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Abstract

Semantic segmentation networks are usually learned in
a strictly supervised manner, i.e., they are trained and
tested on similar data distributions. Performance drops
drastically in the presence of domain shifts. In this pa-
per, we explore methods for learning across train and test
distributions that dramatically differ in scene structure,
viewpoints, and objects statistics. Motivated by the pro-
liferation of aerial drone robotics, we consider the tar-
get task of semantic segmentation from aerial viewpoints.
Inspired by the impact of Cityscapes [11], we introduce
AeroScapes, a new dataset of 3269 images of aerial scenes
(captured with a fleet of drones) annotated with dense se-
mantic segmentations. Our dataset differs from existing seg-
mentation datasets (that focus on ground-view or indoor-
scene domains) in terms of viewpoint, scene composition,
and object scales. We propose a simple but effective ap-
proach for transferring knowledge from such diverse do-
mains (for which considerable annotated training data ex-
ists) to our target task. To do so, we train multiple models
for aerial segmentation via progressive fine-tuning through
each source domain. We then treat these collections of mod-
els as an ensemble that can be aggregated to significantly
improve performance. We demonstrate large absolute im-
provements (8.12%) over widely-used standard baselines.

1. Introduction

Pixel-level semantic segmentation of natural scenes

is a fundamental visual recognition task. Recent history

has shown significant progress on standard segmenta-

tion benchmarks, e.g., PASCAL VOC and Microsoft

COCO [13, 29]. This success is largely owed to convo-

lutional networks [50, 28, 8]. The community has also

explored segmentation tasks that incorporate both stuff
(amorphous background regions like grass and sky) and

things (objects like car and person) categories [11, 51].

Other applications are found in domains such as biomedical
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Figure 1. Contemporary recognition systems make use of multi-

target knowledge transfer (top), where knowledge from a single

source domain is transferred to multiple target domains. We ex-

plore multi-source knowledge transfer (bottom), where knowl-

edge from multiple source domains is transferred to a single tar-

get domain. We propose an ensemble progressively fine-tuned via

diverse source domains. We explore such issues through the il-

lustrative task of semantic segmentation on aerial drone images

and introduce AeroScapes - the aerial counterpart to autonomous

vehicle segmentation benchmarks.

imaging [45, 10, 1], and satellite imaging [23, 22, 33]. In

particular, autonomous driving has witnessed significant

development [46, 40, 2] together with an increasing number

of available benchmarks [11, 42, 37].

Segmentation benchmarks: Classic semantic segmenta-

tion benchmarks have focused on general scenes, including

indoor and outdoor settings [13, 29, 51, 36]. Spurred by the

introduction of novel sensors, many segmentation bench-
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marks have focused on limited viewpoints of specialized

scenes such as ground-views of urban environments (for

autonomous vehicles) [36, 11, 51], and direct overhead

views (for orbital satellites) [41, 34, 23]. However, recent

advances in aerial robotics allow for significantly more

ease in capturing diverse viewpoints and scenes. These

represent a considerable departure in statistics compared to

previously-studied domains, which is the focus of our work.

Domain shift: Most deep segmentation models are de-

liberately trained and tested on similar data domains to

attain high accuracy. Drastic performance drop is often

observed in the presence of domain shifts. Indeed, domain

shifts across dataset distributions pose a major challenge

for learning good representations that can generalize well

to all domains. Interestingly, another perspective is that

multi-source learning of representations from such diverse

source domains may, in fact, help generalization because

each domain provides complementary information for the

target task. In our work, we introduce a simple approach

for transferring appropriate information from a diverse set

of source domains for a particular target task.

Knowledge transfer: We turn to transfer learning tech-

niques that allow us to transfer knowledge from existing

domains (for which ample annotated data exists) to the

aerial setting (for which limited annotated data exists).

While transfer learning from a source to target task is a well

studied problem [38, 49], by far the most common approach

is fine-tuning a model pre-trained on the source task [18].

Indeed, virtually every contemporary visual recognition

system transfers knowledge from ImageNet [43] to the

target task of interest. We use this methodology to produce

a ully-convolutional network (FCN) as an initial baseline,

by fine-tuning on a modest set of aerial training images

(e.g., ImageNet → AeroScapes). However, we would like

to transfer knowledge from multiple domains, including

indoor scenes and ground-view images of urban envi-

ronments (see Fig. 1). Such source domains with richly

annotated datasets represent a rich knowledge source that

we would like to exploit. But the precise manner in which

this knowledge should be transferred can be distinct and

subtle - some indoor objects (such as people) can appear

outdoors, and perhaps some outdoor objects look similar

under aerial viewpoints (such as bicycles and motorcyles).

Ensemble transfer: Our key insight is to combine knowl-

edge from multiple sources by learning an ensemble
of models that are trained with progressive fine-tuning
(ImageNet → PASCAL → AeroScapes, ImageNet →
Cityscapes → AeroScapes, etc.). Intuitively, each model in

the ensemble makes use of different source knowledge and

so will likely make different errors (e.g., PASCAL models

may be more accurate on people because they occur often in

PASCAL, while Cityscapes models may be more accurate

on vehicles). We then optimally combine these ensembles

so as to obtain a final prediction. Our ensemble model im-

proves over strong baselines by 8.12%. In summary, the

contributions of this research is as follows:

• We propose a novel architecture-agnostic method to

transfer knowledge present in diverse data sources, as

encoded by richly-labeled source datasets tailored for

domains other than the target domain of interest.

• We release the AeroScapes aerial semantic segmenta-

tion dataset, captured to study transferability of knowl-

edge from multiple segmentation benchmarks.

• We experimentally validate our proposed benchmark

using Fully Convolutional Networks, and report signif-

icant improvements over strong baselines trained with

widely-adopted best-practices.

2. Related Work
Semantic segmentation: Start-of-the-art semantic seg-

mentation methods use the convolutional networks to learn

a pixel-to-pixel mapping from the image space to semantic

label space [30, 9, 50, 28, 27, 12]. The success of these

deep neural networks can be attributed to the availability

of a large amount of pixel-level annotations and the ability

of deep nets to learn from large data in an end-to-end

manner. One of the most successful deep models is the

Fully Convolutional Network (FCN) [30] that can directly

generate the spatial label map as output.

Multi-task learning: Multi-task learning improves model

generalization by combining domain-specific information

learned through complementary tasks on each domain [6].

These methods usually learn a generalizable representation

by learning representations across domains. Inspired by the

multi-task learning paradigm, we present a multi-source
learning framework, which learns a representation for a

single target domain from multiple source representations.

Theoretically, it is possible to learn a single representation

from different domains under a multi-task framework [25].

However, in practice, this requires appropriate weighting

among different tasks and a large memory budget to deal

with multi-domain data simultaneously. Our proposed

multi-source learning framework proves to achieves com-

petitive results in a simple but effective way.

Knowledge Transfer: Pixel-level annotation of semantic

categories is a time consuming endeavor. A rich literature

employs semi-supervised and weakly-supervised learning

methods to aid such tedious labelling efforts, which can be

regarded as knowledge transfer in the label space. Weak

supervision is generally provided as class-level labels
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Figure 2. The AeroScapes Semantic Segmentation Dataset captures aerial outdoor scenes using a drone. The dataset comprises of 3269

images and ground truth segmentation maps for both stuff and thing categories.

[24], specific point annotations [3], object localizations

[48], or saliency mechanisms [21].The authors in [39]

develop an Expectation-Maximization framework for

image segmentation under both weakly-supervised and

semi-supervised settings. Recently, Chaudhry et al. [7]

combined the saliency and attention maps to obtain reliable

cues to boost segmentation performance and effectively

explore knowledge from class labels.

Domain Adaptation: Domain adaptation methods aim to

address the gap between the distributions across different

data domains [26]. Recent deep learning-based methods

align the domain features by maximizing the confusion [14,

15, 47] or explicitly minimizing the distances [31, 32] be-

tween their distributions across domain. To our knowl-

edge, [19] is the only deep domain adaptation method ap-

plied to semantic segmentation. It involves image do-

main adversarial training and class distribution alignment,

which renders learning difficult. Many domain adapta-

tion methods focus on scenarios where little or no labeled

data is available for the target domain. In our case, we

have put forth considerable effort to collect and annotate

the AeroScapes dataset, and so use the well-established

paradigm of fine-tuning to transfer knowledge from mul-

tiple source domains to our target AeroScapes domain.

3. AeroScapes Semantic Segmentation Dataset
Most classical localization benchmarks focus on under-

standing objects in images, disregarding the setting in which

the objects occur. Background elements provide semantic

and geometric context for objects in the foreground [36, 5].

For example, an autonomous car may navigate based on

roads it identifies in its line of sight, or the path planner

may require that the car never attempts to park on sky or

water. Thus, it is imperative that terrain-based or aerial au-

tonomous agents are taught to identify both foreground as

well as background elements.

The ability to foresee events in the future is a critical

attribute of real-time autonomous systems, which rely on

scene understanding for decision making. An appropriate

test bed for such systems must incorporate labeled image

sequences [42, 11]. Agents that rely on visual scene un-

derstanding for decision making must also learn to incorpo-

rate temporal information into their representations. Thus,

it is necessary that evaluation benchmarks for navigation

systems incorporate video data.

Aerial robots allow us capture previously unexplored

viewpoints and diverse environments. While autonomous

cars are constrained to move on the ground, aerial robots

have the freedom to navigate in three-dimensions, allowing

us to capture visual scales and view-points that are richer

and more varied than prior benchmarks. The above con-

straints motivate us to collect the AeroScapes Dataset 1,

which contains images captured from a drone operating at

an altitude of 5-50 meters. The segmentation maps associ-

ated with these images are labeled with both stuff classes -

vegetation, roads, sky, construction - and thing classes - per-

son, bikes, cars, drones, boats, obstacles, animals (Fig.2).

The AeroScapes dataset comprises of 3269 images ac-

quired from 141 video sequences, and contains several

video sequences that are temporally downsampled. The

class distribution in AeroScapes reflects the data imbalance

observed in typical outdoor images comprising of both stuff

and things annotations. The cumulative weight of the things

classes is approximately 1.51% of the data (Fig. 3).

1AeroScapes Dataset: http://www.github.com/ishann/aeroscapes
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Figure 3. Pixel distribution of the AeroScapes Dataset. The dis-

tribution is dominated by stuff classes. Thing classes constitute

1.51% of the pixel distribution.

Numbers only tell a partial story (about the statistical dis-

tribution) of the dataset. Fig. 4 shows representative sam-

ples for the person class from (a) ILSVRC dataset [43], (b)

ADE20k dataset [51], and (c) AeroScapes dataset. A deep

convolutional network trained on ILSVRC (source domain)

is likely to not associate representations it learns for the per-

son class with those for AeroScapes (target domain). How-

ever, ADE20k appears visually similar to AeroScapes for

the person class. In Section 5, we observe that the visual

appearance of object categories affects the performance of

the system on the particular class.

4. Ensemble Knowledge Transfer

Our primary thesis is that the collective set of segmenta-

tion benchmarks represents a “meta” knowledge source that

can be applied to a related, but different task. Importantly,

each source encodes a considerable amount of curated hu-

man knowledge, manifested through the images and labels.

We propose to extract this knowledge by training deep net-

works on each data source and transfer the knowledge to

the target domain through fine-tuning.

 �!  "!  �!

Figure 4. Appearance of person class: (a) ILSVRC [43], (b)
ADE20k [13], and (c) AeroScapes. While ILSVRC comprises of a

million images representing a thousand classes, the visual appear-

ance of the classes may be extremely different from scene parsing

benchmarks such as ADE20k and AeroScapes. A network trained

on ILSVRC will likely not associate the representations it learns

for the person class with those in AeroScapes. However, ADE20k

appears to be visually similar to AeroScapes.

The above procedure yields an ensemble of models, one

for each data source, that can be applied to the target do-

main. Classic ensemble techniques may be used to aggre-

gate the predictions, and compression techniques may dis-

til the collective knowledge into a single network [17, 4].

We begin by discussing the intuitions which motivate us

that this is a legitimate line of inquiry, particularly for the

AeroScapes semantic segmentation setting.

4.1. Motivation

Symmetry and structure in natural scenes often results

in unexpected visual correspondences. We qualitatively in-

spected the source domains [13, 36, 51] and target domain

(AeroScapes) to understand whether objects appear to be

visually similar across domains.

We discover a few predictable similarities - a potted plant

may resemble a tree in an outdoor scene, and traffic signs

and traffic lights may appear similar to obstacles such as

streetlights (Fig. 5a). However, similarity in visual struc-

ture and symmetry may also occur in the absence of seman-

tic similarity - a fan from an indoor scene may resemble

an outdoor aerial drone, while a shower in an indoor scene

may resemble a distant traffic light (Fig. 5b). Since we

only transfer task agnostic knowledge from these source do-

mains, such qualitiative similarities may translate into im-

provements in quantitative performance.

4.2. Data-driven Knowledge Transfer

Knowledge transfer relies on preserving knowledge ac-

quired while learning one task and applying it to another

task. The simultaneous availability of a large amount of

pixel annotations for specific domains and the catastroph-
ically forgetful [35] nature of deep networks motivates us

to study knowledge transfer in a data-driven manner as a

means for solving tasks where limited amount of annota-

tions are available. Specifically, we propose the transfer of

knowledge from visually diverse domains to learn improved

predictions for target domains with limited data.

In the supervised learning setting, we have a set of source

domains, Ds, ∀s ∈ {1, 2, ..., S}, whose knowledge is com-

pactly represented in the corresponding set of classifiers,

Cs, ∀s ∈ {1, 2, ..., S}, which can be adapted for the task

in the target domain Dtarget. Let Xtarget be an image in

Dtarget, and Ytarget be its associated label. We use the pro-

jection of Xtarget in domain Ds via classifier Cs to obtain

the representation Ps. This helps us incorporate the knowl-

edge from domain Ds:

Cs(Xtarget)⇒ Ps

The complementary information encoded in each of the rep-

resentations, Ps, is further used to learn a function, f , which

aggregates them to predict the target domain label ˆYtarget:

f(P1, P2, ..., PS)⇒ ˆYtarget
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Figure 5. Similarity in visual structure and symmetry may occur

in absence of semantic similarity - (a) a potted plant in PASCAL

VOC appears visually similar to vegetation in Aeroscapes, and

(b) a shower in ADE20k appears similar to an outdoor streetlight

in AeroScapes. While potted plants are expected to be visually

similar to vegetation, it is surprising to observe structural sim-

ilarity between indoor showers and outdoor street lights. Since

we only transfer class agnostic knowledge, qualitiative similarities

may translate into improvements in quantitative performance.

4.3. Transferring Representations Across Domains

State-of-art semantic segmentation methods are based on

deep neural networks. Our pixel classifiers, Cs, take the

form of Fully Convolutional Networks (FCNs). A num-

ber of architectures have recently been proposed [8, 27, 28].

However, we choose to use the simple and effective vanilla

FCN architecture for our analysis.

Since neural networks consist of millions of parameters

and are quite sensitive to training data distributions, it is not

wise to directly use them as feature extractors for the tar-

get domain. We adapt the projections Ps from domain Ds

to the target domain by finetuning the higher task-specific

layers of the FCNs while freezing the lower layers. We

believe that finetuning the networks partially is the correct

strategy for the following reasons: (1) Finetuning a smaller

number of parameters in the network avoids overfitting for

target domains with limited data. (2) Critically, finetuning

all layers may result in the loss of complementary informa-

tion that exists in different source domains. Finetuning only

the task-specific layers enables the ensemble of networks to

leverage knowledge from the diverse source domains.

4.4. Learning Representation Ensembles

We intend to learn an optimal method for combining the

representations(Ps) produced by the classifiers(Cs). For-

mally, we seek to learn a function f(C1, C2, ..., CS ; θ),
which predicts the segmentation label at each pixel location.

Inspired by the hypercolumn formulation [16], we com-

bine the S model predictions by concatenating the class-

probability distribution at each spatial location. Given a

training image, Xi, and its ground truth segmentation map,

Y i
target, we seek to optimize the following objective:

min
θ

∑

i

‖f(P i
1, P

i
2, ..., P

i
S); θ)− Y i

target‖2

We model f(·; θ) as a single-layer regression network to

learn the degree of contribution of each independent source

domain for each class. In Sec. 5.2, we compare this regres-

sion network to other strategies for combining the predic-

tions from each source domain.

5. Experimental Analysis

In this section, we explore the proposed ensemble

knowledge transfer method for improving the performance

of semantic segmentation tasks. The analysis is performed

using the Cityscapes [11], PASCAL Context [36], and

ADE20k [51] scene parsing segmentation benchmarks serv-

ing as the source domains and the AeroScapes dataset (Sec-

tion 3) serving as the target domain.

We begin with a brief description of the methodology

we follow for learning models for the AeroScapes dataset

on the independent source domains, and the ensemble

knowledge transfer network design for combining these

single-source models. These descriptions are accompanied

by analyses for the performance of these models. We

conclude with analysis which demonstrates that com-

plementary information from diverse source domains

improves the performance of the multi-source ensemble.

Implementation Details: We use Fully Convolutional Net-

works [30](FCNs) for all experiments. We train the deep

networks (Sec. 5.1) via Stochastic Gradient Descent using

a minibatch size of one, 1e−10 fixed learning rate, 0.99 mo-

mentum, and 5e−4 weight decay. For each source domain,

we freeze the first nine convolutional layers of the network

and finetune the successive layers. The AeroScapes Dataset

is divided into a 80% − 20% train-test splite. We ensure

that image frames from a video sequence are only included

in either training or testing. Throughout our experiments,

the mean Intersection Over Union (mIOU) metric is used to

report segmentation performance. The regression networks

(Sec. 5.2) are trained with fixed 1e − 2 learning rate, 0.9
momentum, and 5e − 4 weight decay. The Caffe toolbox

[20] is used to implement the networks.
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Figure 6. The AeroScapes dataset is used to finetune the higher (task-specific) layers of convolutional networks trained on independent

source domains. Lower layers in the networks are not modified to preserve complementary information derived from diverse source

domains. Finetuned representations are concatenated and a regressor is learned on the combined representations for the final prediction.

5.1. Learning from Single Sources

Recently, the practice of finetuning FCN-style networks

on PASCAL VOC dataset has taken the intermediate step

of finetuning on the MS COCO dataset [29]. This has re-

sulted in small, but non-trivial, performance improvements

[50]. Similarly, we finetune several FCN 8-stride networks

pre-trained from public segmentation benchmarks towards

the prediction on the Aerospace dataset. The source do-

mains we use are PASCAL Context [36], ADE20k [51],

and Cityscapes [11]. Note the PASCAL Context and PAS-

CAL VOC [13] datasets contain overlapping images, but

with distinct segmentation maps.

We perform an empirical analysis of the proposed

framework. We first fine-tune the VGG-16 convolutional

network [44] pre-trained on Imagenet (ILSVRC) [43]

towards AeroScapes as a baseline method. We finetune

VGG-16 networks that are pre-trained on ILSVRC to

obtain an 8-stride FCN network. Since AeroScapes con-

tains many small-scaled object categories, we also train

4-stride and 2-stride FCN networks. While we observe

performance improvements on training the FCN 4-stride

network over the FCN 8-stride network, the FCN 2-stride

network does not provide any significant improvements

over the FCN 4-stride network. We then repeat this

procedure on pre-trained models from various domains,

including PASCAL Context, ADE20k, and Cityscapes. For

each source, we search over hyperparameters to find the

best settings for knowledge transfer. This produces three

different AeroScape models, that produce mean-IoUs of

52.02%, 51.62%, and 49.55%, respectively. The class-wise

performance for each of these methods is detailed in Fig. 7.

Analysis A finer-resolution network trained on ILSVRC

(FCN 4-stride) performs better than a coarser network (FCN

8-stride), except for for people and bicycles. We posit that

a certain degree of “blurring” by operating at coarser res-

olutions helps knowledge transfer for such classes. This is

likely to aid prediction since these classes are some of the

most deformable thing classes in the AeroScapes dataseti

- fine details may hurt predictions. FCN 8-stride networks

initialized with other knowledge sources - PASCAL Con-

text, Cityscapes, ADE20k - consistently out-perform FCN

networks initialized and trained from ILSVRC data.

Predictably, AeroScapes models finetuned on certain do-

mains do relatively better or worse on specific classes.

Humans are of considerable interest in any segmentation

benchmark. While PASCAL humans are primarily large

foreground objects and Cityscapes humans are upright

pedestrians or drivers, a non-trivial fraction of ADE20k

humans (as illustrated in Fig. 4) are visually similar to

AeroScapes humans. A model finetuned from Cityscapes

performs better for construction but does worse on boats.

Cityscapes consists of several classes which are visually

similar to construction in Aeroscapes, while there are no

boats in Cityscapes. Surprisingly, the model derived from

Cityscapes does worse on Aeroscapes cars. We believe this

is due to the drastic visual difference of Cityscapes cars

which consist of front and rear view images as opposed to

Aeroscapes which are primaly top-view car images. This

inhomogenity in class-wise performance motivates us to

combine the predictions from models finetuned on different

source domains.
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Figure 7. Comparison of methods. FCN 4-stride (Imagenet-4s) and FCN 8-stride (ImageNet-8s) networks are trained (initialized on

ILSVRC) as baseline methods. Single-source single-network models are trained initialized from PASCAL Context (PASCAL), Cityscapes

(Cityscapes), and ADE20k (ADE20k). Ensembles are created by several different strategies: winner-takes-all Ensemble-Winner, mix-

and-match Ensemble-MixMatch, average ensemble Ensemble-Average, and weighted average ensemble Ensemble-SoftReg (refer to

text for details). All models are FCN 8-stride networks, unless otherwise mentioned. The legend indicates mean IOU for each method.

5.2. Learning from Multiple Sources

Since certain pre-trained models do better on specific

classes, it is natural to explore a winner-take-all approach:

for each class, select the best single-source model. This

strategy produces 53.83% mIOU (Ensemble-Winner in

Fig. 7), which is 1.8% better than the best single-source

model. While this suggests that combining sources is help-

ful, this is not a realizeable model.

The above strategy may be realized as a tangible system

by combining the softmax distributions obtained from mod-

els that are learnt on single sources (Sec.5.1). We begin with

a mix-and-match approach, assimilating softmax distribu-

tions from the single-source models based on class-wise

winners. This model produces 55.02% mIOU (Ensemble-
MixMatch in Fig. 7), which is 1.2% better than the winner-
take-all approach.

The mix-and-match strategy provides an improvement

over the winner-takes-all approach. However, it ignores

all representations except class-winners and discards use-

ful information. The simplest strategy to combine repre-

sentations from each single-source model for each class is

to average the softmax predictions. This average ensemble
approach produces 56.69% mIOU (Ensemble-Average in

Fig. 7), which is 1.6% better than the mix-and-match ap-

proach. This approach assumes that all softmax distribu-

tions are equally important for each class. Since we ob-

serve in Sec 5.1 that certain single-source models are rela-

tively better or worse on specific classes, we now learn to

weigh and combine the predictions from each source net-

work. Specifically, we train a single layer regression net-

work that learns to linearly combine the softmax distribu-

tion across the single-source models.

The proposed framework (Fig. 6), which is a weighted
average ensemble of networks derived via late fusion of the

softmax distributions produces 57.08% mIOU (Ensemble-
SoftReg in Fig. 7), which is 0.4% better than the average
ensemble approach. The regression network is trained with

stratified sampling to ensure that the network is not biased

towards stuff classes. We show qualitative results in Fig. 8.

Analysis: Limiting finetuning to the upper task-specific

layers assists multi-source transfer as the ensembled

models are diverse. Ensemble-MixMatch outperforming

Ensemble-Winner suggests that it is better at handling

negatives, which the IOU metric is sensitive to. Ensemble-
Average outperforming Ensemble-MixMatch indicates

that representations learnt from complementary domains

are important for specific classes. Ensemble-Average per-

forms surprisingly well, which indicates that the ensemble

of networks learns quite potent complementary representa-

tions and simple aggregation works reasonably well. The

sole category where we observe a non-trivial difference

between Ensemble-Average and Ensemble-SoftReg is

the boat class. This is likely due to the Cityscapes single-

source model performing poorly on boats and degrading

the Ensemble-Average boat classifier.

Single-source ensembles: We also investigate the source

of the performance gains in the proposed framework - is the

higher performance of the multi-source ensemble a function

of complementary knowledge from multiple sources or sim-

ply a function of increased capacity due to ensembling? We

train ensemble networks of equivalent capacity on singu-
lar source domains. Fig. 9 shows that single-source ensem-

bling helps to an extent. However, single-source ensembles

(53.05% mIOU) do not do as well as our proposed multi-

source approach (57.08% mIOU).
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Figure 8. Each row shows image, ground-truth, proposed model (Ensemble-SoftReg), best single-source model (PASCAL). Row 1:

proposed model segments human, but single-source model fails. Row 2: proposed model segments humans and also identifies obstacle

partially, but single-source model does not. Row 3: single-source model does not detect the drone but proposed model segments it.

Figure 9. Comparisons of single-source models and multi-source

models. The first, third, and fifth models represent performance

when a single network is finetuned from a single source domain.

The second, fourth, and sixth models represent performance when

an ensemble of models is finetuned from a single source domain.

The seventh model represents our proposed framework - an en-

semble of models finetuned from diverse source domains. While

we observe small performance improvements for single-source en-

sembles over their single-source single-network counterparts, the

multi-source ensemble substantially supersedes the other methods.

6. Conclusion

Fully Convolutional Networks (FCNs) have established

state-of-the-art performance on existing semantic segmen-

tation benchmarks. Data-driven methods trained in super-

vised settings usually suffer from performance drop in the

presence of domain shifts. In this research, we explore

FCNs for semantic segmentation across data distributions

that dramatically differ in scene structure, viewpoints, and

objects statistics. We consider semantic segmentation on

images with aerial viewpoints and study the transferability

of knowledge from ground-view segmentation benchmarks.

To this end, we prepare and release the AeroScapes dataset -

a collection of 3269 aerial images (and associated semantic

segmentation maps) captured using a fleet of drones.

We train multiple models for aerial segmentation via pro-

gressive fine-tuning from multiple source domains. The

precise knowledge to be transferred from each domain is

distinct and subtle - indoor objects can appear outdoors

and outdoor objects may appear to be similar under aerial

viewpoints. Thus, we treat the models tuned from differ-

ent domains as an ensemble and aggregate them to improve

performance. We successfully learn important components

from each source domain through a regression network, re-

sulting in an overall improvement of 8.12%.

The proposed framework is agnostic of the underlying

network architecture and allows us to leverage small seg-

mentation datasets that may comprise of critical comple-

mentary information. As future work, the network fine-

tuning and prediction regression may be collaboratively

learned to leverage information from diverse data sources.
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