toggles”, toggle the parity bit"
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Updating and using the parity 

D D D P 

Fault-Free Read 

D D D P 

Fault-Free Write 
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Degraded Write 
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The parity disk bottleneck 

  Reads go only to the data disks 
  But, hopefully load balanced across the disks 

  All writes go to the parity disk 
  And, worse, usually result in Read-Modify-Write sequence 
  So, parity disk can easily be a bottleneck 
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  Removes parity 
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Solution: Striping the Parity 
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RAID Taxonomy 

  Redundant Array of Inexpensive Independent Disks 
  Constructed by UC-Berkeley researchers in late 80s (Garth) 

  RAID 0 – Course-grained Striping with no redundancy 
  RAID 1 – Mirroring of independent disks 
  RAID 2 – Fine-grained data striping plus Hamming code disks 

  Uses Hamming codes to detect and correct multiple errors 
  Originally implemented when drives didn’t always detect errors 
  Not used in real systems 

  RAID 3 – Fine-grained data striping plus parity disk 
  RAID 4 – Course-grained data striping plus parity disk 
  RAID 5 – Course-grained data striping plus striped parity 
  RAID 6 – Course-grained data striping plus 2 striped codes 
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RAID 6 

  P+Q Redundancy 
  Protects against multiple failures using Reed-Solomon codes 
  Uses 2 “parity” disks 

  P is parity 
  Q is a second code 
  It’s two equations with two unknowns, just make “bigger bits” 

  Group bits into “nibbles” and add different co-efficients to each 
equation (two independent equations in two unknowns) 

  Similar to parity striping 
  De-clusters both sets of parity across all drives 
  For small writes, requires 6 I/Os 

  Read old data, old parity1, old parity2 
  Write new data, new parity1, new parity2 
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Disk array subsystems 

  Sets of disks managed by a central authority 
  e.g., file system (within OS) or disk array controller 

  Data distribution 
  squeezing maximum performance from the set of disks 
  several simultaneous considerations 

  intra-access parallelism: parallel transfer for large requests 
  inter-access parallelism: concurrent accesses for small requests 
  load balancing for heavy workloads 

  Redundancy scheme 
  achieving fault tolerance from the set of disks 
  several simultaneous considerations 

  space efficiency 
  number/type of faults tolerated 
  performance 
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Replication 

Parity Disk 

Striped Parity 

None 

Independent Fine Striping Course Striping 

JBOD 

Mirroring 
RAID1 

RAID0+1 

Gray90 

RAID0 

RAID3 RAID4 

RAID5 

The Disk Array Matrix 
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Back to Mean Time To Data Loss (MTTDL) 

  MTBF (Mean Time Between Failures) 
  MTBFdisk ~ 1,200,00 hours (~136 years) 

  pretty darned good, if you believe the number 

  MTBFmutli-disk system = mean time to first disk failure 
  which is MTBFdisk / (number of disks) 
  For a striped array of 200 drives 

  MTBFarray = 136 years / 200 drives = 0.65 years 
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Reliability without rebuild 

  200 data drives with MTBFdrive 
  MTTDLarray = MTBFdrive / 200 

  Add 200 drives and do mirroring 
  MTBFpair = (MTBFdrive / 2) + MTBFdrive = 1.5 * MTBFdrive 
  MTTDLarray = MTBFpair / 200 = MTBFdrive / 133 

  Add 50 drives, each with parity across 4 data disks 
  MTBFset = (MTBFdrive / 5) + (MTBFdrive / 4) = 0.45 * MTBFdrive  
  MTTDLarray = MTBFset / 50 = MTBFdrive / 111 
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Rebuild: restoring redundancy after failure 

  After a drive failure 
  data is still available for access 
  but, a second failure is BAD 

  So, should reconstruct the data onto a new drive 
  on-line spares are common features of high-end disk arrays 

  reduce time to start rebuild 
  must balance rebuild rate with foreground performance impact  

  a performance vs. reliability trade-offs 

  How data is reconstructed 
  Mirroring: just read good copy 
  Parity: read all remaining drives (including parity) and compute 
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Reliability consequences of adding rebuild 

  No data loss, if fast enough 
  That is, if first failure fixed before second one happens 

  New math is… 
  MTTDLarray = MTBFfirstdrive * (1 / prob of 2nd failure before repair) 
  … which is MTTRdrive / MTBFseconddrive 

  For mirroring 
  MTBFpair = (MTBFdrive / 2) * (MTBFdrive / MTTRdrive) 

  For 5-disk parity-protected arrays 
  MTBFset = (MTBFdrive / 5) * (MTBFdrive / 4 / MTTRdrive) 
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Three modes of operation 

  Normal mode 
  everything working; maximum efficiency 

  Degraded mode 
  some disk unavailable 
  must use degraded mode operations 
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Three modes of operation 

  Normal mode 
  everything working; maximum efficiency 

  Degraded mode 
  some disk unavailable 
  must use degraded mode operations 

  Rebuild mode 
  reconstructing lost disk’s contents onto spare 
  degraded mode operations plus competition with rebuild 
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Mechanics of rebuild 

  Background process 
  use degraded mode read to reconstruct data 
  then, write it to replacement disk 

  Implementation issues 
  Interference with foreground activity and controlling rate 

  rebuild is important for reliability 
  foreground activity is important for performance 

  Using the rebuilt disk 
  for rebuilt part, reads can use replacement disk 
  must balance performance benefit with rebuild interference 


