
October 2010, Greg Ganger © 1

Guest Lecture for 15-440

Disk Array Data Organizations
and RAID

October 2010, Greg Ganger © 2

Plan for today

  Why have multiple disks?
  Storage capacity, performance capacity, reliability

  Load distribution
  problem and approaches
  disk striping

  Fault tolerance
  replication
  parity-based protection

  “RAID” and the Disk Array Matrix
  Rebuild

October 2010, Greg Ganger © 3

Why multi-disk systems?

  A single storage device may not provide enough
  storage capacity, performance capacity, reliability

So, what is the simplest arrangement?

October 2010, Greg Ganger © 4

B0

B1

B2

B3

C0

C1

C2

C3

D0

D1

D2

D3

A0

A1

A2

A3

Just a bunch of disks (JBOD)

  Yes, it’s a goofy name
  industry really does sell “JBOD enclosures”

October 2010, Greg Ganger © 5

Disk Subsystem Load Balancing

  I/O requests are almost never evenly distributed
  Some data is requested more than other data
  Depends on the apps, usage, time, …

October 2010, Greg Ganger © 6

Disk Subsystem Load Balancing

  I/O requests are almost never evenly distributed
  Some data is requested more than other data
  Depends on the apps, usage, time, …

  What is the right data-to-disk assignment policy?
  Common approach: Fixed data placement

  Your data is on disk X, period!
  For good reasons too: you bought it or you’re paying more …

  Fancy: Dynamic data placement
  If some of your files are accessed a lot, the admin (or even

system) may separate the “hot” files across multiple disks
  In this scenario, entire files systems (or even files) are

manually moved by the system admin to specific disks

October 2010, Greg Ganger © 7

Disk Subsystem Load Balancing

  I/O requests are almost never evenly distributed
  Some data is requested more than other data
  Depends on the apps, usage, time, …

  What is the right data-to-disk assignment policy?
  Common approach: Fixed data placement

  Your data is on disk X, period!
  Fancy: Dynamic data placement

  If some of your files are accessed a lot, we may separate the “hot”
files across multiple disks
  In this scenario, entire files systems (or even files) are

manually moved by the system admin to specific disks
  Alternative: Disk striping

  Stripe all of the data across all of the disks

October 2010, Greg Ganger © 8

Disk Striping

  Interleave data across multiple disks
  Large file streaming can enjoy parallel transfers
  High throughput requests can enjoy thorough load balancing

  If blocks of hot files equally likely on all disks (really?)

stripe unit
or block

Stripe"

File Foo: "

October 2010, Greg Ganger © 9

Disk striping details

  How disk striping works
  Break up total space into fixed-size stripe units
  Distribute the stripe units among disks in round-robin
  Compute location of block #B as follows

  disk# = B % N (%=modulo, N = # of disks)
  LBN# = B / N (computes the LBN on given disk)

October 2010, Greg Ganger © 10

Now, What If A Disk Fails?

  In a JBOD (independent disk) system
  one or more file systems lost

  In a striped system
  a part of each file system lost

  Backups can help, but
  backing up takes time and effort (later in term)
  backup doesn’t help recover data lost during that day

  any data loss is a big deal to a bank or stock exchange

October 2010, Greg Ganger © 11

And they do fail

October 2010, Greg Ganger © 12

Example: 10 Devices measured over 1000 days

Sidebar: Reliability metric

  Mean Time Between Failures (MTBF)
  Usually computed by dividing a length of time by the

number of failures during that time (averaged over a large
population of items)

Day 0 Day 999

MTBF
 1000 Days
 5 failures / 10 devices 2000 Days [per device]

  Note: NOT a guaranteed lifetime for a particular item!

Basically, we divide the time by
the number of failures per
device. This gives us the

average time per failure per
device.

October 2010, Greg Ganger © 13

Sidebar: Availability metric

  Fraction of time that server is able to handle requests
  Computed from MTBF and MTTR (Mean Time To Repair)

 MTBF _
MTBF + MTTR

Availability

TBF1 TTR1 TBF2 TTR2 TBF3 TTR3

Installed Fixed Fixed Fixed

Available during these 3
periods of time.

October 2010, Greg Ganger © 14

How often are failures?

  MTBF (Mean Time Between Failures)
  MTBFdisk ~ 1,200,00 hours (~136 years, <1% per year)

  pretty darned good, if you believe the number

  MTBFmutli-disk system = mean time to first disk failure
  which is MTBFdisk / (number of disks)
  For a striped array of 200 drives

  MTBFarray = 136 years / 200 drives = 0.65 years

October 2010, Greg Ganger © 15

Tolerating and masking disk failures

  If a disk fails, it’s data is gone
  may be recoverable, but may not be

  To keep operating in face of failure
  must have some kind of data redundancy

  Common forms of data redundancy
  replication
  erasure-correcting codes
  error-correcting codes

October 2010, Greg Ganger © 16

  Two (or more) copies
  mirroring, shadowing, duplexing, etc.

  Write both, read either

0

1

2

3

0

1

2

3

Redundancy via replicas

October 2010, Greg Ganger © 17

Mirroring & Striping

  Mirror to 2 virtual drives, where each virtual drive is
really a set of striped drives
  Provides reliability of mirroring
  Provides striping for performance (with write update costs)

October 2010, Greg Ganger © 18

Implementing Disk Mirroring

  Mirroring can be done in either software or hardware
  Software solutions are available in most OS’s

  Windows2000, Linux, Solaris
  Hardware solutions

  Could be done in Host Bus Adaptor(s)
  Could be done in Disk Array Controller

October 2010, Greg Ganger © 19

  Single failure protecting codes
  general single-error-correcting code is overkill

  General code finds error and fixes it
  disk failures are self-identifying (a.k.a. erasures)

  Don’t have to find the error
  fact: N-error-detecting code is also N-erasure-correcting

  Error-detecting codes can’t find an error, just know its there
  But if you independently know where error is, allows repair

  Parity is single-disk-failure-correcting code
  recall that parity is computed via XOR
  it’s like the low bit of the sum

Lower Cost Data Redundancy

October 2010, Greg Ganger © 20

  One extra disk
  All writes update

parity disk
  potential

bottleneck

Ap

Bp

Cp

Dp

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

Simplest approach: Parity Disk

October 2010, Greg Ganger © 21

Aside: What’s Parity?

  Parity
  count number of 1’s in a byte and store a parity bit with each

byte of data
  Solve equation XOR-sum(data bits, parity) = 0

  parity bit is computed as
  If the number of 1’s is odd, store a 1
  If the number of 1’s is even, store a 0
  This is called even parity (# of ones is even)

  Example:
0x54 == 0101 01002 (Three 1ʼs --> parity bit is set to “1”)"
Store 9 bits: 0101 0100 1 

  Enables:
  Detection of single-bit errors (equation won’t work if one bit flipped)
  Reconstruction of single-bit erasures (reverse equation for unknown)

October 2010, Greg Ganger © 22

Aside: What’s Parity (con’t)
  Example

0x54 == 0101 01002 (Three 1ʼs --> parity bit is set to “1”)"
Store 9 bits: 0101 0100 1 

  What if we want to update bit 3 from “1” to “0”
  Could completely recompute the parity
  0x54 0x44

0x44 == 0100 01002 (Two 1ʼs --> parity bit is set to “0”)"
Store 9 bits: 0100 0100 0"

  Or, we could subtract out old data, then add in new data"
  How do we subtract out old data?"

–  oldData XOR oldParity"
–  1 XOR 1 == 0 " this is parity w/out dataBit3"

  How do we add in new data"
–  newData XOR newParity"
–  0 XOR 0 == 0 " " this is parity w/new dataBit3"

  Therefore, updating new data doesnʼt require one to re-read all of
the data"
  Or, for each data bit that “toggles”, toggle the parity bit"

October 2010, Greg Ganger © 23

Updating and using the parity

D D D P

Fault-Free Read

D D D P

Fault-Free Write

4
3 2 1

D D D P

Degraded Read

D D D P

Degraded Write

October 2010, Greg Ganger © 24

The parity disk bottleneck

  Reads go only to the data disks
  But, hopefully load balanced across the disks

  All writes go to the parity disk
  And, worse, usually result in Read-Modify-Write sequence
  So, parity disk can easily be a bottleneck

October 2010, Greg Ganger © 25

  Removes parity
disk bottleneck A

B

C

D

A

B

C

Dp

A

B

D

Cp

A

D

C

Bp

D

B

C

Ap

Solution: Striping the Parity

October 2010, Greg Ganger © 26

RAID Taxonomy

  Redundant Array of Inexpensive Independent Disks
  Constructed by UC-Berkeley researchers in late 80s (Garth)

  RAID 0 – Course-grained Striping with no redundancy
  RAID 1 – Mirroring of independent disks
  RAID 2 – Fine-grained data striping plus Hamming code disks

  Uses Hamming codes to detect and correct multiple errors
  Originally implemented when drives didn’t always detect errors
  Not used in real systems

  RAID 3 – Fine-grained data striping plus parity disk
  RAID 4 – Course-grained data striping plus parity disk
  RAID 5 – Course-grained data striping plus striped parity
  RAID 6 – Course-grained data striping plus 2 striped codes

October 2010, Greg Ganger © 27

RAID 6

  P+Q Redundancy
  Protects against multiple failures using Reed-Solomon codes
  Uses 2 “parity” disks

  P is parity
  Q is a second code
  It’s two equations with two unknowns, just make “bigger bits”

  Group bits into “nibbles” and add different co-efficients to each
equation (two independent equations in two unknowns)

  Similar to parity striping
  De-clusters both sets of parity across all drives
  For small writes, requires 6 I/Os

  Read old data, old parity1, old parity2
  Write new data, new parity1, new parity2

October 2010, Greg Ganger © 28

Disk array subsystems

  Sets of disks managed by a central authority
  e.g., file system (within OS) or disk array controller

  Data distribution
  squeezing maximum performance from the set of disks
  several simultaneous considerations

  intra-access parallelism: parallel transfer for large requests
  inter-access parallelism: concurrent accesses for small requests
  load balancing for heavy workloads

  Redundancy scheme
  achieving fault tolerance from the set of disks
  several simultaneous considerations

  space efficiency
  number/type of faults tolerated
  performance

October 2010, Greg Ganger © 29

Replication

Parity Disk

Striped Parity

None

Independent Fine Striping Course Striping

JBOD

Mirroring
RAID1

RAID0+1

Gray90

RAID0

RAID3 RAID4

RAID5

The Disk Array Matrix

October 2010, Greg Ganger © 30

Back to Mean Time To Data Loss (MTTDL)

  MTBF (Mean Time Between Failures)
  MTBFdisk ~ 1,200,00 hours (~136 years)

  pretty darned good, if you believe the number

  MTBFmutli-disk system = mean time to first disk failure
  which is MTBFdisk / (number of disks)
  For a striped array of 200 drives

  MTBFarray = 136 years / 200 drives = 0.65 years

October 2010, Greg Ganger © 31

Reliability without rebuild

  200 data drives with MTBFdrive
  MTTDLarray = MTBFdrive / 200

  Add 200 drives and do mirroring
  MTBFpair = (MTBFdrive / 2) + MTBFdrive = 1.5 * MTBFdrive
  MTTDLarray = MTBFpair / 200 = MTBFdrive / 133

  Add 50 drives, each with parity across 4 data disks
  MTBFset = (MTBFdrive / 5) + (MTBFdrive / 4) = 0.45 * MTBFdrive
  MTTDLarray = MTBFset / 50 = MTBFdrive / 111

October 2010, Greg Ganger © 32

Rebuild: restoring redundancy after failure

  After a drive failure
  data is still available for access
  but, a second failure is BAD

  So, should reconstruct the data onto a new drive
  on-line spares are common features of high-end disk arrays

  reduce time to start rebuild
  must balance rebuild rate with foreground performance impact

  a performance vs. reliability trade-offs

  How data is reconstructed
  Mirroring: just read good copy
  Parity: read all remaining drives (including parity) and compute

October 2010, Greg Ganger © 33

Reliability consequences of adding rebuild

  No data loss, if fast enough
  That is, if first failure fixed before second one happens

  New math is…
  MTTDLarray = MTBFfirstdrive * (1 / prob of 2nd failure before repair)
  … which is MTTRdrive / MTBFseconddrive

  For mirroring
  MTBFpair = (MTBFdrive / 2) * (MTBFdrive / MTTRdrive)

  For 5-disk parity-protected arrays
  MTBFset = (MTBFdrive / 5) * (MTBFdrive / 4 / MTTRdrive)

October 2010, Greg Ganger © 34

Three modes of operation

  Normal mode
  everything working; maximum efficiency

  Degraded mode
  some disk unavailable
  must use degraded mode operations

October 2010, Greg Ganger © 35

Three modes of operation

  Normal mode
  everything working; maximum efficiency

  Degraded mode
  some disk unavailable
  must use degraded mode operations

  Rebuild mode
  reconstructing lost disk’s contents onto spare
  degraded mode operations plus competition with rebuild

October 2010, Greg Ganger © 36

Mechanics of rebuild

  Background process
  use degraded mode read to reconstruct data
  then, write it to replacement disk

  Implementation issues
  Interference with foreground activity and controlling rate

  rebuild is important for reliability
  foreground activity is important for performance

  Using the rebuilt disk
  for rebuilt part, reads can use replacement disk
  must balance performance benefit with rebuild interference

