
Bilinear classifiers for visual recognition

Hamed Pirsiavash Deva Ramanan Charless Fowlkes
Department of Information and Computer Science

University of California at Irvine
{hpirsiav,dramanan,fowlkes}@ics.uci.edu

Abstract

We describe an algorithm for learning bilinear SVMs. Bilinear classifiers are
a discriminative instantiation of bilinear models that capture the dependence of
data on multiple factors. Such models are particularly appropriate for visual
data that is better represented as a matrix or tensor, rather than a vector. When
discriminatively-learning scanning-window templates, bilinear models can cap-
ture notions such as filter separability. By sharing linear factors across classes,
they offer a novel form of transfer learning between classification tasks. Bilinear
models can be trained with biconvex programs. Such programs are optimized with
coordinate descent, where each coordinate step requires solving a convex program
- in our case, we use a standard off-the-shelf SVM solver. We demonstrate bilin-
ear SVMs on difficult programs of people detection in video sequences and action
classification of video sequences, achieving state-of-the-art results in both.

1 Introduction

Linear classifiers (e.g., wTx > 0) are the basic building block of statistical prediction. Though quite
standard, they produce many competitive approaches for various prediction tasks. We focus here
on the task of visual recognition in video - “does this spatiotemporal window contain an object”?
In this domain, scanning-window templates trained with linear classification yield state of the art
performance on many benchmark datasets [5, 9, 6].

Bilinear models, introduced into the vision community by [21], provide an interesting generalization
of linear models. Here, data points are modelled as the confluence of a pair of factors. Typical ex-
amples include digits affected by style and content factors or faces affected by pose and illumination
factors. Conditioned on one factor, the model is linear in the other. More generally, one can define
multilinear models [23] that are linear in one factor conditioned on the others.

Inspired by the success of bilinear models in data modeling, we introduce discriminative bilinear
models for classification. We describe a method for training bilinear (multilinear) SVMs with bi-
convex (multiconvex) programs. A function f : X ×Y → R is called biconvex if f(x, y) is convex
in y for fixed x ∈ X and is convex in x for fixed y ∈ Y . Such functions are well-studied in the opti-
mization literature [1, 13]. While not convex, they admit efficient coordinate descent algorithms that
solve a convex program at each step.We show bilinear SVM classifiers can be optimized with an off-
the-shelf linear SVM solver. This is advantageous because we can leverage large-scale, highly-tuned
solvers (we use [12]) to learn bilinear classifiers with tens of thousands of features with hundreds of
millions of examples.

While bilinear models are often motivated from the perspective of increasing the flexibility of a
linear model, our motivation is reversed - we use them to reduce the parameters of a weight vector
w that is naturally represented as a matrix or tensorW . We reduce parameters by factorizingW into
a product of low-rank factors. This parameter reduction can significantly ameliorate over-fitting and
improve run-time efficiency because the fewer operations are needed to score an example. These are

1



Figure 1: Many successful approaches for visual recognition employ linear classifiers on subwin-
dows. Here we illustrate windows processed into gradient-based features [5, 11]. Most learning
formulations ignore the natural representation of training and test examples as matrices or tensors.
[24] shows that one can produce more meaningful schemes for regularization and parameter re-
duction through low-rank approximations of a tensor model. Our contribution involves casting the
resulting learning problem as a biconvex (multiconvex) learning problem. Such formulations have
additional advantages for transfer learning and efficient run-time performance of sliding window
classifiers.

important considerations when training large-scale spatial or spatiotemporal template-classifiers. In
our case, the state-of-the-art features we use to detect pedestrians are based on histograms of gradient
(HOG) features [5] or spatio-temporal generalizations [6] as shown in Fig.1. The extracted feature
set of both gradient and optical flow histogram is quite large, motivating the need for dimensionality
reduction.

Finally, by sharing factors across different classification problems, we introduce a novel formulation
of transfer learning. We believe that transfer through shared factors is an important benefit of
multilinear classifiers which can help ameliorate overfitting.

We begin with a discussion of related work in Sec.2. We then explicitly define our bilinear classifier
in Sec. 3. We illustrate several applications and motivations for the bilinear framework in Sec. 4.
We describe extensions to our model in Sec. 5 for the multilinear and multiclass case. We provide
several experiments on visual recognition in the video domain in Sec. 6, significantly improving the
state-of-the-art system for finding people in video sequences [6]. We also illustrate our approach
on the task of action recognition, showing that transfer learning can ameliorate the small-sample
problem that plagues current benchmark datasets [17, 18].

2 Related Work

Tenenbaum and Freeman [21] introduced bilinear models into the vision community to model data
generated from multiple linear factors. Such methods have been extended to the multilinear setting,
e.g. by by [23], but such models were generally used as a factor analysis or density estimation
technique, in contrast to our discriminatively trained classification approach.

There is also a body of related work on learning low-rank matrices from the collaborative filter-
ing literature [20, 16, 15]. Such approaches typically define a convex objective by replacing the
Tr(WTW ) regularization term in our objective (5) with the trace norm Tr(W ). This can be seen as
an alternate “soft” rank restriction on W that retains convexity. This is because the trace of a matrix
is equivalent to the sum of its eigenvalues rather than the number of nonzero eigenvalues (the rank)
[3]. Such a formulation would be interesting to pursue in our scenario, but as [16, 15] note, the re-
sulting SDP is difficult to solve. Our approach, though non-convex, leverages existing SVM solvers
in the inner loop of a coordinate descent optimization that enforces a hard low-rank condition.

Our bilinear-SVM formulation is closely related to the low-rank SVM formulation of [24]. Wolf
et. al. convincingly argue that many forms of visual data are better modeled as matrices rather than
vectors - an important motivation for our work (see Fig.1). They analyze the VC dimension of rank-
constrained linear classifiers and demonstrate an iterative weighting algorithm for approximately
solving an SVM problem with a “soft” rank restriction on W . They also briefly outline an algorithm
for a “hard” rank restriction on W, similar to the one we propose, but they include an additional
orthogonality constraint on the columns of the factors that compose W . This breaks the biconvexity

2



property, requiring one to cycle through each column separately during the optimization. The cycled
optimization is presumably slower and may introduce additional local minima, which may explain
why experimental results are not presented for the hard-rank formulation.

Our work also stands apart from Wolf et. al. in our application to transfer learning by sharing factors
across multiple class models or multiple datasets. Along these lines, Ando and Zhang [2] describe
a procedure for learning linear prediction models for multiple tasks with the assumption that all
models share a component living in a common low-dimensional subspace. While this formulation
allows for sharing, it does not reduce the number of model parameters.

3 Model definition

Linear predictors are of the form

fw(x) = wTx (1)

Existing formulations of linear classification typically treat x as a vector. We argue for many prob-
lems, particularly in visual recognition, x is more naturally represented as a matrix or tensor. For ex-
ample, many state-of-the-art window scanning approaches train a classifier defined over local feature
vectors extracted over a spatial neighborhood. The Dalal and Triggs detector [5] is a well-known
pedestrian detector where x is naturally represented as a concatenation of histogram of gradient
(HOG) feature vectors extracted from a spatial grid of ny × nx, where each local HOG descriptor
is itself composed of nf features. In this case, it is natural to represent an example x as a tensor
X ∈ Rny×nx×nf . For ease of exposition, we develop the mathematics for a simpler matrix represen-
tation X ∈ Rny×nx which assumes that nf = 1. This holds, for example, when learning templates
defined on grayscale pixel values. We generalize (1) for a matrix X using the trace operator:

fW (X) = Tr(WTX) where X,W ∈ Rny×nx (2)

One advantage of the matrix representation is that it is more natural to regularize W and restrict the
number of parameters. For example, one natural mechanism for reducing the degrees of freedom in a
matrix is to reduce its rank. We show that one can obtain a biconvex objective function by enforcing
a hard restriction on the rank. Specifically, we enforce the rank ofW to be at most d ≤ min(ny, nx).
This restriction can be implemented by writing

W = WyW
T
x where Wy ∈ Rny×d and Wx ∈ Rnx×d

This allows us to write the final predictor explicitly as a bilinear function:

fWy,Wx
(X) = Tr(WyW

T
x X) = Tr(WT

y XWx) (3)

3.1 Learning

Assume we are given a set of training data and label pairs {xn, yn}. We would like to learn a model
with low error on the training data. One successful approach is a support vector machine (SVM).
We can rewrite the linear SVM formulation for w and xn with matrices W and Xn using the trace
operator.

L(w) =
1
2
wTw + C

∑
n

max(0, 1− ynw
Txn) (4)

L(W ) =
1
2

Tr(WTW ) + C
∑

n

max(0, 1− yn Tr(WTXn)) (5)

The above formulations are identical when w and xn are the vectorized elements of matrices W and
Xn. This makes (5) convex. We wish to restrict the rank of W to be d. Plugging in W = WyW

T
x ,

we obtain the following objective function:

L(Wy,Wx) =
1
2

Tr(WxW
T
y WyW

T
x ) + C

∑
n

max(0, 1− yn Tr(WxW
T
y Xn)) (6)

In the next section, we show that optimizing (6) over one matrix holding the other fixed is a convex
program - specifically, a QP equivalent to a standard SVM. This makes (6) biconvex.

3



3.2 Coordinate descent

We can optimize (6) with a coordinate descent algorithm that solves for one set of parameters holding
the other fixed. Each step in this descent is a convex optimization that can be solved with a standard
SVM solver. Consider the following coordinate descent problem:

min
Wy

L(Wy,Wx) =
1
2

Tr(WyW
T
x WxW

T
y ) + C

∑
n

max(0, 1− yn Tr(WT
y XnWx)) (7)

The above optimization is convex in Wy but does not directly translate into the trace-based SVM
formulation from (5). To do so, let us reparametirize Wy as W̃y:

min
W̃y

L(W̃y,Wx) =
1
2

Tr(W̃T
y W̃y) + C

∑
n

max(0, 1− yn Tr(W̃T
y X̃n)) (8)

where W̃y = WyA
1
2 and X̃n = XnWxA

− 1
2 and A = WT

x Wx

(8) is structurally equivalent to (5) and hence (4). Hence it can be solved with a standard off-the-
shelf SVM solver. Given a solution, we can recover the original parameters by Wy = W̃yA

1
2 .

Recall that A = WT
x Wx is matrix of size d × d that is in general invertible for a small d. Using

a similar derivation, one can show that minWx
L(Wy,Wx) is also equivalent to a standard convex

SVM formulation.

4 Motivation

We outline here a number of motivations for the biconvex objective function defined above.

4.1 Regularization

Bilinear models allow a natural way of restricting the amount of parameters in a linear model.
From this perspective, they are similar to approaches that apply PCA for dimensionality reduction
prior to learning. Felzenszwalb et al [10] find that PCA can reduce the size of HOG features by a
factor of 4 without loss in performance. Image windows are naturally represented as a 3D tensor
X ∈ Rny×nx×nf , where nf is the dimensionality of a HOG feature. Let us “reshape” X into a 2D
matrix X ∈ Rnxy×nf where nxy = nxny . We can restrict the rank of the corresponding model
to d by defining W = WxyW

T
f . Wxy ∈ Rnxy×d is equivalent to a vectorized spatial template

defined over d features at each spatial location, while Wf ∈ Rnf×d defines a set of d basis vectors
spanning Rnf . This basis can be loosely interpreted as the PCA-basis estimated in [10]. In our
biconvex formulation, the basis vectors are not constrained to be orthogonal, but they are learned
discriminatively and jointly with the template Wxy . We show in Sec. 6 this often significantly
outperforms PCA-based dimensionality reduction of the feature space.

4.2 Efficiency

Scanning window classifiers are often implemented using convolutions [5, 11]. For example, the
product Tr(WTX) can be computed for all image windows X with nf convolutions. By restricting
W to be WxyW

T
f , we project features into a d dimensional subspace spanned by Wf , and com-

pute the final score with d convolutions. One can further improve efficiency by using the same
d-dimensional feature space for a large number of different object templates - this is precisely the
basis of our transfer approach in Sec.4.3. This can result in significant savings in computation. For
example, spatio-temporal templates for finding objects in video tend to have large nf since multiple
features are extracted from each time-slice.

Consider a rank-1 restriction of Wx and Wy . This corresponds to a separable filter Wxy . Hence, our
formulation can be used to learn separable scanning-window classifiers. Separable filters can be
evaluated efficiently with two one-dimensional convolutions. This can result in significant savings
because computing the score at the window is now O(nx + ny) rather than O(nxny).

4



4.3 Transfer

Assume we wish to train M predictors and are given {xnm, ynm} training data pairs for each pre-
diction problem 0 ≤ m ≤ M . For notasimplicity, we assume the same amount of training data per
prediction problem, though this is not necessary. Abbreviating WmT for (Wm)T , we write all M
learning problems as a single optimization problem:

L(W 1, . . . ,WM ) =
1
2

∑
m

Tr(WmTWm) +
∑
m

Cm

∑
n

max(0, 1− ynm Tr(WmTXnm)) (9)

As written, the problem above can be optimized over each Wm independently. We can introduce
a rank constraint on Wm that induces a low-dimensional subspace projection of Xnm. To transfer
knowledge between the classification problems, we can require all Wm to share the same feature
matrix

Wm = Wm
xyW

T
f

Note that the leading dimension of Wm
xy can depend on m. This allows for Xnm from different

classes to be of varying sizes. In our motivating application, we can learn a family of HOG tem-
plates of varying spatial dimension that share a common HOG feature subspace. The coordinate
descent algorithm from Sec.3.2 naturally applies to the multi-task setting. Given a fixed Wf , it is
straightforward to independently optimize Wm

xy by defining A = WT
f Wf . Given a fixed set of Wm

xy ,
a single matrix Wf is learned for all classes by computing:

min
W̃f

L(W̃f ,W
1
xy, . . . ,W

M
xy ) =

1
2

Tr(W̃T
f W̃f ) +

∑
m

Cm

∑
n

max(0, 1− yn Tr(W̃T
f X̃

nm))

where W̃f = WfA
1
2 and X̃nm = XnmWm

xyA
− 1

2 and A =
∑
m

WmT
xy Wm

xy

The above problem can be solved with an off-the-shelf SVM solver when the slack penalties are
identical across tasks Cm = C. When this is not the case, a small modification to the interface
is needed. In practice, nf can be quite large for spatiotemporal features extracted from multiple
temporal windows. The above formulation is convenient in that we can use data examples from
many classification tasks to learn a good subspace for spatiotemporal features.

5 Extensions

5.1 Multilinear

In many cases, a data point x is more natural represented as a multidimensional matrix or a high-
order tensor. For example, spatio-temporal templates are naturally represented as a 4th-order tensor
capturing the width, height, temporal extent, and the feature dimension of a spatiotemporal window.
For ease of exposition let us assume the feature dimension is 1 and so we write a feature vector x as
X ∈ Rnx×ny×nt . We denote the element of a tensor X as xijk. Following [14], we define a scalar
product of two tensors W and X as the sum of their elementwise products

< W,X >=
∑
ijk

wijkxijk (10)

With the above definition, we can generalize our trace-based objective function (5) to higher-order
tensors:

L(W ) =
1
2
< W,W > +C

∑
n

max(0, 1− yn < W,Xn >) (11)

We wish to impose a rank restriction on the tensor W . The notion of rank for tensors of order
greater than two is subtle - for example, there are alternate approaches for defining a high-order
SVD [23, 14]. For our purposes, we follow [19] and define W as a rank d tensor by writing it as
product of matrices W y ∈ Rny×d,W x ∈ Rnx×d, and W t ∈ Rnt×d:

wijk =
d∑

s=1

wy
isw

x
jsw

t
ks (12)

5



Combining (10) - (12), it is straightforward to show that L(W y,W x,W t) is convex in one matrix
given the others. This means our coordinate descent algorithm from Sec.3.2 still applies. As an
example, consider the case when d = 1. This rank restriction forces the spatiotemporal template W
to be separable in along the x, y, t axis, allowing for window-scan scoring by three one-dimensional
convolutions. This greatly increases run-time efficiency for spatiotemporal templates.

5.2 Bilinear structural SVMs

We outline here an extension of our formalism to structural SVMs [22]. Structural SVMs learn
models that predict a structured label yn given a data point xn. Given training data of the form
{xn, yn}, the learning problem is:

L(w) =
1
2
wTw + C

∑
n

max
y

l(yn, y)− wT ∆φ(xn, yn, y) (13)

∆φ(xn, yn, y) = φ(xn, yn)− φ(xn, y) (14)

where l(yn, y) is the loss of assigning example i with label y given that its true label is yn. The
above optimization problem is convex in w. As an concrete example, consider the task of learning a
multiclass SVM for nc classes using the formalism of Crammer and Singer [4]. Here,

w =
[
wT

1 . . . wT
nc

]
where each wi ∈ Rnx can be interpreted as a classifier for class i. The corresponding φ(x, y) will
be a sparse vector with nx nonzero values at those indices associated with the yth class. It is natural
to model the relevant vectors as matrices W,Xn,∆Φ that lie in Rnc×nx . We can enforce W to be
of rank d < min(nc, nx) be defining W = WcW

T
x where Wc ∈ Rnc×d and Wx ∈ Rnx×d. For

example, one may expect template classifiers that classify nc different human actions to reside in a
d dimensional subspace. The resulting biconvex objective function is

L(Wc,Wx) =
1
2

Tr(WxW
T
c WcW

T
x ) + C

∑
n

max
y

(l(yn, y)− Tr(WxW
T
c Φ(Xn, yn, y)) (15)

Using our previous arguments, it is straightforward to show that the above objective is biconvex and
that each step of the coordinate descent algorithm reduces to a standard structural SVM problem.

6 Experiments

We focus our experiments on the task of visual recognition using spatio-temporal templates. This
problem domain has large feature sets obtained by histograms of gradients and histograms of optical
flow computing from a frame pair. We illustrate our method on two challenging tasks using two
benchmark datasets - detecting pedestrians in video sequences from the INRIA-Motion database [6]
and classifying human actions in UCF-Sports dataset [17].

We model features computed from frame pairs x as matrices X ∈ Rnxy×nf , where nxy = nxny is
the length of the vectorized spatial template and nf is the dimensionality of our combined gradient
and flow feature space. We use the histogram of gradient and flow feature set from [6]. Our bilinear
model learns a classifier of the form WxyW

T
f where Wxy ∈ Rnxy×d and Wf ∈ Rnf×d. Typical

values include ny = 14, nx = 6, nf = 82, and d = 5 or 10.

6.1 Spatiotemporal pedestrian detection

Scoring a detector: Template classifiers are often scored using missed detections versus false-
positives-per-window statistics. However, recent analysis suggests such measurements can be quite
misleading [8]. We opt for the scoring criteria outlined by the widely-acknowledged PASCAL
competition [9], which looks at average precision (AP) results obtained after running the detector
on cluttered video sequences and suppressing overlapping detections.

Baseline: We compare with the linear spatiotemporal-template classifier from [6]. The static-image
detector counterpart is a well-known state-of-the-art system for finding pedestrians [5]. Surprisingly,

6



when scoring AP for person detection in the INRIA-motion dataset, we find the spatiotemporal
model performed worse than the static-image model. This is corroborated by personal communi-
cation with the authors as well as Dalal’s thesis [7]. We found that aggressive SVM cutting-plane
optimization algorithms [12] were needed for the spatiotemporal model to outperform the spatial
model. This suggests our linear baseline is the true state-of-the-art system for finding people in
video sequences. We also compare results with an additional rank-reduced baseline obtained by set-
ting wf to the basis returned by a PCA projection of the feature space from nf to d dimensions. We
use this PCA basis to initialize our coordinate descent algorithm when training our bilinear models.

We show precision-recall curves in Fig.2. We refer the reader to the caption for a detailed analysis,
but our bilinear optimization seems to produce the state-of-the-art system for finding people in video
sequences, while being an order-of-magnitude faster than previous approaches.

6.2 Human action classification

Action classification requires labeling a video sequence with one of nc action labels. We do this
by training nc 1-vs-all action templates. Template detections from a video sequence are pooled
together to output a final action label. We experimented with different voting schemes and found
that a second-layer SVM classifier defined over the maximum score (over the entire video) for each
template performed well. Our future plan is to integrate the video class directly into the training
procedure using our bilinear structural SVM formulation.

Action recognition datasets tend to be quite small and limited. For example, up until recently, the
norm consisted of scripted activities on controlled, simplistic backgrounds. We focus our results
on the relatively new UCF Sports Action dataset, consisting of non-scripted sequences of cluttered
sports videos. Unfortunately, there has been few published results on this dataset, and the initial
work [17] uses a slightly different set of classes than those which are available online. The published
average class confusion is 69.2%, obtained with leave-one-out cross validation. Using 2-fold cross
validation (and hence significantly less training data), our bilinear template achieves a score of
64.8% 3. Again, we see a large improvement over linear and PCA-based approaches. While not
directly comparable, these results suggest our model is competitive with the state of the art.

Transfer: We use the UCF dataset to evaluate transfer-learning in Fig.4. We consider a small-
sample scenario when one has only two example video sequences of each action class. Under this
scenario, we train one bilinear model in which the feature basis Wf is optimized independently for
each action class, and another where the basis is shared across all classes. The independently-trained
model tends to overfit to the training data for multiple values of C, the slack penalty from (5). The
joint model clearly outperforms the independently-trained models.

6.3 Conclusion

We have introduced a generic framework for multilinear classifiers that are efficient to train with
existing solvers. Multilinear classifiers exploit the natural matrix and/or tensor representation of
spatiotemporal data. For example, this allows one to learn separable spatio-temporal templates for
finding objects in video. Multilinear classifiers also allow for factors to be shared across classifi-
cation tasks, providing a novel form of transfer learning. In our future experiments, we wish to
demonstrate transfer between domains such as pedestrian detection and action classification.

This material is based upon work supported by the National Science Foundation under Grant No.
0812428.

References
[1] F.A. Al-Khayyal and J.E. Falk. Jointly constrained biconvex programming. Mathematics of Operations

Research, pages 273–286, 1983.

[2] R.K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unla-
beled data. The Journal of Machine Learning Research, 6:1817–1853, 2005.

[3] S.P. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

[4] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector ma-
chines. The Journal of Machine Learning Research, 2:265–292, 2002.

7



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

c
is

io
n

Prec/Rec curve

 

 

Bilinear AP = 0.795

Baseline AP = 0.765

PCA AP = 0.698

Figure 2: Our results on the INRIA-motion database [6]. We evaluate results using average preci-
sion, using the well-established protocol outlined in [9]. The baseline curve is our implementation
of the HOG+flow template from [6]. The size of the feature vector is over 7,000 dimensions. Using
PCA to reduce the dimensionality by 10X results in a significant performance hit. Using our bilin-
ear formulation with the same low-dimensional restriction, we obtain better performance than the
original detector while being 10X faster. We show example detections on video clips on the right.

Dive−Side

Golf−Back

Golf−Front

Golf−Side

Kick−Front

Kick−Side

Ride−Horse

Run−Side

Skate−Front

Swing−Bench

Swing−Side

Walk−Front

D
iv
e−

Sid
e

G
ol
f−

Bac
k

G
ol
f−

Fro
nt

G
ol
f−

Sid
e

Kic
k−

Fro
nt

Kic
k−

Sid
e

R
id
e−

H
or

se

R
un

−S
id
e

Ska
te

−F
ro

nt

Sw
in
g−

Ben
ch

Sw
in
g−

Sid
e

W
al
k−

Fro
nt

Dive−Side

Golf−Back

Golf−Front

Golf−Side

Kick−Front

Kick−Side

Ride−Horse

Run−Side

Skate−Front

Swing−Bench

Swing−Side

Walk−Front

D
iv
e−

Sid
e

G
ol
f−

Bac
k

G
ol
f−

Fro
nt

G
ol
f−

Sid
e

Kic
k−

Fro
nt

Kic
k−

Sid
e

R
id
e−

H
or

se

R
un

−S
id
e

Ska
te

−F
ro

nt

Sw
in
g−

Ben
ch

Sw
in
g−

Sid
e

W
al
k−

Fro
nt

Dive−Side

Golf−Back

Golf−Front

Golf−Side

Kick−Front

Kick−Side

Ride−Horse

Run−Side

Skate−Front

Swing−Bench

Swing−Side

Walk−Front

D
iv
e−

Sid
e

G
ol
f−

Bac
k

G
ol
f−

Fro
nt

G
ol
f−

Sid
e

Kic
k−

Fro
nt

Kic
k−

Sid
e

R
id
e−

H
or

se

R
un

−S
id
e

Ska
te

−F
ro

nt

Sw
in
g−

Ben
ch

Sw
in
g−

Sid
e

W
al
k−

Fro
nt

Bilinear (.648)Linear (.518)PCA (.444)

Classifiation rates for UCF Sports database

Figure 3: Our results on the UCF Sports Action dataset [17]. We show classification results obtained
from 2-fold cross validation. We show class confusion matrices, where light values correspond to
correct classification. We label each matrix with the average classification rate over all classes. Our
bilinear model provides a strong improvement our both the linear and PCA baselines.

[5] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, volume 1, 2005.

[6] N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented histograms of flow and appearance.
Lecture Notes in Computer Science, 3952:428, 2006.

[7] Navneet Dalal. Finding People in Images and Video. PhD thesis, Institut National Polytechnique de
Grenoble / INRIA Grenoble, July 2006.

[8] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: A benchmark. In CVPR, June 2009.

[9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge 2008 (VOC2008) Results. http://www.pascal-
network.org/challenges/VOC/voc2008/workshop/index.html.

[10] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively
trained part based models. PAMI, To appear.

[11] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale, deformable part
model. Computer Vision and Pattern Recognition, Anchorage, USA, June, 2008.

[12] V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for support vector machines. In Proceed-
ings of the 25th international conference on Machine learning, pages 320–327. ACM New York, NY,
USA, 2008.

[13] J. Gorski, F. Pfeuffer, and K. Klamroth. Biconvex sets and optimization with biconvex functions: a survey
and extensions. Mathematical Methods of Operations Research, 66(3):373–407, 2007.

8



Dive−Side

Golf−Back

Golf−Front

Golf−Side

Kick−Front

Kick−Side

Ride−Horse

Run−Side

Skate−Front

Swing−Bench

Swing−Side

Walk−Front

D
iv

e
−

S
id

e

G
o
lf
−

B
a
c
k

G
o
lf
−

F
ro

n
t

G
o
lf
−

S
id

e

K
ic

k
−

F
ro

n
t

K
ic

k
−

S
id

e

R
id

e
−

H
o
rs

e

R
u
n
−

S
id

e

S
k
a
te

−
F

ro
n
t

S
w

in
g
−

B
e
n
c
h

S
w

in
g
−

S
id

e

W
a
lk

−
F

ro
n
t

Dive−Side

Golf−Back

Golf−Front

Golf−Side

Kick−Front

Kick−Side

Ride−Horse

Run−Side

Skate−Front

Swing−Bench

Swing−Side

Walk−Front

D
iv

e
−

S
id

e

G
o
lf
−

B
a
c
k

G
o
lf
−

F
ro

n
t

G
o
lf
−

S
id

e

K
ic

k
−

F
ro

n
t

K
ic

k
−

S
id

e

R
id

e
−

H
o
rs

e

R
u
n
−

S
id

e

S
k
a
te

−
F

ro
n
t

S
w

in
g
−

B
e
n
c
h

S
w

in
g
−

S
id

e

W
a
lk

−
F

ro
n
t

Iter1 Iter2
Ind (C=.01) .222 .289
Joint (C=.1) .267 .356

Walk−Iter1 Walk−Iter2

UCF Sport Action Dataset

(2 training videos per class)

Jointly−trained modelsIndependantly−trained models

Figure 4: We show results for transfer learning on the UCF action recognition dataset with limited
training data - 2 training videos for each of 12 action classes. In the top table row, we show results
for independently learning a subspace for each action class. In the bottom table row, we show
results for jointly learning a single subspace that is transfered across classes. In both cases, the
regularization parameter C was set on held-out data. The independently-trained models need to
be regularized more to avoid overfitting, resulting in the lower C value. The jointly-trained model
is able to leverage training data from across all classes to learn the feature space Wf , resulting
in overall better performance. We show low-rank models W = WxyW

T
f during iterations of the

coordinate descent. On the bottom left, we show the model initialized with a basis Wf obtained
by PCA. Note that the head and shoulders of the model are blurred out. After the biconvex training
procedure discriminatively updates the basis, the final model is sharper at the head and shoulders.
The first model obtains produces a Walk classification rate of .25, while the second achieves a rate
of .50. On the right, we show class-confusion matrices of the learned models when trained with
independent Wf versus joint Wf . The joint model makes more reasonable mistakes - for example,
mistaking different aspects of golf players for each other.

[14] L.D. Lathauwer, B.D. Moor, and J. Vandewalle. A multilinear singular value decomposition. SIAM J.
Matrix Anal. Appl, 1995.

[15] N. Loeff and A. Farhadi. Scene Discovery by Matrix Factorization. In Proceedings of the 10th European
Conference on Computer Vision: Part IV, pages 451–464. Springer-Verlag Berlin, Heidelberg, 2008.

[16] J.D.M. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction. In
International Conference on Machine Learning, volume 22, page 713, 2005.

[17] M.D. Rodriguez, J. Ahmed, and M. Shah. Action MACH a spatio-temporal Maximum Average Correla-
tion Height filter for action recognition. In IEEE Conference on Computer Vision and Pattern Recognition,
2008. CVPR 2008, pages 1–8, 2008.

[18] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: A local SVM approach. In Pattern
Recognition, 2004. ICPR 2004. Proceedings of th e17th International Conference on, volume 3, 2004.

[19] A. Shashua and T. Hazan. Non-negative tensor factorization with applications to statistics and computer
vision. In International Conference on Machine Learning, volume 22, page 793, 2005.

[20] N. Srebro, J.D.M. Rennie, and T.S. Jaakkola. Maximum-margin matrix factorization. Advances in Neural
Information Processing Systems, 17:1329–1336, 2005.

[21] J.B. Tenenbaum and W.T. Freeman. Separating style and content with bilinear models. Neural Computa-
tion, 12(6):1247–1283, 2000.

[22] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and
interdependent output variables. Journal of Machine Learning Research, 6(2):1453, 2006.

[23] M.A.O. Vasilescu and D. Terzopoulos. Multilinear analysis of image ensembles: Tensorfaces. Lecture
Notes in Computer Science, pages 447–460, 2002.

[24] L. Wolf, H. Jhuang, and T. Hazan. Modeling appearances with low-rank SVM. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1–6. Citeseer, 2007.

9


