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Abstract

We describe an algorithm for learning bilinear SVMs. Bilinear classifiers are a
discriminative variant of bilinear models, which capture the dependence of data
on multiple factors. Such models are particularly appropriate for visual data that
is better represented as a matrix or tensor, rather than a vector. Matrix encod-
ings allow for more natural regularization through rank restriction. For example, a
rank-one restriction produces a bilinear classifier that can be interpreted as a sep-
arable filter. We also use bilinear classifiers for transfer learning by sharing linear
factors between different tasks. Finally, we show that bilinear classifiers can be
trained with biconvex programs. Such programs are optimized with coordinate
descent, where each step is equivalent to a standard convex problem. This allows
us to leverage existing SVM solvers during learning. We demonstrate bilinear
SVMs on difficult problems of people detection in video sequences and action
classification of video sequences, achieving state-of-the-art results in both.

1 Introduction

Linear classifiers (i.e., wTx > 0) are the basic building block of statistical prediction. Though quite
standard, they produce many competitive approaches for various prediction tasks. We focus here
on the task of visual recognition in video - “does this spatiotemporal window contain an object”?
In this domain, scanning-window templates trained with linear classification yield state of the art
performance on many benchmark datasets [6, 10, 7].

Bilinear models, introduced into the vision community by [23], provide an interesting generalization
of linear models. Here, data points are modelled as the confluence of a pair of factors. Typical ex-
amples include digits affected by style and content factors or faces affected by pose and illumination
factors. Conditioned on one factor, the model is linear in the other. More generally, one can define
multilinear models [25] that are linear in one factor conditioned on the others.

Inspired by the success of bilinear models in data modeling, we introduce discriminative bilinear
models for classification. We describe a method for training bilinear (multilinear) SVMs with bi-
convex (multiconvex) programs. A function f : X ×Y → R is called biconvex if f(x, y) is convex
in y for fixed x ∈ X and is convex in x for fixed y ∈ Y . Such functions are well-studied in
the optimization literature [1, 14]. While not convex, they admit efficient coordinate descent algo-
rithms that solve a convex program at each step. We show bilinear SVM classifiers can be optimized
with an off-the-shelf linear SVM solver. This is advantageous because we can leverage large-scale,
highly-tuned solvers (we use [13]) to learn bilinear classifiers with tens of thousands of features with
hundreds of millions of examples.

While bilinear models are often motivated from the perspective of increasing the flexibility of a
linear model, our motivation is reversed - we use them to reduce the number of parameters of a
weight vector that is naturally represented as a matrix or tensor W . We reduce parameters by
factorizing W into a product of low-rank factors. This parameter reduction can reduce over-fitting
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Figure 1: Many approaches for visual recognition employ linear classifiers on scanned windows.
Here we illustrate windows processed into gradient-based features [6, 12]. We show an image
window (left) and a visualization of the extracted HOG descriptor (middle), which itself is better
represented as gradient features extracted from different orientation channels (right). Most learning
formulations ignore this natural representation of visual data as matrices or tensors. Wolf et al. [26]
show that one can produce more meaningful schemes for regularization and parameter reduction
through low-rank approximations of a tensor model. Our contribution involves casting the resulting
learning problem as a biconvex optimization. Such formulations can leverage off-the-shelf solvers
in an efficient two-stage optimization. We also demonstrate that bilinear models have additional
advantages for transfer learning and run-time efficiency.

and improve run-time efficiency because fewer operations are needed to score an example. These are
important considerations when training large-scale spatial or spatiotemporal templates. In our case,
the state-of-the-art features we use to detect pedestrians are based on histograms of oriented gradient
(HOG) features [6] or spatio-temporal generalizations [7] as shown in Fig.1. The extracted feature
set of both gradient and optical flow histogram is quite large, motivating the need for dimensionality
reduction.

Finally, by sharing factors across different classification problems, we introduce a novel formulation
of transfer learning. We believe that transfer through shared factors is an important benefit of
multilinear classifiers which can help ameliorate overfitting.

We begin with a discussion of related work in Sec.2. We then explicitly define our bilinear classifier
in Sec. 3. We illustrate several applications and motivations for the bilinear framework in Sec. 4.
In Sec. 5, We describe extensions to our model for the multilinear and multiclass case. We provide
several experiments on visual recognition in the video domain in Sec. 6, significantly improving on
the state-of-the-art system for finding people in video sequences [7] both in performance and speed.
We also illustrate our approach on the task of action recognition, showing that transfer learning can
ameliorate the small-sample problem that plagues current benchmark datasets [18, 19].

2 Related Work

Tenenbaum and Freeman [23] introduced bilinear models into the vision community to model data
generated from multiple linear factors. Such methods have been extended to the multilinear set-
ting, e.g. by [25], but such models were generally used as a factor analysis or density estimation
technique. Recent work has explored extensions of tensor models to discriminant analysis [22, 27],
while our work focuses on an efficient max-margin formulation of multilinear models.

There is also a body of related work on learning low-rank matrices from the collaborative filter-
ing literature [21, 17, 16]. Such approaches typically define a convex objective by replacing the
Tr(WTW ) regularization term in our objective (6) with the trace norm Tr(

√
WTW ). This can be

seen as an alternate “soft” rank restriction on W that retains convexity. This is because the trace
norm of a matrix is equivalent to the sum of its singular values rather than the number of nonzero
eigenvalues (the rank) [3]. Such a formulation would be interesting to pursue in our scenario, but as
[17, 16] note, the resulting SDP is difficult to solve. Our approach, though non-convex, leverages
existing SVM solvers in the inner loop of a coordinate descent optimization that enforces a hard
low-rank condition.

Our bilinear-SVM formulation is closely related to the low-rank SVM formulation of [26]. Wolf
et. al. convincingly argue that many forms of visual data are better modeled as matrices rather than
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vectors - an important motivation for our work (see Fig.1). They analyze the VC dimension of rank
constrained linear classifiers and demonstrate an iterative weighting algorithm for approximately
solving an SVM problem in which the rank of W acts as a regularizer. They also outline an algo-
rithm similar to the one we propose here which has a hard constraint on the rank, but they include an
additional orthogonality constraint on the columns of the factors that compose W . This requires cy-
cling through each column separately during the optimization which is presumably slower and may
introduce additional local minima. This in turn may explain why they did not present experimental
results for their hard-rank formulation.

Our work also stands apart from Wolf et. al. in our focus on the multi-task learning, which dates
back at least to the work of Caruna [4]. Our formulation is most similar to that of Ando and Zhang
[2]. They describe a procedure for learning linear prediction models for multiple tasks with the
assumption that all models share a component living in a common low-dimensional subspace. While
this formulation allows for sharing, it does not reduce the number of model parameters as does our
approach of sharing factors.

3 Model definition

Linear predictors are of the form

fw(x) = wTx. (1)

Existing formulations of linear classification typically treat x as a vector. We argue for many prob-
lems, particularly in visual recognition, x is more naturally represented as a matrix or tensor. For
example, many state-of-the-art window scanning approaches train a classifier defined over local
feature vectors extracted over a spatial neighborhood. The Dalal and Triggs detector [6] is a partic-
ularly popular pedestrian detector where x is naturally represented as a concatenation of histogram
of gradient (HOG) feature vectors extracted from a spatial grid of ny × nx, where each local HOG
descriptor is itself composed of nf features. In this case, it is natural to represent an example x
as a tensor X ∈ Rny×nx×nf . For ease of exposition, we develop the mathematics for a simpler
matrix representation, fixing nf = 1. This holds, for example, when learning templates defined on
grayscale pixel values.

We generalize (1) for a matrix X with

fW (X) = Tr(WTX). (2)

where both X and W are ny × nx matrices. One advantage of the matrix representation is that it
is more natural to regularize W and restrict the number of parameters. For example, one natural
mechanism for reducing the degrees of freedom in a matrix is to reduce its rank. We show that one
can obtain a biconvex objective function by enforcing a hard restriction on the rank. Specifically,
we enforce the rank of W to be at most d ≤ min(ny, nx). This restriction can be implemented by
writing

W = WyW
T
x where Wy ∈ Rny×d,Wx ∈ Rnx×d. (3)

This allows us to write the final predictor explicitly as the following bilinear function:

fWy,Wx
(X) = Tr(WyW

T
x X) = Tr(WT

y XWx). (4)

3.1 Learning

Assume we are given a set of training data and label pairs {xn, yn}. We would like to learn a model
with low error on the training data. One successful approach is a support vector machine (SVM).
We can rewrite the linear SVM formulation for w and xn with matrices W and Xn using the trace
operator.

L(w) =
1
2
wTw + C

∑
n

max(0, 1− ynw
Txn). (5)

L(W ) =
1
2

Tr(WTW ) + C
∑

n

max(0, 1− yn Tr(WTXn)). (6)
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The above formulations are identical when w and xn are the vectorized elements of matrices W and
Xn. Note that (6) is convex. We wish to restrict the rank of W to be d. Plugging in W = WyW

T
x ,

we obtain our biconvex objective function:

L(Wy,Wx) =
1
2

Tr(WxW
T
y WyW

T
x ) + C

∑
n

max(0, 1− yn Tr(WxW
T
y Xn)). (7)

In the next section, we show that optimizing (7) over one matrix holding the other fixed is a convex
program - specifically, a QP equivalent to a standard SVM. This makes (7) biconvex.

3.2 Coordinate descent

We can optimize (7) with a coordinate descent algorithm that solves for one set of parameters holding
the other fixed. Each step in this descent is a convex optimization that can be solved with a standard
SVM solver. Specifically, consider

min
Wy

L(Wy,Wx) =
1
2

Tr(WyW
T
x WxW

T
y ) + C

∑
n

max(0, 1− yn Tr(WT
y XnWx)). (8)

The above optimization is convex in Wy but does not directly translate into the trace-based SVM
formulation from (6). To do so, let us reparametrize Wy as W̃y:

min
W̃y

L(W̃y,Wx) =
1
2

Tr(W̃T
y W̃y) + C

∑
n

max(0, 1− yn Tr(W̃T
y X̃n)) (9)

where W̃y = WyA
1
2 and X̃n = XnWxA

− 1
2 and A = WT

x Wx.

One can see that (9) is structurally equivalent to (6) and hence (5). Hence it can be solved with
a standard off-the-shelf SVM solver. Given a solution, we can recover the original parameters by
Wy = W̃yA

− 1
2 . Recall that A = WT

x Wx is matrix of size d × d that is in general invertible for
small d. Using a similar derivation, one can show that minWx L(Wy,Wx) is also equivalent to a
standard convex SVM formulation.

4 Motivation

We outline here a number of motivations for the biconvex objective function defined above.

4.1 Regularization

Bilinear models allow a natural way of restricting the number of parameters in a linear model. From
this perspective, they are similar to approaches that apply PCA for dimensionality reduction prior
to learning. Felzenszwalb et al. [11] find that PCA can reduce the size of HOG features by a
factor of 4 without a loss in performance. Image windows are naturally represented as a 3D tensor
X ∈ Rny×nx×nf , where nf is the dimensionality of a HOG feature. Let us “reshape” X into a 2D
matrix X ∈ Rnxy×nf where nxy = nxny . We can restrict the rank of the corresponding model
to d by defining W = WxyW

T
f . Wxy ∈ Rnxy×d is equivalent to a vectorized spatial template

defined over d features at each spatial location, while Wf ∈ Rnf×d defines a set of d basis vectors
spanning Rnf . This basis can be loosely interpreted as the PCA-basis estimated in [11]. In our
biconvex formulation, the basis vectors are not constrained to be orthogonal, but they are learned
discriminatively and jointly with the template Wxy . We show in Sec. 6 this often significantly
outperforms PCA-based dimensionality reduction.

4.2 Efficiency

Scanning window classifiers are often implemented using convolutions [6, 12]. For example, the
product Tr(WTX) can be computed for all image windows X with nf convolutions. By restricting
W to be WxyW

T
f , we project features into a d dimensional subspace spanned by Wf , and com-

pute the final score with d convolutions. One can further improve efficiency by using the same
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d-dimensional feature space for a large number of different object templates - this is precisely the
basis of our transfer approach in Sec.4.3. This can result in significant savings in computation. For
example, spatio-temporal templates for finding objects in video tend to have large nf since multiple
features are extracted from each time-slice.

Consider a rank-1 restriction of Wx and Wy . This corresponds to a separable filter Wxy . Hence, our
formulation can be used to learn separable scanning-window classifiers. Separable filters can be
evaluated efficiently with two one-dimensional convolutions. This can result in significant savings
because computing the score at the window is now O(nx + ny) rather than O(nxny).

4.3 Transfer

Assume we wish to trainM predictors and are given {xm
n , y

m
n } training data pairs for each prediction

problem 1 ≤ m ≤M . One can write all M learning problems with a single optimization:

L(W 1, . . . ,WM ) =
1
2

∑
m

Tr(WmT

Wm) +
∑
m

Cm

∑
n

max(0, 1− ym
n Tr(WmT

Xm
n )). (10)

As written, the problem above can be optimized over each Wm independently. We can introduce
a rank constraint on Wm that induces a low-dimensional subspace projection of Xm

n . To transfer
knowledge between the classification tasks, we require all tasks to use the same low-dimensional
subspace projection by sharing the same feature matrix:

Wm = Wm
xyW

T
f

Note that the leading dimension of Wm
xy can depend on m. This fact allows for Xm

n from different
tasks to be of varying sizes. In our motivating application, we can learn a family of HOG templates
of varying spatial dimension that share a common HOG feature subspace. The coordinate descent
algorithm from Sec.3.2 naturally applies to the multi-task setting. Given a fixedWf , it is straightfor-
ward to independently optimize Wm

xy by defining A = WT
f Wf . Given a fixed set of Wm

xy , a single
matrix Wf is learned for all classes by computing:

min
W̃f

L(W̃f ,W
1
xy, . . . ,W

M
xy ) =

1
2

Tr(W̃T
f W̃f ) +

∑
m

Cm

∑
n

max(0, 1− ym
n Tr(W̃T

f X̃
m
n ))

where W̃f = WfA
1
2 and X̃m

n = Xm
n W

m
xyA

− 1
2 and A =

∑
m

WmT

xy Wm
xy.

If all problems share the same slack penalty (Cm = C), the above can be optimized with an off-the-
shelf SVM solver. In the general case, a minor modification is needed to allow for slack-rescaling
[24].

In practice, nf can be large for spatio-temporal features extracted from multiple temporal windows.
The above formulation is convenient in that we can use data examples from many classification tasks
to learn a good subspace for spatiotemporal features.

5 Extensions

5.1 Multilinear

In many cases, a data point x is more natural represented as a multidimensional matrix or a high-
order tensor. For example, spatio-temporal templates are naturally represented as a 4th-order tensor
capturing the width, height, temporal extent, and the feature dimension of a spatio-temporal window.
For ease of exposition let us assume the feature dimension is 1 and so we write a feature vector x as
X ∈ Rnx×ny×nt . We denote the element of a tensor X as xijk. Following [15], we define a scalar
product of two tensors W and X as the sum of their element-wise products:

〈W,X〉 =
∑
ijk

wijkxijk. (11)

With the above definition, we can generalize our trace-based objective function (6) to higher-order
tensors:

L(W ) =
1
2
〈W,W 〉+ C

∑
n

max(0, 1− yn 〈W,Xn〉). (12)
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We wish to impose a rank restriction on the tensor W . The notion of rank for tensors of order
greater than two is subtle - for example, there are alternate approaches for defining a high-order
SVD [25, 15]. For our purposes, we follow [20] and define W as a rank d tensor by writing it as
product of matrices W y ∈ Rny×d,W x ∈ Rnx×d,W t ∈ Rnt×d:

wijk =
d∑

s=1

wy
isw

x
jsw

t
ks. (13)

Combining (11) - (13), it is straightforward to show that L(W y,W x,W t) is convex in one matrix
given the others. This means our coordinate descent algorithm from Sec.3.2 still applies. As an
example, consider the case when d = 1. This rank restriction forces the spatio-temporal template
W to be separable in along the x, y, and t axes, allowing for window-scan scoring by three one-
dimensional convolutions. This greatly increases run-time efficiency for spatio-temporal templates.

5.2 Bilinear structural SVMs

We outline here an extension of our formalism to structural SVMs [24]. Structural SVMs learn
models that predict a structured label yn given a data point xn. Given training data of the form
{xn, yn}, the learning problem is:

L(w) =
1
2
wTw + C

∑
n

max
y

(l(yn, y)− wT ∆φ(xn, yn, y)) (14)

where ∆φ(xn, yn, y) = φ(xn, yn)− φ(xn, y),

and where l(yn, y) is the loss of assigning example i with label y given that its true label is yn. The
above optimization problem is convex in w. As a concrete example, consider the task of learning a
multiclass SVM for nc classes using the formalism of Crammer and Singer [5]. Here,

w =
[
wT

1 . . . wT
nc

]
,

where each wi ∈ Rnx can be interpreted as a classifier for class i. The corresponding φ(x, y) will
be a sparse vector with nx nonzero values at those indices associated with the yth class. It is natural
to model the relevant vectors as matrices W,Xn,∆Φ that lie in Rnc×nx . We can enforce W to be
of rank d < min(nc, nx) by defining W = WcW

T
x where Wc ∈ Rnc×d and Wx ∈ Rnx×d. For

example, one may expect template classifiers that classify nc different human actions to reside in a
d dimensional subspace. The resulting biconvex objective function is

L(Wc,Wx) =
1
2

Tr(WxW
T
c WcW

T
x ) + C

∑
n

max
y

(l(yn, y)− Tr(WxW
T
c Φ(Xn, yn, y)). (15)

Using our previous arguments, it is straightforward to show that the above objective is biconvex and
that each step of the coordinate descent algorithm reduces to a standard structural SVM problem.

6 Experiments

We focus our experiments on the task of visual recognition using spatio-temporal templates. This
problem domain has large feature sets obtained by histograms of gradients and histograms of optical
flow computing from a frame pair. We illustrate our method on two challenging tasks using two
benchmark datasets - detecting pedestrians in video sequences from the INRIA-Motion database [7]
and classifying human actions in UCF-Sports dataset [18].

We model features computed from frame pairs x as matrices X ∈ Rnxy×nf , where nxy = nxny

is the vectorized spatial template and nf is the dimensionality of our combined gradient and flow
feature space. We use the histogram of gradient and flow feature set from [7]. Our bilinear model
learns a classifier of the form WxyW

T
f where Wxy ∈ Rnxy×d and Wf ∈ Rnf×d. Typical values

include ny = 14, nx = 6, nf = 84, and d = 5 or 10.
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6.1 Spatiotemporal pedestrian detection

Scoring a detector: Template classifiers are often scored using missed detections versus false-
positives-per-window statistics. However, recent analysis suggests such measurements can be mis-
leading [9]. We opt for the scoring criteria outlined by the widely-acknowledged PASCAL com-
petition [10], which looks at average precision (AP) results obtained after running the detector on
cluttered video sequences and suppressing overlapping detections.

Baseline: We compare with the linear spatiotemporal-template classifier from [7]. The static-image
detector counterpart is a well-known state-of-the-art system for finding pedestrians [6]. Surprisingly,
when scoring AP for person detection in the INRIA-motion dataset, we find the spatiotemporal
model performed worse than the static-image model. This is corroborated by personal communi-
cation with the authors as well as Dalal’s thesis [8]. We found that aggressive SVM cutting-plane
optimization algorithms [13] were needed for the spatiotemporal model to outperform the spatial
model. This suggests our linear baseline is the true state-of-the-art system for finding people in
video sequences. We also compare results with an additional rank-reduced baseline obtained by set-
ting wf to the basis returned by a PCA projection of the feature space from nf to d dimensions. We
use this PCA basis to initialize our coordinate descent algorithm when training our bilinear models.

We show precision-recall curves in Fig.2. We refer the reader to the caption for a detailed analysis,
but our bilinear optimization seems to produce the state-of-the-art system for finding people in video
sequences, while being an order-of-magnitude faster than previous approaches.

6.2 Human action classification

Action classification requires labeling a video sequence with one of nc action labels. We do this
by training nc 1-vs-all action templates. Template detections from a video sequence are pooled
together to output a final action label. We experimented with different voting schemes and found
that a second-layer SVM classifier defined over the maximum score (over the entire video) for each
template performed well. Our future plan is to integrate the video class directly into the training
procedure using our bilinear structural SVM formulation.

Action recognition datasets tend to be quite small and limited. For example, up until recently, the
norm consisted of scripted activities on controlled, simplistic backgrounds. We focus our results
on the relatively new UCF Sports Action dataset, consisting of non-scripted sequences of cluttered
sports videos. Unfortunately, there has been few published results on this dataset, and the initial
work [18] uses a slightly different set of classes than those which are available online. The published
average class confusion is 69.2%, obtained with leave-one-out cross validation. Using 2-fold cross
validation (and hence significantly less training data), our bilinear template achieves a score of
64.8% (Fig. 3). Again, we see a large improvement over linear and PCA-based approaches. While
not directly comparable, these results suggest our model is competitive with the state of the art.

Transfer: We use the UCF dataset to evaluate transfer-learning in Fig.4. We consider a small-
sample scenario when one has only two example video sequences of each action class. Under this
scenario, we train one bilinear model in which the feature basis Wf is optimized independently for
each action class, and another where the basis is shared across all classes. The independently-trained
model tends to overfit to the training data for multiple values of C, the slack penalty from (6). The
joint model clearly outperforms the independently-trained models.

7 Conclusion

We have introduced a generic framework for multilinear classifiers that are efficient to train with
existing linear solvers. Multilinear classifiers exploit the natural matrix and/or tensor representation
of spatiotemporal data. For example, this allows one to learn separable spatio-temporal templates
for finding objects in video. Multilinear classifiers also allow for factors to be shared across clas-
sification tasks, providing a novel form of transfer learning. In our future experiments, we wish to
demonstrate transfer between domains such as pedestrian detection and action classification.
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Figure 2: Our results on the INRIA-motion database [7]. We evaluate results using average preci-
sion, using the well-established protocol outlined in [10]. The baseline curve is our implementation
of the HOG+flow template from [7]. The size of the feature vector is over 7,000 dimensions. Using
PCA to reduce the dimensionality by 10X results in a significant performance hit. Using our bilin-
ear formulation with the same low-dimensional restriction, we obtain better performance than the
original detector while being 10X faster. We show example detections on video clips on the right.
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Figure 3: Our results on the UCF Sports Action dataset [18]. We show classification results obtained
from 2-fold cross validation. Our bilinear model provides a strong improvement over both the linear
and PCA baselines. We show class confusion matrices, where light values correspond to correct
classification. We label each matrix with the average classification rate over all classes.

Iter1 Iter2
Ind (C=.01) .222 .289
Joint (C=.1) .267 .356

Walk−Iter2Walk−Iter1

(2 training videos per class)

UCF Sport Action Dataset closeup
Walk−Iter2

closeup
Walk−Iter1

Figure 4: We show results for transfer learning on the UCF action recognition dataset with limited
training data - 2 training videos for each of 12 action classes. In the top table row, we show results
for independently learning a subspace for each action class. In the bottom table row, we show
results for jointly learning a single subspace that is transfered across classes. In both cases, the
regularization parameter C was set on held-out data. The jointly-trained model is able to leverage
training data from across all classes to learn the feature space Wf , resulting in overall better perfor-
mance. On the right, We show low-rank models W = WxyW

T
f during iterations of the coordinate

descent. Note that the head and shoulders of the model are blurred out in iteration 1 which uses
PCA, but after the biconvex training procedure discriminatively updates the basis, the final model is
sharper at the head and shoulders.
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