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Abstract

We analyze functional manipulations of handheld ob-
jects, formalizing the problem as one of fine-grained grasp
classification. To do so, we make use of a recently developed
fine-grained taxonomy of human-object grasps. We intro-
duce a large dataset of 12000 RGB-D images covering 71
everyday grasps in natural interactions. Our dataset is dif-
ferent from past work (typically addressed from a robotics
perspective) in terms of its scale, diversity, and combination
of RGB and depth data. From a computer-vision perspec-
tive, our dataset allows for exploration of contact and force
prediction (crucial concepts in functional grasp analysis)
from perceptual cues. We present extensive experimental
results with state-of-the-art baselines, illustrating the role
of segmentation, object context, and 3D-understanding in
functional grasp analysis. We demonstrate a near 2X im-
provement over prior work and a naive deep baseline, while
pointing out important directions for improvement.

1. Introduction

Humans can interact with objects in complex ways, in-
cluding grasping, pushing, or bending them. In this work,
we address the perceptual problem of parsing such inter-
actions, with a focus on handheld, manipulatable objects.
Much previous work on hand analysis tends to focus on
kinematic pose estimation [17, 12]. Interestingly, the same
kinematic pose can be used for dramatically different func-
tional manipulations (Fig. 1), where differences are mani-
fested in terms of distinct contact points and force vectors.
Thus, contact points and forces play a crucial role when
parsing such interactions from a functional perspective.

Problem setup: Importantly, we wish to analyze
human-object interactions in situ. To do so, we make use of
wearable depth cameras to ensure that recordings are mo-
bile (allowing one to capture diverse scenes [33, 7]) and
passive (avoiding the need for specialized pressure sen-
sors/gloves [0, 24]). We make no explicit assumption about
the environment, such as known geometry [32]. However,
we do make explicit use of depth cues, motivated by the fact
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Figure 1. Same kinematic pose, but different functions: We
show 3 images of near-identical kinematic hand pose, but very
different functional manipulations, including a wide-object grasp
(a), a precision grasp (b), and a finger extension (c¢). Contact re-
gions (green) and force vectors (red), visualized below each image,
appear to define such manipulations. This work (1) introduces a
large-scale dataset for predicting pose+contacts+forces from im-
ages and (2) proposes an initial method based on fine-grained
grasp classification.

that humans make use of depth for near-field analysis [15].
Our problem formulation is thus: given a first-person RGB-
D image of a hand-object interaction, predict the 3D kine-
matic hand pose, contact points, and force vectors.

Motivation: We see several motivating scenarios and
applications. Our long-term goal is to produce a truly
functional description of a scene that is useful for an au-
tonomous robot. When faced with a novel object, it will be
useful to know how if it can be pushed or grasped, and what
forces and contacts are necessary to do so [40]. A practi-
cal application of our work is imitation learning or learning
by demonstration for robotics [3, 16], where a robot can
be taught a task by observing humans performing it. Fi-
nally, our problem formulation has direct implications for
assistive technology. Clinicians watch and evaluate patients
performing everyday hand-object interactions for diagnosis
and evaluation [2]. A patient-wearable camera that enabled
automated parsing of object manipulations would allow for
long-term monitoring.

Why is this hard? Estimating forces from visual signals
typically requires knowledge of object mass and velocity,
which is difficult to reliably infer from a single image or



even a video sequence. Isometric forces are even more dif-
ficult to estimate because no motion may be observed. Fi-
nally, even traditional tasks such as kinematic hand pose es-
timation are now difficult because manipulated objects tend
to generate significant occlusions. Indeed, much previous
work on kinematic hand analysis considers isolated hands
in free-space [43], which is a considerably easier problem.

Approach: We address the continuous problem of
pose+contact+force prediction as a discrete fine-grained
classification task, making use of a recent 73-class tax-
onomy of fine-grained hand-object interactions developed
from the robotics community [28]. Our approach is inspired
by prototype-based approaches for continuous shape esti-
mation that treat the problem as a discrete categorical pre-
diction tasks, such as shapemes [34] or poselets [5]. How-
ever, rather than learning prototypes, we make use of expert
domain knowledge to quantize the space of manipulations,
which allows us to treat the problem as one of (fine-grained)
classification. A vital property of our classification engine
is that it is data-driven rather than model-based. We put
forth considerable effort toward assembling a large collec-
tion of diverse images that span the taxonomy of classes.
We experiment with both parametric and exemplar-based
classification architectures trained on our collection.

Our contributions: Our primary contribution is (1)
a new “in-the-wild”, large-scale dataset of fine-grained
grasps, annotated with contact points and forces. Impor-
tantly, the data is RGB-D and collected from a wearable per-
spective. (2) We develop a pipeline for fine-grained grasp
classification exploiting depth and RGB data, training on
combinations of both real and synthetic training data and
making use of state-of-the-art deep features. Overall, our
results indicate that grasp classification is challenging, with
accuracy approaching 20% for a 71-way classification prob-
lem. (3) We describe a simple post-processing exemplar
framework that predicts contacts and forces associated with
hand manipulations, providing an initial proof-of-concept
system that addresses this rather novel visual prediction
task.

2. Related Work

Hand pose with RGB(D): Hand pose estimation is a
well-studied task, using both RGB and RGB-D sensors as
input. Much work formulates the task as articulated track-
ing over time [25, 23, 22, 4, 31, 42, 44], but we focus on
single-image hand pose estimation during object manipu-
lations. Relatively few papers deal with object manipu-
lations, with the important exceptions of [39, 38, 27, 26].
Most similar to us is [32], who estimate contact forces dur-
ing hand-object interactions, but do so in a “in-the-lab” sce-
nario where objects of known geometry are used. We focus
on single-frame “in-the-wild” footage where the observer is
instrumented, but the environment (and its constituent ob-

jects) are not.

Egocentric hand analysis: Spurred by the availability
of cheap wearable sensors, there has been a considerable
amount of recent work on object manipulation and grasp
analysis from egocentric viewpoints [1 1, 8, 18, 7, 13]. The
detection and pose estimation of human hands from wear-
able cameras was explored in [36]. [8] propose a fully auto-
matic vision-based approach for grasp analysis from a wear-
able RGB camera, while [18] explores unsupervised clus-
tering techniques for automatically discovering common
modes of human hand use. Our work is very much inspired
by such lines of thought, but we take a data-driven perspec-
tive, focusing on large-scale dataset collection guided by a
functional taxonomy.

Grasp taxonomies: Numerous taxonomies of grasps
have been proposed, predominantly from the robotics com-
munity. Early work by Cutkosky [©] introduced 16 grasps,
which were later extended to 33 by Felix et al [14], fol-
lowing a definition of a grasp as a “static hand postures
with which an object can be held with one hand”. Though
this excluded two-handed, dynamic, and gravity-dependent
grasps, this taxonomy has been widely used [37, 8, 7]. Our
work is based on a recent fine-grained taxonomy proposed
in [28], that significantly broadens the scope of manipu-
lations to include non-prehensile object interactions (that
are technically not grasps, such as pushing or pressing) as
well as other gravity-dependent interactions (such as lift-
ing). The final taxonomy includes 73 grasps that are an-
notated with various qualities (including hand shape, force
type, direction of movement and effort).

Datasets. Because grasp understanding is usually ad-
dressed from a robotics perspective, the resulting meth-
ods and datasets developed for the problem tend to be tai-
lored for that domain. For example, robotics platforms of-
ten require an unavoidable real-time constraint, limiting the
choice of algorithms, which also (perhaps implicitly) lim-
ited the difficulty of the data in terms of diversity (few sub-
jects, few objects, few scenes). We overview the existing
grasp datasets in Table 1 and tailor our new dataset to “fill
the gap” in terms of overall scale, diversity, and annotation
detail.

Dataset View Cam. Sub. | Scn Frms Label | Tax.
YALE [7] Ego RGB 4 4 9100 Gr. 33
UTG [8] Ego RGB 4 1 ? Gr. 17
GTEA [13] Ego RGB 4 4 00 Act. 7
UCI-EGO [306] Ego | RGB-D 2 4 400 Pose ?
Ours Ego | RGB-D 8 > 5 | 12,000 Gr. 71
Table 1. Object manipulation datasets. [7] captured 27.7 hours

but labelled only 9100 frames with grasp annotations. While our
dataset is balanced and contains the same amount of data for each
grasp, [7]is imbalanced in that common grasps appear much more
often than rare grasps (10 grasps suffice to explain 80% of the
data). [8] uses the same set of objects for the 4 subjects.



Figure 2. GUN-71: Grasp Understanding dataset. We have captured (from a chest-mounted RGB-D camera) and annotated our own
dataset of fine-grained grasps, following the recent taxonomy of [28]. In the top row, the “writing tripod” grasp class exhibits low variability
in object and pose/view across 6 different subjects and environments. In the second row, “flat hand cupping” exhibits high variability in
objects and low variability in pose due to being gravity-dependent. In the third row, “trigger press” exhibits high variability in objects and
pose/view. Finally, in bottom, we show 6 views of the same grasp captured for a particular object and a particular subject in our dataset.

3. GUN-71: Grasp UNderstanding Dataset

We begin by describing our dataset, visualized in Fig. 2.
We start with the 73-class taxonomy of [28], but omit
grasps 50 and 61 because of their overly-specialized nature
(holding a ping-pong racket and playing saxophone, respec-
tively), resulting in 71 classes.

3.1. Data capture

To capture truly in-the-wild data, we might follow the
approach of [7] and monitor unprompted subjects behaving
naturally throughout the course of a day. However, this re-
sults in a highly imbalanced distribution of observed object
manipulations. [7] shows that 10 grasps suffice to explain
80% of the object interactions of everyday users. Balanced
class distributions arguably allow for more straightforward
analysis, which is useful when addressing a relatively unex-
plored problem. Collecting a balanced distribution in such a
unprompted manner would be prohibitively expensive, both
in terms of raw data collection and manual annotation. In-
stead, we prompt users using the scheme below.

Capture sessions: We ask subjects to perform the 71
grasps on personal objects (typical for the specific grasp),
mimicking real object manipulation scenarios in their home
environment. Capture sessions were fairly intensive and la-
borious as a result. We mount Intel’s Senz3D, a wearable

time-of-flight sensor [20, 10, 29], on the subjects’s chest us-
ing a GoPro harness (as in [360]). We tried to vary the types
of objects as much as possible and considered between 3
and 4 different objects per subject for each of the 71 grasps.
For each hand-object configuration, we took between 5 and
6 views of the manipulation scene. These views correspond
to several steps of a particular action (opening a lid, pouring
water) as well as different 3D locations and orientation of
the hand holding the object (with respect to the camera).

Diversity: This process led to the capture of roughly
12,000 RGB-D images labeled with one of the 71 grasps.
We captured 28 objects per grasp, resulting in 28 x 71 =
1988 different hand-object configurations with 5-6 views
for each. We consider 8 different subjects (4 males and 4
females) in 5 different houses, ensuring that “house mates”
avoid using the same objects to allow leave-one-out exper-
iments (we can leave out one subject for testing and en-
sure that the objects will be novel as well). Six of our
eight subjects were right handed. To ensure consistency, we
asked the two left-handed subjects to perform grasps with
their right hand. We posited that body shape characteristics
might effect accuracy/generalizability, particularly in terms
of hand size, shape, and movement. To facilitate such anal-
ysis, we also measured arm and finger lengths for each sub-
ject.



Figure 3. Contact point and forces. We show the 3D hand model for 18 grasps of the considered taxonomy. We also show the contact
points (in green) and forces (in red) corresponding to each grasp. The blue points help visualize the shape of the typical object associated
with each of these 18 grasps. We can observe that power grasps have wider contact areas on finger and palm regions, while precision grasps

exhibit more localized contact points on finger tips and finger pads.

4. Synthetic (training) data generation

3D hand-object models: In addition to GUN-71, we
construct a synthetic training dataset that will be used dur-
ing our grasp-recognition pipeline. To construct this syn-
thetic dataset, we make use of synthetic 3D hand models.
We obtain a set of 3D models by extending the publicly-
available Poser models from [39] to cover the selected
grasps from [28]’s taxonomy (by manually articulating the
models to match the visual description of grasp).

Contact and force annotations: We compute contact
points and applied forces on our 3D models with the follow-
ing heuristic procedure. First, we look for physical points of
contact between the hand and object mesh. We do this by in-
tersecting the triangulated hand and object meshes with the
efficient method of [30]. We produce a final set of contact
regions by connected-component clustering the set of 3D
vertices lying within an intersection boundary. To estimate
a force vector, we assume that contact points are locally sta-
ble and will not slide along the surface of the object (imply-
ing the force vector is normal to the surface of the object).
We estimate this normal direction by simply reporting the
average normal of vertices within each contact region. Note
this only produces an estimate of the force direction, and
not magnitude. Nevertheless, we find our heuristic proce-
dure to produce surprisingly plausible estimates of contact
points and force directions for each 3D model ( Fig. 3).

Synthetic training data: We use our 3D models to gen-
erate an auxiliary dataset of synthetic depth data, annotated

with 3D poses, grasp class label, contacts, and force di-
rection vectors. We additionally annotate each rendered
depth map with a segmentation mask denoting background,
hand, and object pixels. We render over 200, 000 training
instances (3,000 per grasp). We will release our models,
rendering images, as well as GUN-71 (our dataset of real-
world RGB-D images) to spun further research in the area.

5. Recognition pipeline

We now describe a fairly straightforward recognition
system for recognizing grasps given real-world RGB-D im-
ages. Our pipeline consists of two stages; hand segmenta-
tion and fine-grained grasp classification.

5.1. Segmentation

The first stage of our pipeline is segmenting the hand
from background clutter, both in the RGB and depth data.
Many state-of-the-art approaches [8, 38, 39] employ user-
specific skin models to localize and segment out the hand.
We want a system that does not require such a user-specific
learning stage and could be applied to any new user and
environment, and so instead make use of depth cues to seg-
ment out the hand.

Depth-based hand detection: We train a P-way clas-
sifier designed to report one of P = 1500 quantized hand
poses, using the approach of [35]. This classifier is trained
on the synthetic training data, which is off-line clustered
into P pose classes. Note that the set of pose classes P



(9)

Figure 4. Segmentation. We show the different steps of our seg-
mentation stage: the depth map (a) is processed using a K-way
pose classifier [35], which reports a quantized pose detection k and
associated foreground prior b;, (b) and mean depth ;1 (c) (used
to compute a posterior following Eq. 1). To incorporate bottom-up
RGB cues, we first extract superpixels (e) and then label superpix-
els instead of pixels to produce a segmentation mask (f). This pro-
duces a segmented RGB image in (g) , which can then be cropped
(h) and/or unsegmented (i). We concatenate (deep) features ex-
tracted from (d), (g), (h), and (i) to span a variety of resolutions
and local/global contexts.

is significantly larger than the set of fine-grained grasps
K = 71. We use the segmentation mask associated with
this coarse quantized pose detection to segment out the hand
(and object) from the test image, described further below.

Pixel model: We would like to use hand detections
to generate binary segmentation masks. To do so, we
use a simple probabilistic model where x; denotes the
depth value of pixel ¢ and y; € {0,1} is its binary fore-
ground/background label. We write the posterior probabil-
ity of label y; given observation x;, all conditioned on pose
class k as:

p(yilzi, k) o< p(yilk)p(zily:, k) (1)

which can easily derived from Bayes rule . The first term on
the right-hand-side is the “prior” probability of pixel ¢ being
fg/bg, and the second term is a “likelihood” of observing a
depth value given a pose class k and label:

p(y: = 11k) = bix

p($¢‘yi = 17 k) = N(l‘z, ik, O'izk)
p(zily; = 0, k) o constant

Bernoulli  (2)
Normal 3)
Uniform (4)
We use a pixel-specific Bernoulli distribution for the prior,

and an univariate Normal and Uniform (uninformative) dis-
tribution for the likelihood. Intuitively, foreground depths

tend to be constrained by the pose, while the background
will not be. Given training data of depth images = with
foreground masks y and pose class labels k, it is straight-
forward to estimate model parameters {b;x, ik, o} With
maximum likelihood estimation (frequency counts, sample
means, and sample variances). We visualize the pixel-wise
Bernoulli prior b;;; and mean depth p;, for a particular class
k in Fig. 4-b and Fig. 4-c.

RGB-cues: Thus far, our segmentation model does
not make use of RGB-based grouping cues such as color
changes across object boundaries. To do so, we first com-
pute RGB-based superpixels [|] on a test image and reason
about the binary labels of superpixels rather than pixels:

label; = I(lS—1| Z p(yilzi, k) > .5) 5)

J €S

where S; denotes the set of pixels from superpixel j. We
show a sample segmentation in Fig. 4. Our probabilistic ap-
proach tends to produce more reliable segmentations than
existing approaches based on connected-component heuris-
tics [19].

5.2. Fine-grained classification

We use the previous segmentation stage to produce fea-
tures that will be fed into a K = 71-way classifier. We use
state-of-the-art deep networks — specifically, Deep19 [41] —
to extract a 3096 dimensional feature. We extract off-the-
shelf deep features extracted for (1) the entire RGB image,
(2) a cropped window around the detected hand, and (3)
a segmented RGB image (Fig. 4 (d,g,h,i)). We resize each
window to a canonical size (of 224 x 224 pixels) before pro-
cessing. The intuition behind this choice is to mix high and
low resolution features, as well as global (contextual) and
local features. The final concatenated descriptors are fed
into a linear multi-class SVM for processing.

Exemplar matching: The above stages return an esti-
mate for the employed grasp and a fairly accurate quan-
tized pose class, but it is still quantized nonetheless. One
can refine this quantization by returning the closest syn-
thetic training example belonging to the recognized grasp
and the corresponding pose cluster. We do this by return-
ing the training example n from quantized class k£ with the
closest foreground depth:

NN(z) = min Zy = pak)” (6)

neClassy

We match only foreground depths in the nt" synthetic train-
ing image x™, as specified by its binary label y™. Because
each synthetic exemplar is annotated with hand-object con-
tact points and forces from its parent 3D hand model, we
can predict forces and contact points by simply transferring
them from the selected grasp model to the exemplar location
in the 3D space.



6. Experiments

For all the experiments of this section, we use a leave-
one-out approach where we train our 1-vs-all SVM classi-
fiers on 7 subjects and test on the last 8t" subject. We repeat
that operation with the 8 subjects and average the results.
When analyzing our results, we refer to grasps by their id#.
In the supplementary material, we include a visualization of
all grasps in our taxonomy.

Baselines: We first run some “standard” baselines:
HOG-RGB, HOG-Depth, and an off-the-shelf deep RGB
feature [41]. We obtained the following average classifica-
tion rate: HOG-RGB (3.30%), HOG-Depth (6.55%), con-
catenated HOG-RGB and HOG-Depth (6.55%) and Deep-
RGB (11.31%). Consistent with recent evidence, deep fea-
tures considerably outperform their hand-designed counter-
parts, though overall performance is still rather low (Tab. 2).

Segmented/cropped data: Next, we evaluate the role
of context and clutter.  Using segmented RGB im-
ages marginally decreases accuracy of deep features from
11.31% to 11.10%, but recognition rates appear are more
homogeneous. Looking at the individual grasp classifica-
tion rates, segmentation helps a little for most grasps but
hurts the accuracy of “easy” grasps where context or ob-
ject shape are important (but removed in the segmentation).
This includes non-prehensile “pressing” grasps (interacting
with a keyboard) and grasps associated with unique ob-
jects (chopsticks). Deep features extracted from a cropped
segmentation and cropped detection increase accuracy to
12.55% and 13.67%, respectively, suggesting that some
amount of local context around the hand and object helps.

Competing methods: [38, 8] make use of HOG tem-
plates defined on segmented RGB images obtained with
skin detection. Because skin detectors did not work well
on our (in-the-wild) dataset, we re-implemented [8] us-
ing HOG templates defined on our depth-based segmen-
tations and obtained 7.69% accuracy. To evaluate re-
cent non-parametric methods [38], we experimented with
a naive nearest neighbor (NN) search using the different
features extracted for the above experiments and obtained
6.10%, 6.97%, 6.31% grasp recognition accuracy using
Deep-RGB, cropped-RGB and cropped+segmented-RGB.
For clarity, these replace the K-way SVM classifier with
a NN search. The significant drop in performance suggests
that the learning is important, implying that our dataset is
still not big enough to cover all possible variation in pose,
objects and scenes.

Cue-combination: To take advantage of detection and
segmentation without hurting classes where context is im-
portant, we trained our SVM grasp classifier on the con-
catenation of all the deep features. Our final overall classi-
fication rate of 17.97% is a considerable improvement over
a naive deep model 11.31% as well as (our reimplementa-
tion of) prior work 7.69%. The corresponding recognition

rates per grasp and confusion matrices corresponding to this
classifier are given in Fig. 5.

Grasp classification Confusion matrix

10 20 30 40 50 60 70
Grasp number

(a) (b)
Figure 5. RGB Deep feature + SVM. We show the individual
classification rates for the 71 grasps in our dataset (a) and the cor-
responding confusion matrix in (b).

Features Acc. | top20 | top 10 | min max
HOG-RGB 3.30 7.20 9.59 | 0.00 | 28.54
HOG-Depth 6.55 12.96 | 15.74 | 0.66 | 26.18
HOG-RGBD 6.54 13.76 | 19.24 | 0.00 | 45.62

Deep-RGB [41] 11.31 | 2592 | 35.28 | 0.69 | 61.39

Deep-RGB(segm.) 11.10 | 21.56 | 26.51 | 0.69 | 29.46
HOG-RGB (cropped) 5.84 11.22 | 14.03 | 0.00 | 27.85
Deep-RGB (cropped) 13.67 | 27.32 | 36.95 | 1.22 | 55.35

HOG-RGB (erop.ssegm) [8] | 7.69 15.23 | 18.65 | 0.69 | 30.77

HOG-Depth (crop.+scem.) 10.68 | 22.04 | 27.99 | 0.52 | 42.40
Deep-RGB (crop.+segm,) 12.55 | 22.89 | 27.85 | 0.69 | 37.49
Deep-RGB (All) 17.97 | 36.20 | 44.97 | 2.71 | 68.48

Table 2. Grasp classification results. We present the result ob-
tained when training a K-way linear SVM (K=71) with different
types of features: HOG-RGB, HOG-Depth and Deep-RGB fea-
tures, on the whole workspace, i.e. entire image, on a cropped
detection window or on cropped and segmented image.

View Acc. top20 | top 10 | min max

All (All) 17.97 | 36.20 | 44.97 | 2.71 | 68.48

Best scoring view | 22.67 | 47.53 | 59.04 0 79.37

Table 3. View selection. We present grasp recognition results ob-

tained when training a K-way linear SVM on a concatenation of

Deep features. We present the results obtained when computing

the average classification rate over 1) the entire dataset and 2) over
the top scoring view of each hand-object configuration.

71 Gr. [28] | 33 Gr. [14] | 17 Gr. [9]
All views 17.97 20.50 20.53
Best scoring view 22.67 21.90 23.44

Table 4. Grasp classification for different sized taxonomies. We
present the results obtained for K = 71 [28], K = 33 [14] and
K = 17 [9], smaller taxonomies being obtained by selecting the
corresponding subsets of grasps.

Easy classes: High-performing grasp classes (see Fig. 5)
tend to characterized by limited variability in terms of view-
point (i.e. position and orientation of the hand w.r.t camera)



and/or object: eg. opening a lid (#10), writing (#20), hold-
ing chopsticks (#21), measuring with a tape (#33), grab-
bing a large sphere such as a basketball (#45), using screw-
driver (#47), trigger press (#49), using a keyboard (#60),
thumb press (#62), holding a wine cup (#72). Other high-
performing classes tend to exhibit limited occlusions of the
hand: hooking a small object(#15) and palm press (#55).

Common confusions: Common confusions in Fig. 6
suggest that finger kinematics are a strong cue captured by
deep features. Many confusions correspond to genuinely
similar grasps that differ by small details that might be eas-
ily occluded by the hand or the manipulated object: “Large
diameter” (#1) and “Ring” (#31) are both used to grasp
cylindrical objects, except that “Ring” only uses thumb and
index finger. When the last three fingers are fully occluded
by the object, it is visually impossible to differentiate them
(see Fig. 6-c). “Adduction-Grip” (#23) and “Middle-over-
Index”(#51) both involve grasping an object using the in-
dex and middle finger. Abduction-Grip holds the object be-
tween the two fingers, while Middle-over-Index holds the
object using the pad of the middle finger and nail of the in-
dex finger (see Fig. 6-f).

Figure 6. Common confusions. The confusions occur when some
fingers are occluded (a and ¢) or when the poses are very simi-
lar but the functionality (associated forces and contact points) is
different (b, d, e and f).

Best view: To examine the effect of viewpoint, we se-
lect the top-scoring view for each grasp class, increasing
accuracy from 17.97% to 22.67% (Tab. 3). Comparing the

two sets of recognition rates, best-view generally increases
the performance of easy grasps significantly more than dif-
ficult ones - e.g., the average recognition rate of the top
20 grasps grow from 36.20% to 47.53%, while the top 10
grasps grows from 44.97% to 59.04%. This suggests that
some views may be considerably more ambiguous than oth-
ers.

Comparison to state-of-the-art. We now compare
our results to those systems evaluated on previous grasp
datasets. Particularly relevant is [8], which presents vi-
sual grasp recognition results in similar settings, i.e. ego-
centric perspective and daily activities. In their case, they
consider a reduced 17-grasp taxonomy from Cutkosky [9],
obtaining 31% with HOG features overall and 42% on a
specific “machinist sequence” from [7]. Though these re-
sults appear more accurate than ours, its important to note
that their dataset contains less variability in the background
and scenes, and, crucially, their system appears to require
training a skin detector on a subset of the test set. Addi-
tionally, it is not clear if they (or indeed, other past work)
allow for the same subject/scene to be included across the
train and testset. If we allow for this, recognition rate dra-
matically increases to 85%. This highly suggestive of over-
fitting, and can be seen a compelling motivation for the dis-
tinctly large number of subjects and scenes that we capture
in our dataset.

Evaluations on limited taxonomies: If we limit our tax-
onomy to the 17 grasps from [&], i.e. by evaluating only the
subset of 17 classes, we obtain 20.53% and 23.44% (best
view). See Tab. 4. These numbers are comparable to those
reported in [8]. Best-view may be a fair comparison because
[7] used data that was manually labelled, where annota-
tors were explicitly instructed to only annotate those frames
that were visually unambiguous. In our case, subjects were
asked to naturally perform object manipulations, and the
data was collected “as-is”. Finally, if we limit our taxonomy
to the 33 grasps from Feix et al. [14], we obtained 20.50%
and 21.90% (best view). The marginal improvement when
evaluating grasps from smaller taxonomies suggests that the
new classes are not much harder to recognize. Rather, we
believe that overall performance is somewhat low because
our dataset is genuinely challenging due to diverse subjects,
scenes, and objects.

Force and contact point prediction: Finally, we
present preliminary results for force and contact prediction.
We do so by showing the best-matching synthetic 3D ex-
emplar from the detected pose class, along with its contact
and force annotations. Fig. 7 shows frames for which the
entire pipeline detection + grasp recognition + exemplar
matching led to an acceptable prediction. Unfortunately, we
are not able to provide a numerical evaluation as obtaining
ground-truth annotation of contact and forces is challeng-
ing. One attractive option is to use active force sensors,



Figure 7. Force and contact points prediction. We show frames for which the entire pipeline detection + grasp recognition + exemplar
matching led to an acceptable prediction of forces and contact points. For each selected frame, we show from top to bottom: the RGB
image, the depth image with contact points and forces (respectively represented by green points and red arrows, the top scoring 3D exemplar
with associated forces and contact points, and finally the RGB image with overlaid forces and contact points.

either embedded into pressure-sensitive gloves worn by the
user or through objects equipped with force sensors at pre-
defined grasp points (as done for a simplified cuboid object
in [32]). While certainly attractive, active sensing some-
what violates the integrity of a truly in-the-wild, everyday
dataset.

7. Conclusions

We have introduced the challenging problem of under-
standing hands in action, including force and contact point
prediction, during scenes of in-the-wild, everyday object
manipulations. We have proposed an initial solution that
reformulates this high-dimensional, continuous prediction
task as a discrete fine-grained (functional grasp) classifica-
tion task. To spur further research, we have captured a new
large scale dataset of fine-grained grasps that we will re-
lease together with 3D models and rendering engine. Im-
portantly, we have captured this dataset from an egocentric
perspective, using RGB-D sensors to record multiple scenes
and subjects. We have also proposed a pipeline which ex-
ploits depth and RGB data, producing state-of-the-art grasp
recognition results. Our first analysis show that depth in-
formation is crucial for detection and segmentation, while
the richer RGB feature allows for a better grasp recogni-
tion. Overall, our results indicate that grasp classification is
challenging, with accuracy approaching 20% for a 71-way

classification problem.

We have used a single 3D model per grasp. In future
work, it would be interesting to (1) model within-grasp vari-
ability, capturing the dependence of hand kinematics on
object shape and size and (2) consider subject-specific 3D
hand shape models [21], which could lead to more accu-
rate set of synthetic exemplars (and associated forces and
contacts).
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