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Abstract Datasets for training object recognition systems
are steadily increasing in size. This paper investigates the
question of whether existing detectors will continue to
improve as data grows, or saturate in performance due to lim-
ited model complexity and the Bayes risk associated with the
feature spaces in which they operate. We focus on the popu-
lar paradigm of discriminatively trained templates defined on
oriented gradient features. We investigate the performance of
mixtures of templates as the number of mixture components
and the amount of training data grows. Surprisingly, even
with proper treatment of regularization and “outliers”, the
performance of classic mixture models appears to saturate
quickly (~10 templates and ~100 positive training exam-
ples per template). This is not a limitation of the feature
space as compositional mixtures that share template para-
meters via parts and that can synthesize new templates not
encountered during training yield significantly better perfor-
mance. Based on our analysis, we conjecture that the greatest
gains in detection performance will continue to derive from
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improved representations and learning algorithms that can
make efficient use of large datasets.
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1 Introduction

Much of the impressive progress in object detection is built
on the methodologies of statistical machine learning, which
make use of large training datasets to tune model parame-
ters. Consider the benchmark results of the well-known PAS-
CAL VOC object challenge (Fig. 1). There is a clear trend
of increased benchmark performance over the years as new
methods have been developed. However, this improvement is
also correlated with increasing amounts of training data. One
might be tempted to simply view this trend as a another case
of the so-called “effectiveness of big-data”, which posits that
even very complex problems in artificial intelligence may
be solved by simple statistical models trained on massive
datasets (Halevy et al. 2009). This leads us to consider a basic
question about the field: will continually increasing amounts
of training data be sufficient to drive continued progress in
object recognition absent the development of more complex
object detection models?

To tackle this question, we collected a massive training set
that is an order of magnitude larger than existing collections
such as PASCAL (Everingham et al. 2010). We follow the
dominant paradigm of scanning-window templates trained
with linear SVMs on HOG features (Dalal and Triggs 2005;
Felzenszwalb et al. 2010; Bourdev and Malik 2009; Mal-
isiewicz et al. 2011), and evaluate detection performance as
a function of the amount of training data and the model com-
plexity.

@ Springer



Int J Comput Vis

0.

2006 2007 2008 2009 2010 2011
Year

Avg. num. of training samples per class

Fig. 1 The bestreported performance on PASCAL VOC challenge has
shown marked increases since 2006 (fop). This could be due to various
factors: the dataset itself has evolved over time, the best-performing
methods differ across years, etc. In the bottom-row, we plot a particular
factor—training data size—which appears to correlate well with per-
formance. This begs the question: has the increase been largely driven
from the availability of larger training sets?
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Fig. 2 We plot idealized curves of performance versus training dataset
size and model complexity. The effect of additional training examples
is diminished as the training dataset grows (left), while we expect per-
formance to grow with model complexity up to a point, after which an
overly-flexible model overfits the training dataset (right). Both these
notions can be made precise with learning theory bounds, see e.g.
(McAllester 1999)

1.1 Challenges

We found there is a surprising amount of subtlety in scaling
up training data sets in current systems. For a fixed model,
one would expect performance to generally increase with the
amount of data and eventually saturate (Fig. 2). Empirically,
we often saw the bizarre result that off-the-shelf implemen-
tations show decreased performance with additional data!
One would also expect that to take advantage of additional
training data, it is necessary to grow the model complexity,
in this case by adding mixture components to capture dif-
ferent object sub-categories and viewpoints. However, even
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with non-parametric models that grow with the amount of
training data, we quickly encountered diminishing returns in
performance with only modest amounts of training data.

We show that the apparent performance ceiling is not
a consequence of HOG+linear classifiers. We provide an
analysis of the popular deformable part model (DPM), show-
ing that it can be viewed as an efficient way to implicitly
encode and score an exponentially-large set of rigid mixture
components with shared parameters. With the appropriate
sharing, DPMs produce substantial performance gains over
standard non-parametric mixture models. However, DPMs
have fixed complexity and still saturate in performance with
current amounts of training data, even when scaled to mix-
tures of DPMs. This difficulty is further exacerbated by the
computational demands of non-parametric mixture models,
which can be impractical for many applications.

1.2 Proposed Solutions

In this paper, we offer explanations and solutions for many
of these difficulties. First, we found it crucial to set model
regularization as a function of training dataset using cross-
validation, a standard technique which is often overlooked
in current object detection systems. Second, existing strate-
gies for discovering sub-category structure, such as cluster-
ing aspect ratios (Felzenszwalb et al. 2010), appearance fea-
tures (Divvala et al. 2012), and keypoint labels (Bourdev and
Malik 2009) may not suffice. We found this was related to
the inability of classifiers to deal with “polluted” data when
mixture labels were improperly assigned. Increasing model
complexity is thus only useful when mixture components
capture the “right” sub-category structure.

To efficiently take advantage of additional training data,
we introduce a non-parametric extension of a DPM which we
call an exemplar deformable part model (EDPM). Notably,
EDPMs increase the expressive power of DPMs with only a
negligible increase in computation, making them practically
useful. We provide evidence that suggests that compositional
representations of mixture templates provide an effective way
to help target the “long-tail” of object appearances by sharing
local part appearance parameters across templates.

Extrapolating beyond our experiments, we see the strik-
ing difference between classic mixture models and the non-
parametric compositional model (both mixtures of linear
classifiers operating on the same feature space) as evidence
that the greatest gains in the near future will not be had with
simple models+bigger data, but rather through improved
representations and learning algorithms.

We introduce our large-scale dataset in Sect. 2, describe
our non-parametric mixture models in Sect. 3, present exten-
sive experimental results in Sect. 4, and conclude with a dis-
cussion in Sect. 5 including related work.
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2 Big Detection Datasets

Throughout the paper we carry out experiments using two
datasets. We vary the number of positive training examples,
but in all cases keep the number of negative training images
fixed. We found that performance was relatively static with
respect to the amount of negative training data, once a suffi-
ciently large negative training set was used.

2.1 PASCAL

Our first dataset is a newly collected data set that we refer
to as PASCAL-10X and describe in detail in the follow-
ing section.! This dataset covers the 11 PASCAL categories
(see Fig. 1) and includes approximately 10 times as many
training examples per category as the standard training data
provided by the PASCAL detection challenge, allowing us
to explore the potential gains of larger numbers of posi-
tive training instances. We evaluate detection accuracy on
the 11 PASCAL categories from the PASCAL 2010 train-
val dataset (because test annotations are not public), which
contains 10,000+ images.

2.2 Faces

In addition to examining performance on PASCAL object
categories, we also trained models for face detection. We
found faces to contain more structured appearance variation,
which often allowed for more easily interpretable diagnostic
experiments. Face models are trained using the CMU Mul-
tiPIE dataset (Gross et al. 2010), a well-known benchmark
dataset of faces spanning multiple viewpoints, illumination
conditions, and expressions. We use up to 900 faces across 13
view points. Each viewpoint was spaced 15° apart spanning
180°. 300 of the faces are frontal, while the remaining 600 are
evenly distributed among the remaining viewpoints. For neg-
atives, we use 1218 images from the INRIAPerson database
(Dalal and Triggs 2005). Detection accuracy of face models
are evaluated on the annotated face in-the-wild (AFW) (Zhu
and Ramanan 2012), which contains images from real-world
environments and tend to have cluttered backgrounds with
large variations in both face viewpoint and appearance.

2.3 Collecting PASCAL-10X

In this section, we describe our procedure for building a large,
annotated dataset that is as similar as possible to the PASCAL
2010 for object detection. We collected images from Flickr
and annotations from Amazon Mechanical Turk (MTurk),
resulting in the data set summarized in Table. 1. We built

I The dataset can be downloaded from http:/vision.ics.uci.edu/
datasets/.

Table 1 PASCAL 2010 trainval and our data set for select categories

Category PASCAL 2010 Our data set

Images Objects Images Objects
Bicycle 471 614 5027 7401
Bus 353 498 3405 4919
Cat 1005 1132 12,204 13,998
Cow 248 464 3194 6909
Dining table 415 468 3905 5651
Horse 425 621 4086 6488
Motorbike 453 611 5674 8666
Sheep 290 701 2351 6018
Sofa 406 451 4018 5569
Train 453 524 6403 7648
TV monitor 490 683 5053 7808
Totals 4609 6167 50,772 81,075

Our data set is an order of magnitude larger

training sets for 11 of the PASCAL VOC categories that
are an order of magnitude larger than the VOC 2010 stan-
dard trainval set. We selected these classes as they contain
the smallest amount of training examples, and so are most
likely to improve from additional training data. We took care
to ensure high-quality bounding box annotations and high-
similarity to the PASCAL 2010 dataset. To our knowledge,
this is the largest publicly available positive training set for
these PASCAL categories.

2.3.1 Collection

We downloaded over one hundred thousand large images
from Flickr to build our dataset. We took care to directly
mimic the collection procedure used by the PASCAL orga-
nizers. We begin with a set of keywords (provided by the
organizers) associated with each object class. For each class,
we picked a random keyword, chose a random date since
Flickr’s launch, selected a random page on the results, and
finally took a random image from that page. We repeat this
procedure until we had downloaded an order of magnitude
larger number of images for each class.

2.3.2 Filtering

The downloaded images from Flickr did not necessarily con-
tain objects for the category that we were targeting. We cre-
ated MTurk tasks that asked workers to classify the down-
loaded images on whether they contained the category of
interest. Our user interface in Fig. 3 gave workers instructions
on how to handle special cases and this resulted in accept-
able annotation quality without finding agreement between
workers.
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Fig. 3 Our MTurk user

N . When to mark yes: When to mark no:
interfaces for image
ClaSSIﬁ?aUOH and ObJCCt « ifthe image contains at least one horse. « if all the horses are toys or photoshopped.
annotation. We Prov1ded « ifthe horses are clearly visible through glass. « ifthe image is about horses but does not contain
detailed instructions to workers, BT elOrSes e amiror ahorse.
resul:ntlg m acclc?tptable « ifthe horses are in poor lighting, but still visible. * if every horseis very tiny.
annotation quatity  ifthe image has a picture of horses as long as they are ¢ ifthe image is taken inside a horse.
realistic. « ifthe image is poor quality or has bad motion
blur.

* ifthe image is a collage or multiple images.
* ifyou don't know what the image contains.

The images are below (they may take a second to load):

3825502 m 41K

aner | ar RN

©Yes, there is at least one horse.

© No, there are no horses.

* Draw a box around each individual horse in thisimage.
¢ Ifthere are more than 5 horses , then label the 5 largest.
¢ You must read the instructions and examples as we hand review all work.

- Image does not contain horses .

| Start Over | Your work will directly impact active research. | Submit HIT » |
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2.3.3 Annotation

After filtering the images, we created MTurk tasks instruct-
ing workers to draw bounding boxes around a specific class.
Workers were only asked to annotate up to five objects per
image using our interface as in Fig.3, although many workers
gave us more boxes. On average, our system received anno-
tations at 3 images per second, allowing us to build bounding
boxes for 10,000 images in under an hour. As not every object
is labeled, our data set cannot be used to perform detection
benchmarking (it is not possible to distinguish false-positives
from true-negatives). We experimented with additional val-
idation steps, but found they were not necessary to obtain
high-quality annotations.

2.4 Data Quality

To verify the quality of our annotations, we performed an in-
depth diagnostic analysis of a particular category (horses).
Overall, our analysis suggests that our collection and anno-
tation pipeline produces high-quality training data that is sim-
ilar to PASCAL.

2.4.1 Attribute Distribution

We first compared various distributions of attributes of
bounding boxes from PASCAL-10X to those from both PAS-
CAL 2010 and 2007 trainval. Attribute annotations were pro-
vided by manual labeling. Our findings are summarized in
Table. 2. Interestingly, horses collected in 2010 and 2007 vary
significantly, while 2010 and PASCAL-10X match fairly
well. Our images were on average twice the resolution as

Table 2 Frequencies of attributes (percent) across images in our 10x
horse data set compared to the PASCAL 2010 train-val data set

Attributes Us PASCAL

2010 2007
Truncated 30.8 31.5 15.8
Occluded 5.9 8.6 7.1
Jumping 4.0 4.3 15.8
Standing 69.9 68.8 54.6
Trotting 23.5 249 26.6
Sitting 2.0 1.4 0.7
Other 0.0 0.5 0
Person Top 24.8 29.1 57.5
Person Besides 8.8 10.0 8.6
No Person 66.0 59.8 33.8

Bolded entries highlight significant differences relative to our collected
data. Our dataset has similar attribute distribution to the PASCAL 2010,
but differs significantly from 2007, which has many more sporting
events

those in PASCAL so we scaled our images down to construct
our final dataset.

2.4.2 User Assessment

We also gauged the quality of our bounding boxes com-
pared to PASCAL with a user study. We flashed a pair of
horse bounding boxes, one from PASCAL-10X and one from
PASCAL 2010, on a screen and instructed a subject to label
which appeared to be better example. Our subject preferred
the PASCAL 2010 data set 49 % of the time and our data set
51 % of the time. Since chance is 50-50 % and our subject
operated close to chance, this further suggests PASCAL-10X
matched well with PASCAL. Qualitatively, the biggest differ-
ence observed between the two datasets was that PASCAL-
10X bounding boxes tend to be somewhat “looser” than the
(hand curated) PASCAL 2010 data.

2.4.3 Redundant Annotations

We tested the use of multiple annotations for removing poorly
labeled positive examples. All horse images were labeled
twice, and only those bounding boxes that agreed across the
two annotation sessions were kept for training. We found that
training on these cross-verified annotations did not signifi-
cantly affect the performance of the learned detector.

3 Mixture Models

To take full advantage of additional training data, it is vital
to grow model complexity. We accomplish this by adding
a mixture component to capture additional “sub-category”
structure. In this section, we describe various approaches for
learning and representing mixture models. Our basic building
block will be a mixture of linear classifiers, or templates.
Formally speaking, we compute the detection score of an
image window [ as:

S(1) = max [wm o) +bm], )

where m is a discrete mixture variable, @ (1) is a HOG image
descriptor (Dalal and Triggs 2005), w,, is a linearly-scored
template, and b,, is an (optional) bias parameter that acts as
a prior that favors particular templates over others.

3.1 Independent Mixtures

In this section, we describe approaches for learning mixture
models by clustering positive examples from our training set.
We train independent linear classifiers (wy,, b,,) using posi-
tive examples from each cluster. One difficulty in evaluating
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mixture models is that fluctuations in the (non-convex) clus-
tering results may mask variations in performance we wish
to measure. We took care to devise a procedure for varying
K (the number of clusters) and N (the amount of training
data) in such a manner that would reduce stochastic effects
of random sampling.

3.1.1 Unsupervised Clustering:

For our unsupervised baseline, we cluster the positive train-
ing images of each category into 16 clusters using hierar-
chical k-means, recursively splitting each cluster into k = 2
subclusters. For example, given a fixed training set, we would
like the cluster partitions for K = 8 to respect the cluster par-
tition of K = 4. To capture both appearance and shape when
clustering, we warp an instance to a canonical aspect ratio,
compute its HOG descriptor (reduce the dimensionality with
PCA for computational efficiency), and append the aspect
ratio to the resulting feature vector.

Input: {N,}; {S©}
QOutput: {C,(,i)}
1¢) =850, ¢’ =9
2 forn =1:end do
3 forr =1: N, do

Vi,Vn > 1
// For each N,

(j(z)
4 l ”’(ljl) ; // Pick a cluster randomly
21651
5 c® <:C’<f_)1; // sample zth cluster
without replacement
6 end
7 end

Algorithm 1: Partitioned sampling of the clusters.
N,, is the number of samples to return for set n with
No = Npaxi Nuo > Npy1. @ is the i cluster from
the lowest level of the hierarchy (e.g., with K = 16
clusters) computed on the full dataset Nyqy. Steps 4-5
randomly samples N,, training samples from {Cli'_)l} to
construct K sub-sampled clusters {C,(,i)}, each of which
contain a subset of the training data while keeping the
same distribution of the data over clusters.

3.1.2 Partitioned Sampling

Given a fixed training set of N, positive images, we would
like to construct a smaller sampled subset, say of N = %
images, whose cluster partitions respect those in the full
dataset. This is similar in spirit to stratified sampling and
attempts to reduce variance in our performance estimates
due to “binning artifacts” of inconsistent cluster partitions
across re-samplings of the data.

@ Springer

To do this, we first hierarchically-partition the full set of
Nmax images by recursively applying k-means. We then sub-
sample the images in the leaf nodes of the hierarchy in order to
generate a smaller hierarchically partitioned dataset by using
the same hierarchical tree defined over the original leaf clus-
ters. This sub-sampling procedure can be applied repeatedly
to produce training datasets with fewer and fewer examples
that still respects the original data distribution and clustering.

The sampling algorithm, shown in Algorithm 1, yields
a set of partitioned training sets, indexed by (K, N) with
two properties: (1) for a fixed number of clusters K, each
smaller training set is a subset of the larger ones, and (2)
given a fixed training set size N, small clusters are strict
refinements of larger clusters. We compute confidence inter-
vals in our experiments by repeating this procedure multiple
times to resample the dataset and produce multiple sets of
(K, N)—consistent partitions.

3.1.3 Supervised Clustering

To examine the effect of supervision, we cluster the train-
ing data by manually grouping visually similar samples. For
CMU MultiPIE, we define clusters using viewpoint annota-
tions provided with the dataset. We generate a hierarchical
clustering by having a human operator merge similar view-
points, following the partitioned sampling scheme above.
Since PASCAL-10X does not have viewpoint labels, we gen-
erate an “over-clustering” with k-means with a large K, and
have a human operator manually merge clusters. Figs. 4 and
5 show example clusters for faces and buses.

3.2 Compositional Mixtures

In this section, we describe various architectures for com-
positional mixture models that share information between
mixture components. We share local spatial regions of tem-
plates, or parts. We begin our discussion by reviewing stan-
dard architectures for DPMs, and show how they can be inter-
preted and extended as high-capacity mixture models.

3.2.1 Deformable Part Models (DPMs)

We begin with an analysis that shows that DPMs are equiv-
alent to an exponentially-large mixture of rigid templates
Eq. (1). This allows us to analyze (both theoretically and
empirically) under what conditions a classic mixture model
will approach the behavior of a DPM. Let the location of part
i be (x;, yi). Given an image /, a DPM scores a configuration
of P parts (x,y) = {(x;, y;) :i = 1..P} as:

Sppm(I) =max S(I, x,y) where
.X,y
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(a) Unsupervised

(a) Unsupervised

(b) Supervised

Fig. 4 Wecompare supervised versus automatic (k-means) approaches
for clustering by displaying the average RGB image of each cluster.
The supervised methods use viewpoint labels to cluster the training
data. Because our face data is relatively clean, both obtain reasonably
good clusters. However, at some levels of the hierarchy, unsupervised
clustering does seem to produce suboptimal partitions—for example,
at K = 2. There is no natural way to group multi-view faces into two
groups. Automatically selecting K is a key difficulty with unsupervised
clustering algorithms

P
SUx,y)=>" > ailu,v]- oL, x; +u, yi +v)

i=1 (u,v)eWw;
)
+> Bij v (Xi—x]‘—a,-(f), Vi—yj—a; ) ,
ijeE

@)

where W; defines the spatial extent (length and width) of
part i. The first term defines a local appearance score, where
a; is the appearance template for part i and ¢ (7, x;, y;)
is the appearance feature vector extracted from location
(xi, ¥i). The second term defines a pairwise deformation
model that scores the relative placement of a pair of parts

) gl )). For simplic-

with respect to an anchor position (g, Xy

ity, we have assumed all filters are defined at the same scale,
though the above can be extended to the multi-scale case.
When the associated relational graph G = (V, E) is tree-
structured, one can compute the best-scoring part config-

uration max y)ee S(/, x, y) with dynamic programming,

i i 3 i

(b) Supervised

Fig. 5 We compare supervised versus automatic (k-means) approaches
for clustering images of PASCAL buses. Supervised clustering produces
more clear clusters, e.g. the 21 supervised clusters correspond to view-
points and object type (single vs double-decker). Supervised clusters
perform better in practice, as we show in Fig. 11

where §2 is the space of possible part placements. Given
that each of P parts can be placed at one of L locations,
12| = L” ~ 10? for our models.

By defining index variables in image coordinates u’ =
x; +u and v = y; + v, we can rewrite Eq. (2) as:

P
S, x,y) = ZZai [W = xi, v = yi] o (1.u',V)

u' v i=1
+ Z Bij - Vij (xi —Xj— ai(;), Vi —Yj _ai(]?))
ijeE
= (2 wer o1 gL 0)) +b(x, »)

where w(x, y)[u',v'] = Zle a;[u’ — x;, v' — y;]. For nota-
tional convenience, we assume parts templates are padded
with zeros outside of their default spatial extent.

From the above expression it is easy to see that the DPM
scoring function is formally equivalent to an exponentially-
large mixture model where each mixture component m is
indexed by a particular configuration of parts (x, y). The
template corresponding to each mixture component w(x, y)
is constructed by adding together parts at shifted locations.
The bias corresponding to each mixture component b(x, y)
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Independent §
exemplars

EPM

Fig. 6 Classic exemplars vs EPMs. On the top row, we show three rigid
templates trained as independent exemplar mixtures. Below them, we
show their counterparts from an exemplar part model (EPM), along with
their corresponding training images. EPMs share spatially-localized
regions (or “parts”) between mixtures. Each rigid mixture is a super-
position of overlapping parts. A single part is drawn in blue. We show
parts on the fop row to emphasize that these template regions are trained

is equivalent to the spatial deformation score for that config-
uration of parts.

DPMs differ from classic mixture models previously
defined in that they (1) share parameters across a large num-
ber of mixtures or rigid templates, (2) extrapolate by “synthe-
sizing” new templates not encountered during training, and
finally, (3) use dynamic programming to efficiently search
over a large number of templates.

3.2.2 Exemplar Part Models (EPMs)

To analyze the relative importance of part parameter sharing
and extrapolation to new part placements, we define a part
model that limits the possible configurations of parts to those
seen in the N training images, written as

Sepu(l) = ma;;z S(I,x,y) where £y C £2. @

X,Y)€diN

We call such a model an Exemplar Part Model (EPM), since it
can also be interpreted as set of N rigid exemplars with shared
parameters. EPMs are not to be confused with EDPMs, which
we will shortly introduce as their deformable counterpart.
EPMs can be optimized with a discrete enumeration over N
rigid templates rather than dynamic programming. However,
by caching scores of the local parts, this enumeration can be
made quite efficient even for large N. EPMs have the benefit

@ Springer

independently. On the [right], we show a template which is implicitly
synthesized by a DPM for a novel test image on-the-fly. In Fig. 14, we
show that both sharing of parameters between mixture components and
implicit generation of mixture components corresponding to unseen part
configurations contribute to the strong performance of a DPM (Color
figure online)

of sharing, but cannot synthesize new templates that were
not present in the training data. We visualize example EPM
templates in Fig. 6.

To take advantage of additional training data, we would
like to explore non-parametric mixtures of DPMs. One prac-
tical issue is that of computation. We show that with a par-
ticular form of sharing, one can construct non-parametric
DPMs that are no more computationally complex than stan-
dard DPMs or EPMs, but considerably more flexible in that
they extrapolate multi-modal shape models to unseen con-
figurations.

3.2.3 Exemplar DPMs (EDPMs)

To describe our model, we first define a mixture of DPMs
with a shared appearance model, but mixture-specific shape
models. In the extreme case, each mixture will consist of
a single training exemplar. We describe an approach that
shares both the part filter computations and dynamic pro-
gramming messages across all mixtures, allowing us to
eliminate almost all of the mixture-dependant computa-
tion. Specifically, we consider mixture of DPMs of the
form:

S(I) = max }meg( [w(z)~¢(l)+bm(z)], (©)

me{l..M} ze
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A DPM A EPM A EDPM
b
At D
Z Z

Fig. 7 We visualize exponentiated shape models ¢?@® corresponding
to different part models. A DPM uses a unimodal Gaussian-like model
(left), while a EPM allows for only a discrete set of shape configurations
encountered at training (/middle). An EDPM non-parametrically models

where z = (x, y) and we write a DPM as an inner maximiza-
tion over an exponentially-large set of templates indexed by
z € £2,asin Eq. (3). Because the appearance model does not
depend on m, we can write:

S(1) = max [w<z> o) + b<z>], 6)

where b(z) = max,, b, (z). Interestingly, we can write the
DPM, EPM, and EDPM in the form of Eq. (6) by simply
changing the shape model b(z):

bppm(z) = Z Bij - ¥ (zi —zj — aij) @)
ijeE
beppm(z) = pax Z}E Bij - ¥ (zi —zj —ai}) (®)
ije
bepm(z) =bppm(2) + b ppuy(2), ©)

where 4"} is the anchor position for part i and j in mixture m.
We write b, p,,(2) to denote a limiting case of bgpp(2)
with B;; = —o0 and thus takes on a value of O when z has
the same relative part locations as some exemplar m and —oo
otherwise.

While the EPM only considers M different part config-
urations to occur at test time, the EDPM extrapolates away
from these shape exemplars. The spring parameters S in the
EDPM thus play a role similar to the kernel width in kernel
density estimation. We show a visualization of these shape
models as probabilistic priors in Fig. 7.

3.2.4 Inference

We now show that inference on EDPMs (Eq. 8) can be quite
efficient. Specifically, inference on a star-structured EDPM
is no more expensive than a EPM built from the same training
examples. Recall that EPMs can be efficiently optimized with
a discrete enumeration of N rigid templates with “intelligent
caching” of part scores. Intuitively, one computes a response
map for each part, and then scores arigid template by looking

an arbitrary shape function using a small set of basis functions. From
this perspective, one can view EPMs as special cases of EDPMs using
scaled delta functions as basis functions

up shifted locations in the response maps. EDPMs operate in
a similar same manner, but one convolves a “min-filter” with
each response map before looking up shifted locations. To
be precise, we explicitly write out the message-passing equa-
tions for a star-structured EDPM below, where we assume
parti = 1 is the root without loss of generality:

Seppu(I) = rzrllani( [(xl -9, z1) +j§mj(21 +a;nj)i|
(10)

mj(z) =max[a; - @(L,2)) + i ¥z — 2. 4D

The maximization in Eq. (11) needs only be performed once
across mixtures, and can be computed efficiently with a sin-
gle min-convolution or distance transform (Felzenszwalb and
Huttenlocher 2012). The resulting message is then shifted
by mixture-specific anchor positions a?”j in Eq. (10). Such
mixture-independent messages can be computed only for leaf
parts, because internal parts in a tree will receive mixture-
specific messages from downstream children. Hence star
EDPMs are essentially no more expensive than a EPM
(because a single min-convolution per part adds a negligi-
ble amount of computation). In our experiments, running
a 2000-mixture EDPM is almost as fast as a standard 6-
mixture DPM. Other topologies beyond stars might provide
greater flexibility. However, since EDPMs encode shape non-
parametrically using many mixtures, each individual mixture
may need not deform too much, making a star-structured
deformation model a reasonable approximation (Fig. 7).

4 Experiments

Armed with our array of non-parametric mixture models and
datasets, we now present an extensive diagnostic analysis
on 11 PASCAL categories from the 2010 PASCAL train-
val set and faces from the Annotated Faces in the Wild test
set (Zhu and Ramanan 2012). For each category, we train
the model with varying number of samples (N) and mix-
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tures (K). To train our independent mixtures, we learn rigid
HOG templates (Dalal and Triggs 2005) with linear SVMs
(Chang and Lin 2011). We calibrated SVM scores using Platt
scaling (Platt 1999). Since the goal is to calibrate scores of
mixture components relative to each other, we found it suf-
ficient to train scaling parameters using the original training
set rather than using a held-out validation set. To train our
compositional mixtures, we use a locally-modified variant of
the codebase from (Felzenszwalb et al. 2010). To show the
uncertainty of the performance with respect to different sets
of training samples, we randomly re-sample the training data
five times for each N and K following the partitioned sam-
pling scheme described in Sect. 3. The best regularization
parameter C for the SVM was selected by cross validation.
For diagnostic analysis, we first focus on faces and buses.

4.1 Evaluation

We adopt the PASCAL VOC precision-recall protocol for
object detection (requiring 50 % overlap), and report aver-
age precision (AP). While learning theory often focuses on
analyzing 0-1 classification error rather than AP (McAllester
1999), we experimentally verified that AP typically tracks
0-1 classification error and so focus on the former in our
experiments.

4.2 The importance of Proper Regularization

We begin with a rather simple experiment: how does a single
rigid HOG template tuned for faces perform when we give
it more training data N? Fig. 8 shows the surprising result
that additional training data can decrease performance! For
imbalanced object detection datasets with many more nega-
tives than positives, the hinge loss appears to grow linearly
with the amount of positive training data; if one doubles
the number of positives, the total hinge loss also doubles.
This leads to overfitting. To address this problem, we found
it crucial to cross-validate C across different N. By doing
so, we do see better performance with more data (Fig. 8a).
While cross-validating regularization parameters is a stan-
dard procedure when applying a classifier to a new dataset,
most off-the-shelf detectors are trained using a fixed C across
object categories with large variations in the number of pos-
itives. We suspect other systems based on standard detectors
(Felzenszwalb et al. 2010; Dalal and Triggs 2005) may also
be suffering from suboptimal regularization and might show
an improvement by proper cross-validation.

4.3 The Importance of Clean Training Data
Although proper regularization parameters proved to be cru-

cial, we still discovered scenarios where additional training
data hurt performance. Fig. 9 shows an experiment with a

@ Springer

(a) Single face template (test)

o
o

ot
»

- Fixed C=0.002
= Grossval on C

©
w

Average precision
o
N

0 500
Num. of training samples

1000

(b) Single face template (train)

c 1
9o
L] 1 3 m—
8 0.8 )
o Text
S === Fixed C=0.002
@ 0.6 1
o == Crossval on C
>
< .

4

0 0 500 1000

Num. of training examples

o

N

N

Average precision
o O O O O O
w

=
o

Fig. 8 a More training data could hurt if we did not cross-validate to
select the optimal C. b Training error, when measured on a fixed training
set of 900 faces and 1218 negative images, always decreases as we train
with more of those images. This further suggests that overfitting is the
culprit, and that proper regularization is the solution. ¢ Test performance
can change drastically with C. Importantly, the optimal setting of C
depends on the amount of positive training examples N

fixed set of N training examples where we train two detec-
tors: (1) All is trained with with all N examples, while (2)
Frontal is trained with a smaller, “clean” subset of exam-
ples containing frontal faces. We cross-validate C for each
model for each N. Surprisingly, Frontal outperforms All even
though it is trained with less data.

This outcome cannot be explained by a failure of the model
to generalize from training to test data. We examined the
training loss for both models, evaluated on the full train-
ing set. As expected, All has a lower SVM objective func-
tion than Frontal (1.29 vs 3.48). But in terms of 0-1 loss,
All makes nearly twice as many classification errors on the
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Fig. 9 In a, we compare the performance of a single HOG template
trained with N multi-view face examples, versus a template trained
with a subset of those N examples corresponding to frontal faces. The
frontal-face template b looks “cleaner” and makes fewer classification
errors on both testing and training data. The fully-trained template ¢
looks noisy and performs worse, even though it produces a lower SVM
objective value (when both b and c¢ are evaluated on the full training
set). This suggests that SVMs are sensitive to noise and benefit from
training with “clean” data

Fig. 10 The single bicycle template (marked with red) alone achieves
ap=29.4 %, which is almost equivalent to the performance of using all
eight mixtures (ap=29.7 %). Both models strongly outperform a single-
mixture model trained on the full training set. This suggests that these
additional mixtures are useful during training to capture outliers and
prevent “noisy” data from polluting a “clean” template that does most
of the work at test time (Color figure online)

same training images (900 vs 470). This observation sug-
gests that the hinge loss is a poor surrogate to the 0—I loss
because “noisy” hard examples can wildly distort the deci-
sion boundary as they incur a large, unbounded hinge penalty.

0.74
5
O
(0]
a 0.7
o :
E 068 ........................ S Smen I B O A B
o - Human cluster, K=5
< 0.66[ 1 —— Kmeans cluster, K=4
0 500 1000
Num. of training samples
Bus
_ :
o
iz
O
o
o
(0]
(@) ;
8 :
¢ 0.4y | ——Human cluster, K=5
< o35l - — Kmeans cluster, K=4

0 1000 2000 3000 4000 5000
Num. of training samples

Fig. 11 We compare the human clustering and automatic k-means
clustering at near-identical K. We find that supervised clustering pro-
vides a small but noticeable improvement of 2-5 %

Interestingly, latent mixture models can mimic the behavior
of non-convex bounded loss functions (Wu and Liu 2007) by
placing noisy examples into junk clusters that simply serve
to explain outliers in the training set. In some cases, a single
“clean” mixture component by itself explains most of the test
performance (Fig. 10).

The importance of “clean” training data suggests it could
be fruitful to correctly cluster training data into mixture com-
ponents where each component is “clean”. We evaluated the
effectiveness of providing fully supervised clustering in pro-
ducing clean mixtures. In Fig. 11, we see a small 2-5 %
increase for manual clustering. In general, we find that unsu-
pervised clustering can work reasonably well but depends
strongly on the category and features used. For example, the
DPM implementation of (Felzenszwalb et al. 2010) initial-
izes mixtures based on aspect ratios. Since faces in different
viewpoint share similar aspect ratios, this tends to produce
“unclean” mixtures compared to our non-latent clustering.

4.4 Performance of Independent Mixtures

Given the right regularization and clean mixtures trained
independently, we now evaluate whether performance asymp-
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totes as the amount of training data and the model complexity
increase.

Figure 12 shows performance as we vary K and N after
cross-validating C and using supervised clustering. Fig. 12a
demonstrates that increasing the amount of training data
yields a clear improvement in performance at the beginning,
and the gain quickly becomes smaller later. Larger models
with more mixtures tend to perform worse with fewer exam-
ples due to over fitting, but eventually win with more data.
Surprisingly, improvement tends to saturate at ~100 train-
ing examples per mixture and with ~10 mixtures. Fig. 12b
shows performance as we vary model complexity for a fixed
amount of training data. Particularly at small data regimes,
we see the critical point one would expect from Fig. 2: a more
complex model performs better up to a point, after which it
overfits. We found similar behavior for the buses category
which we manually clustered by viewpoint.

We performed similar experiments for all 11 PASCAL
object categories in our PASCAL-10X dataset shown in
Fig. 13. We evaluate performance on the PASCAL 2010 train-
val set since the testset annotations are not public. We cluster
the training data into K =[I1, 2, 4, 8, 16] mixture com-
ponents, and N=[50, 100, 500, 1000, 3000, N,4] training
samples, where N, is the number of training samples col-
lected for the given category. For each N, we select the best
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C and K through cross-validation. Fig. 13a, appears to sug-
gest that performance is saturating across all categories as
we increase the amount of training data. However, if we plot
performance on a log scale (Fig. 13b), it appears to increase
roughly linearly. This suggests that the required training data
may need to grow exponentially to produce a fixed improve-
ment in accuracy. For example, if we extrapolate the steepest
curve in Fig. 13b (motorbike), we will need 10'2 motorbike
samples to reach 95 % AP!

Of course 95 % AP may not be an achievable level of
performance. There is some upper-bound imposed by the
Bayes risk associated with the HOG feature space which
no amount of training data will let us surpass. Are classic
mixtures of rigid templates approaching the Bayes optimal
performance? Of course we cannot compute the Bayes risk
so this is hard to answer in general. However, the perfor-
mance of any system operating on the same data and feature
space provides a lower bound on the optimal performance.
We next analyze the performance of compositional mixtures
to provide much better lower bound on optimal performance.

4.5 Performance of Compositional Mixtures

We now perform a detailed analysis of compositional mix-
ture models, including DPMs, EPMs, and EDPMs. We focus
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Fig. 13 We plot the best performance at varying amount of training
data for 11 PASCAL categories on PASCAL 2010 trainval set. a shows
that all the curves look saturated with a relatively small amount of
training data; but in log scale b suggests a diminishing return instead
of true saturation. However the performance increases so slow that we
will need more than 10'? examples per category to reach 95 % AP if
we keep growing at the same rate

on face detection and Pascal buses. We consider the latent
star-structured DPM of (Felzenszwalb et al. 2010) as our
primary baseline. For face detection, we also compare to the
supervised tree-structured DPM of (Zhu and Ramanan 2012),
which uses facial landmark annotations in training images as
supervised part locations. Each of these DPMs makes use of
different parts, and so can be used to define different EPMs
and EDPMs. We plot performance of faces in Fig. 14 and
buses in Fig.15.

4.5.1 Supervised DPMs

For face detection, we first note that a supervised DPM can
perform quite well (91 % AP) with less than 200 example
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Fig. 14 We compare the performance of mixtures models with EPMs
and latent/supervised DPMs for the task of face detection. A single rigid
template (K = 1) tuned for frontal faces outperforms the one tuned
for all faces (as shown in Fig. 9). Mixture models boost performance
to 76 %, approaching the performance of a latent DPM (79 %). The
EPM shares supervised part parameters across rigid templates, boosting
performance to 85 %. The supervised DPM (91 %) shares parameters
but also implicitly scores additional templates not seen during training
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Fig. 15 We compare the performance of mixture models with latent
EPMs, EDPMs, and DPMs for bus detection. In the latent setting, EPMs
significantly outperform the rigid mixtures of template and match the
performance of the standard latent DPMs

faces. This represents alower bound on the maximum achiev-
able performance with a mixture of linear templates given a
fixed training set. This performance is noticeably higher than
that of our cross-validated rigid mixture model, which maxes
out at an AP of 76 % with 900 training examples. By extrap-
olation, we predict that one would need N = 10'? training
examples to achieve the DPM performance. To analyze where
this performance gap is coming from, we now evaluate the
performance of various compositional mixtures models.
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4.5.2 Latent Parts

We begin by analyzing the performance of compositional
mixtures defined by latent parts, as they can be constructed
for both faces and Pascal buses. Recall that EPMs have the
benefit of sharing parameters between rigid templates, but
they cannot extrapolate to new shape configurations not seen
among the N training examples. EPMs noticeably improve
performance over independent mixtures, improving AP from
76 to 78.5 % for faces and improving AP from 56 to 64 % for
buses. In fact, for large N, they approach the performance of
latent DPMs, which is 79 % for faces and 63 % for buses.
For small N, EPMs somewhat underperform DPMs. This
makes sense: with very few observed shape configurations,
exemplar-based methods are limited. But interestingly, with
a modest number of observed shapes (*1000), exemplar-
based methods with parameter sharing can approach the per-
formance of DPMs. This in turn suggests that extrapolation
to unseen shapes is may not be crucial, at least in the latent
case. This is further evidenced by the fact that EDPMs, the
deformable counterpart to EPMs, perform similarly to both
EPMs and DPMs.

4.5.3 Supervised Parts

The story changes somewhat for supervised parts. Here,
supervised EPMs outperform independent mixtures 85—
76 %. Perhaps surprisingly, EPMs even outperform latent
DPMs. However, supervised EPMs still underperform a
supervised DPM. This suggests that, in the supervised case,
the performance gap (85 vs 91 %) stems from the ability
of DPMs to synthesize configurations that are not seen dur-
ing training. Moreover, the reduction in relative error due to
extrapolation is more significant than the reduction due to
part sharing. (Zhu and Ramanan 2012) point out that a tree-
structured DPM significantly outperforms a star-structured
DPM, even when both are trained with the same supervised
parts. One argument is that trees better capture nature spatial
constraints of the model, such as the contour-like continu-
ity of small parts. Indeed, we also find that a star-structured
DPM does a “poorer” job of extrapolation. In fact, we show
that an EDPM does as well a supervised star model, but not
quite up to the performance of a tree DPM.

4.5.4 Analysis

Our results suggest that part models can be seen as a mech-
anism for performing intelligent parameter sharing across
observed mixture components and extrapolation to implicit,
unseen mixture components. Both these aspects contribute
to the strong performance of DPMs. However, with the
“right” set of (supervised) parts and the “right” geometric
(tree- structured) constraints, extrapolation to unseen tem-
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Fig. 16 We plot the number of distinct shape patterns in our training
set of buses and faces. Each training example is “binned” into a discrete
shape by quantizing a vector of part locations. The above histograms
count the number of examples that fall into a particular shape bin. In
both cases, the number of occurrences seems to follow a long-tail dis-
tribution: a small number of patterns are common, while there are a
huge number of rare cases. Interestingly, there are less than 500 unique
bus configurations observed in our PASCAL-10X dataset of 2000 train-
ing examples. This suggests that one can build an exemplar part model
(EPM) from the “right” set of 500 training examples and still perform
similarly to a DPM trained on the full dataset (Fig. 15)

plates has the potential to be much more significant. We
see this as a consequence of the “long-tail” distribution of
object shape (Fig. 16); many object instances can be mod-
eled with a few shape configurations, but there exists of long
tail of unusual shapes. Examples from the long tail may be
difficult to observe in any finite training dataset, suggest-
ing that extrapolation is crucial for recognizing these cases.
Once the representation for sharing and extrapolation is accu-
rately specified, fairly little training data is needed. Indeed,
our analysis shows that one can train a state-of-the-art face
detector (Zhu and Ramanan 2012) with 50 face images.

4.5.5 Relation to Exemplar SVMs

In the setting of object detection, we were not able to
see significant performance improvements due to our non-
parametric compositional mixtures. However, EDPMs may
be useful for other tasks. Specifically, they share an attrac-
tive property of exemplar SVMs (ESVMs) (Malisiewicz et al.
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Fig. 17 We visualize detections using our exemplar DPM (EDPM)
model. As opposed to existing exemplar-based methods (Malisiewicz
et al. 2011), our model shared parameters between exemplars (and so
is faster to evaluate) and can generalize to unseen shape configurations.
Moreover, EDPMs returns corresponding landmarks between an exem-
plar and a detected instance (and hence an associated set of landmark
deformation vectors), visualized on the top row of faces

2011): each detection can be affiliated with its closest match-
ing training example (given by the mixture index), allowing
us to transfer annotations from a training example to the test
instance. (Malisiewicz et al. 2011) argue that non-parametric
label transfer is an effective way of transferring associative
knowledge, such as 3D pose, segmentation masks, attribute
labels, etc. However, unlike ESVMs, EDPMs share computa-
tion among the exemplars (and so are faster), can generalize
to unseen configurations (since they can extrapolate to new
shapes), and also report a part deformation field associated
with each detection (which maybe useful to warp training
labels to better match the detected instance). We show exam-
ple detections (and their matching exemplars) in Fig. 17.

5 Related Work

We view our study as complementary to other meta-analysis
of the object recognition problem, such as studies of the
dependence of performance on the number of object cate-

gories (Deng et al. 2010), visual properties (Hoiem et al.
2012), dataset collection bias (Torralba and Efros 2011), and
component-specific analysis of recognition pipelines (Parikh
and Zitnick 2011).

5.1 Object Detection

Our analysis is focused on template-based approaches to
recognition, as such methods are currently competitive on
challenging recognition problems such as PASCAL. How-
ever, it behooves us to recognize the large body of alter-
nate approaches including hierarchical or “deep” feature
learning (Krizhevsky et al. 2012), local feature analysis
(Tuytelaars and Mikolajczyk 2008), kernel methods (Vedaldi
et al. 2009), and decision trees (Bosch et al. 2007), to
name a few. Such methods may produce different depen-
dencies on performance as a function of dataset size due
to inherent differences in model architectures. We hypoth-
esize that our conclusions regarding parameter sharing
and extrapolation may generally hold for other architec-
tures.

5.2 Non-parametric Models in Vision

Most relevant to our analysis is work on data-driven mod-
els for recognition. Non-parametric scene models have been
used for scene completion (Hays and Efros 2007), geolo-
cation (Hays and Efros 2008). Exemplar-based methods
have also been used for scene-labeling through label trans-
fer (Liu et al. 2011; Tighe and Lazebnik 2010). Other exam-
ples include nearest-neighbor methods for low-resolution
image analysis (Torralba et al. 2008) and image classifica-
tion (Zhang et al. 2006; Boiman et al. 2008). The closest
approach to us is (Malisiewicz et al. 2011), who learn exem-
plar templates for object detection. Our analysis suggests
that it is crucial to share information between exemplars and
extrapolate to unseen templates by re-composing parts to new
configurations.

5.3 Scalable Nearest-Neighbors

We demonstrate that compositional part models are one
method for efficient nearest-neighbor computations. Prior
work has explored approximate methods such as hashing
(Shakhnarovich et al. 2003, 2005) and kd-trees (Muja and
Lowe 2009; Beis and Lowe 1997). Our analysis shows that
one can view parts as tools for exact and efficient indexing
into an exponentially-large set of templates. This suggests
an alternative perspective of parts as computational entities
rather than semantic ones.
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6 Conclusion

We have performed an extensive analysis of the current dom-
inant paradigm for object detection using HOG feature tem-
plates. We specifically focused on performance as a function
of the amount of training data, and introduced several non-
parametric models to diagnose the state of affairs.

To scale current systems to larger datasets, we find that
one must get certain “details” correct. Specifically, (a) cross-
validation of regularization parameters is mundane but cru-
cial, (b) current discriminative classification machinery is
overly sensitive to noisy data, suggesting that (c) manual
cleanup and supervision or more clever latent optimization
during learning may play an important role for designing
high-performance detection systems. We also demonstrate
that HOG templates have a relatively small effective capacity;
one can train accurate HOG templates with 100-200 positive
examples (rather than thousands of examples as is typically
done (Dalal and Triggs 2005)).

From a broader perspective, an emerging idea in our com-
munity is that object detection might be solved with simple
models backed with massive training sets. Our experiments
suggest a slightly refined view. Given the size of existing
datasets, it appears that the current state-of-the-art will need
significant additional data (perhaps exponentially larger sets)
to continue producing consistent improvements in perfor-
mance. We found that larger gains were possible by enforc-
ing richer constraints within the model, often through non-
parametric compositional representations that could make
better use of additional data. In some sense, we need “better
models” to make better use of “big data”.

Another common hypothesis is that we should focus on
developing better features, not better learning algorithms.
While HOG is certainly limited, we still see substantial per-
formance gains without any change in the features them-
selves or the class of discriminant functions. Instead, the
strategic issues appear to be parameter sharing, composi-
tionality, and non-parametric encodings. Establishing and
using accurate, clean correspondence among training exam-
ples (e.g., that specify that certain examples belong to the
same sub-category, or that certain spatial regions correspond
to the same part) and developing non-parametric compo-
sitional approaches that implicitly make use of augmented
training sets appear the most promising directions.
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