Coral: a suite of visualizations for comparing clusterings
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Clustering has become a standard analysis for many

types of biological data: interaction networks, gene

expression, metagenomic abundance, genomic

seqguences. However, it iIs possible to obtain a

large number of contradictory clusterings of the same

data by:

- using different clustering algorithms [1-5]

- tuning algorithm parameters

- exploring optimal and near-optimal solutions
[6, 7]

- clustering time-varying data

Visual comparison

Visualization mantra: overview, zoom and filter,
details on demand. Users can move from comparing
all pairs of clusterings to examining individual item co-
clustering patterns.

Coordinated displays: selecting an item in one view
selects the corresponding items in other views.
Dataset statistics: gain a quick overview of the data
by looking at a collection of bar charts for the number
of modules, average module size, the number of data
items covered by a clustering, or the percentage of
elements in the overlapping modules.
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Global similarity: explore clustering similarity using
the ladder widget. White and pale blue cells
represents pairs of disagreeing clusterings while bright
blue cells highlight similarity.

Module comparison: narrow down the exploration to
two clusterings and compare their modules. Users can
filter the modules by Jaccard similarity and sort the
table based on the size of the modules or their
intersections and set differences.

Parallel partitions plot: track individual items and
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multiple clusterings at a
high levels. The bands of
the plot are reordered to

match the ordering of EEEEE————
columns in the co-cluster matrix and to minimize the

number of crossings.

Iltem pairs: a table visually encodes in which
clusterings the two data items have been placed in a
module together. Users can sort the columns to group
pair with similar co-cluster patterns or search for
patterns using the filter box.
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Co-cluster matrix: records which items were placed
In the same module in a given clustering K. Matrix
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Download at: www.cbcb.umd.edu/kingsford-group/coral

elements are defined as:
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0 wv; and v; are in different modules in K

1 wv; and v; are in the same module in K.

We search for dense areas in the matrix using a
dynamic programming approach. We call such
dense areas cores (highlighted in green). If the
original data was a network, we show the core’s
cohesion — a measure of separation of a core from
the rest of the network (

)
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Example: A. thaliana PPl network

We applied 9 different clustering algorithms to a recent
A. thaliana protein-protein interaction network [7].
Modules of size < 6 and with partition density < 0 were
removed from the clusterings (as described in [7]).

Most cells in the ladder widget (left) are pale blue or
white indicating that clusterings mostly disagreed.

The jaccard similarity for the MCL [4] and link clustering
[3] pair can be explained via the module-to-module table:
both clusterings identified a large module of 288 proteins
and had exact matches among several smaller modules.

65.25% of all items in the co-cluster matrix have the
value of 1, and only 6.34% of the matrix’ cells have the
value of 5 or greater. | 'y
The DP identified 249 cores,
most of them with a low
cohesion, i.e. proteins in the L
cores shared many edges W|th/
proteins outside of the core
(see left column, bottom).
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Setting the link clustering [3] as a
base reveals that link clustering
recovered only a fraction of
modules found by other algorithms,
but did include the largest module.
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