
Automatic Annotation of Everyday Movements

Deva Ramanan and D. A. Forsyth
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720

{ramanan,daf}@cs.berkeley.edu

Report No. UCB/CSD-3-1262

July 2003

Computer Science Division (EECS)
University of California
Berkeley, California 94720



Automatic Annotation of Everyday Movements

Deva Ramanan and D. A. Forsyth
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720

{ramanan,daf}@cs.berkeley.edu

July 2003

Abstract

This paper describes a system that can annotate a video sequence with: a
description of the appearance of each actor; when the actor is in view; and a
representation of the actor’s activity while in view. The system does not require a
fixed background, and is automatic. The system works by tracking people in 2D,
lifting the tracks to 3D and then classifying the lifted tracks by comparison with
a set of manually annotated human motions. The tracker clusters potential body
segments to build an appearance model of each actor and then identifies the best
match to each model in each frame. The lifting process uses a scaled orthographic
camera model combined with a camera motion model to identify the best matching
3D motion example. Finally, this example is used to identify the activity of the
body. Activities are classified by matching to a collection of motion capture data
that has been annotated by hand, using a class structure that describes everyday
motions and allows motion annotations to be composed — one may jump while
running, for example. Descriptions computed from video of real motions show that
the method is accurate.

1 Introduction

It would be useful to have a system that could take large volumes of video data of
people engaged in everyday activities and produce annotations of that data with state-
ments about the activities of the actors. Applications demand that an annotation system:
is wholly automatic; can operate largely independent of assumptions about the back-
ground or the number of actors; can describe a wide range of everyday movements;
does not fail catastrophically when it encounters an unfamiliar motion; and allows easy
revision of the motion descriptions that it uses. We describe a system that largely has
these properties. We track multiple figures in video data automatically. Next we lift
the tracked 2D data to a 3D representation that is consistent with the image evidence,
with a collection of motion captured examples of human motion, and with what is
known about possible camera movements. We than match the lifted representation to
a collection of motions that has been classified.

1



Previous work is extensive, as classifying human motions from some input is a
matter of obvious importance. Space allows only a brief review of the wide literature;
more detailed reviews appear in [1, 5, 4, 12]. Recovering an image motion represen-
tation is a difficult matter in itself. One might either observe some representation of
image motion (optic flow, image differences, etc.), or one might attempt to track the
person. Optic flow can be used to detect periodic human motions [18]. Temporal im-
age differences resulting from human motions have a distinctive appearance that can be
used to classify the motion [5]. These strategies have been demonstrated only for single
actors on known, stationary backgrounds because of the difficulty of segmenting flow
and image difference fields. Tracking people offers a way out of these difficulties, but
raises new problems. The literature is too large to review in detail, but tracking people
is difficult, because people can move very fast. One can use the configuration in the
current frame and a dynamic model to predict the next configuration; these predictions
can then be refined using image data (for example, [6, 14, 20]). Particle filtering uses
multiple predictions obtained by running samples of the prior through a model of the
dynamics which are refined by comparing them with the local image data (the likeli-
hood) (for example [21]). The prior is typically quite diffuse (because motion can be
fast) but the likelihood function may be very peaky, containing multiple local maxima
which are hard to account for in detail. If an arm swings past an “arm-like” pole, the
right local maximum must be found to prevent the track from drifting. Annealing the
particle filter is one way to attack this difficulty [9]. An alternative is to apply a strong
model of dynamics [21], at the considerable cost of needing to choose the motion model
before one can detect or track people. One may ignore dynamics and find people in
each frame independently, using such cues as local motion [22] or appearance [10, 17].
Because people do not change in appearance from frame to frame, a practical strategy
is to cluster an appearance model for each possible person over the sequence, and then
use these models to drive detection. This yields a tracker that is capable of meeting all
our criteria, described in greater detail in [19]; we used the tracker of that paper.

Lifting descriptions to 3D is possible, as Taylor demonstrated in [23], because a
scaled orthographic camera model applies and the lengths of human body segments
are known with sufficient accuracy. Leventon and Freeman show that estimates can be
significantly improved by comparison with human motion [16].

Describing motion is subtle, because we require a set of categories into which the
motion can be classified; except in the case of specific activities, there is no known
natural set of categories. Special cases include ballet and aerobic moves, which have a
clearly established categorical structure [7, 5]. In our opinion, it is difficult to establish
a canonical set of human motion categories, and more practical to produce a system
that allows easy revision of the categories (section 2).

Figure 1 shows an overview of our approach to activty recognition. We use 3
core components; annotation, tracking, and motion synthesis. Initially, a user labels a
collection of 3D motion capture frames with annotations (section 2). Given a new video
sequence to annotate, we use a kinematic tracker to obtain 2D tracks of each figure in
sequence (section 3). We then synthesize 3D motion sequences which look like the
2D tracks by lifting tracks to 3D and matching them to our annotated motion capture
library (section 4). We finally smooth the annotations associated with the synthesized
3D motion sequence (section 5), accepting them as annotations for the underlying video

2



library
3D motion 2D tracks tracker

user

synthesis
motion

videoannotations

Figure 1: Our annotation system consists of 3 main components; annotation, tracking,
and motion synthesis (the shaded nodes). A user initially labels a collection of 3D
motion capture frames with annotations. Given a new video sequence to annotate,
we use a kinematic tracker to obtain 2D tracks of each figure in sequence. We then
synthesize 3D motion sequences which look like the 2D tracks by lifting tracks to 3D
and matching them to our annotated motion capture library. We accept the annotations
associated with the synthesized 3D motion sequence as annotations for the underlying
video sequence.

sequence.

2 Obtaining Annotated Data

We have annotated a body of motion data with an annotation system, described in detail
in [2]; we repeat some information here for the convenience of the reader.

There is no reason to believe that a canonical annotation vocabulary is available for
everyday motion, meaning that the system of annotation should be flexible. Annota-
tions should allow for composition as one can wave while walking, for example. We
achieve this by representing each separate term in the vocabulary as a bit in a bit string.
Our annotation system attaches a bit string to each frame of motion. Each bit in the
string represents annotation with a particular element of the vocabulary, meaning that
elements of the vocabulary can be composed arbitrarily.

Actual annotation is simplified by using an approach where the user bootstraps a
classifier. One SVM classifier is learned for each element of the vocabulary. The user
annotates a series of example frames by hand by selecting a sequence from the motion
collection; a classifier is then learned from these examples, and the user reviews the
resulting annotations. If they are not acceptable, the user revises the annotations at will,
and then re-learns a classifier. Each classifier is learned independently. The classifier
itself uses a radial basis function kernel, and uses the joint positions for one second
of motion centered at the frame being classified as a feature vector. Since the motion
is sampled in time, each joint has a discrete 3D trajectory in space for the second of
motion centered at the frame. In our implementation, we used a public domain SVM
library (libsvm [8]). The out of margin cost for the SVM is kept high to force a good
fit within the capabilities of the basis function approximation.

Our reference collection consists of a total of seven minutes of motion capture data.
The vocabulary that we chose to annotate this database consisted of: Run, Walk,
Wave, Jump, Turn Left, Turn Right, Catch, Reach, Carry, Back-
wards, Crouch, Stand, and Pick up. Some of these annotations co-occur:
turn left while walking, or catch while jumping and running. Our approach
admits any combination of annotations, though some combinations may not be used in

3



practice: for example, we can’t conceive of a motion that should be annotated with both
stand and run. A different choice of vocabulary would be appropriate for different
collections. The annotations are not required to be canonical. We have verified that a
consistent set of annotations to describe a motion set can be picked by asking people
outside our research group to annotate the same database and comparing annotation
results.

3 Tracking

We use the tracker of [19], which is described in greater detail in that paper. We repeat
some information here for the convenience of the reader. The tracker works by building
an appearance model of putative actors, detecting instances of that model, and linking
the instances across time.

The appearance model approximates a view of the body as a puppet built of col-
ored, textured rectangles. The model is built by applying detuned body segment detec-
tors to some or all frames in a sequence. These detectors respond to roughly parallel
contrast energies at a set of fixed scales (one for the torso and one for other segments).
A detector response at a given position and orientation suggests that there may be a
rectangle there. For the frames that are used to build the model, we cluster together
segments that are sufficiently close in appearance — as encoded by a patch of pixels
within the segment — and appear in multiple frames without violating upper bounds on
velocity. Clusters that contain segments that do not move at any point of the sequence
are then rejected. The next step is to build assemblies of segments that lie together like
a body puppet. The torso is used as a root, because our torso detector is quite reliable.
One then looks for segments that lie close to the torso in multiple frames to form arm
and leg segments. This procedure does not require a reliable initial segment detector,
because we are using many frames to build a model — if a segment is missed in a few
frames, it can be found in others. We are currently assuming that each individual is
differently dressed, so that the number of individuals is the number of distinct appear-
ance models. Detecting the learned appearance model in the sequence of frames is
straightforward [11].

4 Lifting

Once the 2D configuration of actors has been identified, we need to match to a 3D
sequence of configurations. Maintaining a degree of smoothness — i.e. ensuring that
not only is a 3D representation a good match to the 2D configuration, but also links
well to the previous and future 3D representations — is a needed because the image
detection is not perfect. We assume that camera motion can be recovered from a video
sequence and so we need only to recover the pose of the root of the body model — in
our case, the torso — with respect to the camera.

Representing Body Configuration: We assume the camera is orthographic and is
oriented with the y axis perpendicular to the ground plane, by far the most important
case. From the puppet we can compute 2D positions for various key points on the

4



Undirected
model

T 2

M 2

T 3

M 3

T 1

1M

T 2

M 2

T 3

M 3

T 1

1M1M

1m

T 11t
1M T 1

t m

T
M

Factorial HMM Triangulated FHMMDirected modelVariables
(a) (e)(d)(c)(b)

Figure 2: In (a), the variables under discussion in camera inference. M is a repre-
sentation of figure in 3D with respect to its root coordinate frame, m is the partially
observed vector of 2D key points, t is the known camera position and T is the position
of the root of the 3D figure. In (b) a camera model for frame i where 2D keypoints are
dependent on the camera position, 3D figure configuration, and the root of the 3D fig-
ure. A simplified undirected model in (c) is obtained by marginalizing out the observed
variables yielding a single potential onM i and T i. In (d), the factorial hidden Markov
model obtained by extending the undirected model across time. As we show in the text,
it is unwise to yield to the temptation to cut links between T ’s (or M ’s) to obtain a
simplified model. However, our FHMM is tractable, and yields the triangulated model
in (e).

body (we use the left-right shoulder, elbow, wrist, knee, ankle and the upper & lower
torso). We represent the 2D key points with respect to a 2D torso coordinate frame. We
analogously convert the motion capture data to 3D key points represented with respect
to the 3D torso coordinate frame.

We assume that all people are within an isotropic scaling of one another. This
means that the scaling of the body can be folded in with the camera scale, and the over-
all scale is be estimated using corresponding limb lengths in lateral views (which can
be identified because they maximize the limb lengths). This strategy would probably
lead to difficulties if, for example, the motion capture data came from an individual
with a short torso and long arms; the tendency of ratios of body segment lengths to
vary from individual to individual and with age is a known, but not well understood,
source of trouble in studies of human motion [13].

Our motion capture database is too large for us to use every frame in the matching
process. Furthermore, many motion fragments are similar — there is an awful lot
of running — so we vector quantize the 11,000 frames down to k = 300 frames by
clustering with k-means and retaining only the cluster medoids. Our metric is based
on differences between 3D key points, velocities, and accelerations for the 3D motion
frames ([3] found this metric sufficient to ensure smooth motion synthesis). The motion
capture data are represented at the same frame rate as the video, to ensure consistent
velocity estimates.

Modeling Root Configuration: Figure 2 illustrates our variables. For a given
frame, we have unknowns M , a vector of 3D key points and T , the 3D global root
position. Known are m, the (partially) observed vector of 2D key points, and t, the
known camera position. In practice, we do not need to model the translations for
the 3D root (which is the torso); our tracker reports the (x, y) image position for the
torso, and we simply accept these reports. This means that T reduces to a single scalar
representing the orientation of the torso along the ground plane. The relative out of

5



image plane movement of the torso (in the z direction) can be recovered from the final
inferred M and T values by integration — one sums the out of plane velocities of the
rotated motion capture frames.

Figure 2 shows the directed graphical model linking these variables for a single
frame. In fact, this model can be converted to an undirected model — also shown in
the figure — where the observed 2D key points specify a potential between Mi and
Ti. Write the potential for the ith frame as ψviewi

(Mi, Ti). We wish to minimize
image error, so it is natural to use backprojection error for the potential. This means
that ψviewi

(Mi, Ti) is the mean squared error between the visible 2D key points mi

and the corresponding 3D keypointsMi rendered at orientation Ti. To handle left-right
ambiguities, we take the minimum error over all left-right assignments. To incorpo-
rate higher-order dynamic information such as velocities and accelerations, we add
keypoints from the two preceding and two following frames when computing the error.

The torso orientation Ti must be quantized. We quantize to a total of c = 20 points.
This means that the potential ψviewi

(Mi, Ti) is represented by a c×k table (recall that
k is the total number of motion capture medoids used, section 4).

We must also define a potential linking body configurations in time, representing
the continuity cost of placing one motion after another. We write this potential as
ψlink(Mi,Mi+1). This is a k× k table, and we set the (i, j)’th entry of this table to be
the distance between the j’th medoid and the frame following the i’th medoid, using
the metric used for vector quantizing the motion capture dataset (section 4).

Inferring Root Configuration: The model of figure 2-(a) is known as a factorial
hidden Markov model (FHMM) where observations have been marginalized out and is
quite tractable. Exact inference requires triangulating the graph (figure 2-(b)) to make
explicit additional probabilistic dependencies [15].The maximum clique size is now 3,
making inference O(k2cN) (where N is the number of total frames). Furthermore, the
triangulation affords us the opportunity to model additional dependencies between the
root orientation and 3D motion at no additional computation cost. We explicitly define
the potential ψtorso(Mi, Ti, Ti+1) to capture the dependency of torso angular velocity
on the given motion. For example, we expect the torso angular velocity of a turning
motion frame to be different from a walking forward frame. We set a given entry of this
table to be the squared error between the sampled angular velocity (Ti+1 − Ti, shifted
to lie between −π . . . π) and the actual torso angular velocity of the medoid Mi.

We scale the ψviewi
(Mi, Ti), ψlink(Mi,Mi+1), and ψtorso(Mi, Ti, Ti+1) poten-

tials by empirically determined values to yield satisfactory results. These scale factors
are weight the degree to which the final 3D track should be continuous versus the de-
gree to which it should match the 2D data. In principle, these weights could be set
optimally by a detailed study of the properties of our tracker, but we have found it
simpler to set them by experiment.

We find the maximum a posteriori (MAP) estimate of Mi and Ti by a variant of
dynamic programming defined for clique trees [15]. Since we implicitly used negative
log likelihoods to define the potentials (the squared error terms), we used the min-sum
variant of the max-product algorithm.

Possible Variants: One might choose to not enforce consistency in the root ori-
entation Ti between frames. By breaking the links between the Ti variables in figure
2-(a), we could reduce our model to a tree and make inference even simpler — we now

6



Bkwd
Catch
Run
Carry
RTurn
LTurn
Crouch
Reach
Jump
Pick up
Wave
Walk
Stand
FFace
Present

Extend
Closed
fFace
present

Bkwd
Catch
Run
Carry
RTurn
LTurn
Crouch
Reach
Jump
Pick up
Wave
Walk
Stand
FFace
Present

Extend
Closed
fFace
present

M
an

ua
l

A
ut

om
at

ic

time time

Figure 3: Unfamiliar configurations can either be annotated with ’null’ or with the
closest match. We show smoothed annotation results for a sequence of jumping jacks
(sometimes known as star jumps) from two such annotation systems. In the top row,
we show the same two frames run through each system. The MAP reconstruction of
the human figure obtained from the tracking data has been reprojected back to the im-
age, using the MAP estimate of camera configuration. In the bottom, we show signals
representing annotation bits over time. The manual annotator records whether or not
the figure is present, front faceing, in a closed stance, and/or in an ex-
tended stance. The automatic annotation consists of a total of 16 bits; present,
front faceing, plus the 13 bits from the annotation vocabulary of Sec.2. In first
dotted line, corresponding to the image above it, the manual annotator asserts the fig-
ure is present, frontally faceing, and about to reach the extended stance. The
automatic annotator asserts the figure is present, frontally faceing, and walking
and waveing, and is not standing, not jumping, etc. The annotations for both sys-
tems are reasonable given there are no corresponding categories available (this is like
describing a movement that is totally unfamiliar). On the left, we freely allow ’null’
annotations (where no annotation bit is set). On the right, we discourage ’null’ anno-
tations as described in Sec.6. Configurations near the closed stance are now labeled
as standing, a reasonable approximation.

have an HMM. However, this is simplicity at the cost of wasting an important constraint
— the camera does not flip around the body from frame to frame. This constraint is
useful, because our current image representation provides very little information about
the direction of movement in some cases. In particular, in a lateral view of a figure
in the stance phase of walking it is very difficult to tell which way the actor is facing
without reference to other frames — where it may not be ambiguous. We have found
that if one does break these links, the reconstruction regularly flips direction around
such frames.

7



Catch
Run
Carry
RTurn
Crouch
Reach
Jump
Pick up
Wave
LTurn
Bkwd
Stand
Walk
LFace
RFace
Present

bkwd
stop
walk
lFace
rFace
present

Catch
Run
Carry
RTurn
Crouch
Reach
Jump
Pick up
Wave
LTurn
Bkwd
Stand
Walk
LFace
RFace
Present

bkwd
stop
walk
lFace
rFace
present

A
ut

om
at

ic
M

an
ua

l

Catch
Run
Carry
RTurn
Crouch
Reach
Jump
Pick up
Wave
LTurn
Bkwd
Stand
Walk
LFace
RFace
Present

bkwd
stop
walk
lFace
rFace
present

time time time

Figure 4: We show annotation results for a walking sequence from three versions of
our system using the notation of Fig.3. Null matches are allowed. On the left, we infer
the 3D configuration M i (and associated annotation) independently for each frame,
as discussed in Sec.4. In the center, we model temporal dependencies when inferring
M i and its corresponding annotation. On the right, we smooth the annotations, as
discussed in Sec.5. Each image is labeled with an arrow pointing in the direction the
inferred figure is facing, not moving. By modeling camera dependencies, we are able to
fix incorrect torso orientations present in the left system (i.e., the first image frame and
the automatic left faceing and right faceing annotation bits). By smooth-
ing the annotations, we eliminate spurious stand’s present in the center. Although
the smoothing system correctly annotates the last image frame with backward, the
occluded arm incorrectly triggers a wave, by the mechanism described in Sec.5.

5 Matching

We now have MAP estimates {M̂i} and {T̂i} of the 3D configuration of the body and
the camera orientation with respect to the root for each frame. The simplest method
for reporting annotations is to produce an annotation that is some function of {M̂i}.
Recall that {M̂i} is one of the medoids produced by our clustering process (section 4).
It represents a cluster of frames, all of which are similar. We could now report either
the annotation of the medoid, the annotation that appears most frequently in the cluster,
the annotation of the cluster element that matches the image best, or the frequency of
annotations across the cluster.

The fourth alternative produces results that may be useful for some kinds of decision-
making, but are very difficult to interpret directly — each frame generates a poste-
rior probability over the annotation vocabulary — and we do not discuss it further
here. Each of the first three tends to produce choppy annotation streams (figure 4).
This is because we have vector quantized the motion capture frames, meaning that

8



tracker miss correct recovery incorrect recoveryleaving frame

3 421

Figure 5: Frames sampled from a 21 second sequence of three actors playing with
a ball. The numbers on each frame give the order in which the frame appears in
the sequence; the spacing is roughly even. The white annotations are automatically
generated by our system (we manually add the black words for clarity). Overlaid on
each frame is the best configuration chosen for the body of each of the three actors
detected — both number and appearance are obtained automatically — using camera
consistency as in section 4. Individuals are associated with a triangle, a square and
a diamond to show the tracker has consistently identified them. We see two tracks
interrupted, one because of a missed detection and the other because the figure leaves
the view. Both tracks are recovered, but we see an incorrect annotation of backward
run because the the estimated configuration of that figure is consistant with running
rightward, but his velocity is leftward.

ψlink(Mi,Mi+1) is a fairly rough approximation of a smoothness constraint (because
some frames in one cluster might link well to some frames in another and badly to
others in that same cluster). An alternative is to smooth the annotation stream.

Smoothing Annotations: Recall that we have 13 terms in our annotation vocabu-
lary, each of which can be on or off for any given frame. Of the 213 possible bit strings,
we observe a total of 32 in our set of motions. Clearly, we cannot smooth annotation
bits directly, because we might very likely create bit strings that never occur. Instead,
we regard each annotation string as a codeword.

We can model the temporal dynamics of codewords and their quantized observa-
tions using a standard HMM. The hidden state is the code word, taking on one of l
values (l is 32 in our case), while the observed state is the cluster, taking on one of k
values. This model is defined by a l × l matrix representing codeword dynamics and
a l × k matrix representing the quantized observation. Note that this model is fully
observed in the 11,000 frames of the motion database; we know the true code word for
each motion frame and the cluster to which the frame belongs. Hence we can learn both
matrices through straightforward multinomial estimation. We now apply this model to
the MAP estimate of {M̂i}, inferring a sequence of annotation codewords (which we
can later expand back into annotation bit vectors).

Occlusion:When a limb is not detected by the tracker, the configuration of that limb
is not scored in evaluating the potential. In turn, this means that the best configuration
consistent with all else detected is used, in this case with the figure waving. In an ideal
closed world, we can assume the limb is missing because its not there; in practice, it
may be due to a detector failure. This makes employing “negative evidence” difficult.

9



Bkwd
Carry
RTurn
LTurn
Crouch
Stand
Jump
Pick up
Reach
Wave
Catch
Walk
Run
LFace
RFace
Present

throw
catch
run
lFace
rFace
present

Bkwd
Carry
RTurn
LTurn
Crouch
Stand
Jump
Pick up
Reach
Wave
Catch
Walk
Run
LFace
RFace
Present

throw
catch
run
lFace
rFace
present

Bkwd
Carry
RTurn
LTurn
Crouch
Stand
Jump
Pick up
Reach
Wave
Catch
Walk
Run
LFace
RFace
Present

throw
catch
run
lFace
rFace
present

M
an

ua
l

A
ut

om
at

ic

time time time

Figure 6: Smoothed annotations of 3 figures from a video sequence of the three passing
a ball back and forth using the conventions of figure 3. Null matches are allowed. The
dashed vertical lines indicate annotations corresponding to the frames shown. The
automatic annotations are largely accurate: the figures are correctly identified, and the
direction in which the figures are facing are largely correct. There is some confusion
between run and walk, and throws appear to be identified as waves and reaches.
Generally, when the figure has the ball (after catching and before throwing, as
denoted in the manual annotations), he is annotated as carrying, though there is
some false detection. There are no spurious crouches, turns, etc.

6 Experimental Results

It is difficult to evaluate results simply by recording detection information (say an ROC
for events). Furthermore, there is no meaningful standard against which one can com-
pare. Instead, we lay out a comparison between human and automatic annotations, as
in Fig.3, which shows annotation results for a 91 frame jumping jack (or star jump)
sequence. The top 4 lower case annotations are hand-labeled over the entire 91 frame
sequence. Generally, automatic annotation is successful: the figure is detected cor-
rectly, oriented correctly (this is recovered from the torso orientation estimates Ti), and
the description of the figure’s activities is largely correct.

Fig.4 compares three versions of our system on a 288 frame sequence of a fig-
ure walking back and forth. Comparing the annotations on the left (where configura-
tions have been inferred without temporal dependency) with the center (with tempo-
rary dependency), we see temporal dependency in inferred configurations is important,
because otherwise the figure can change direction quickly, particularly during lateral
views of the stance phase of a walk (section 4). Comparing the center annotations with
those on the right (smoothed with our HMM) shows that annotation smoothing makes
it possible to remove spurious jump, reach, and stand labels — the label dynamics
are wrong.

Figure 5 shows frames of a sequence where three actors pass a ball back and forth;

10



the sequence contains a lot of fast movement. Each actor is correctly detected, and
the system produces largely correct descriptions of the actor’s orientation and actions
(figures 6. The inference procedure interprets a run as a combination of run and
walk. Quite often, the walk annotation will fire as the figure slows down to turn from
face right to face left or vice versa. When the figures use their arms to catch
or throw, we see increased activity for the similar annotations of catch, wave, and
reach.

When a novel motion is encountered, we want the system to either respond by (1)
recognizing it cannot annotate this sequence, or (2) annotate it with the best match
possible. We can implement (2) by adjusting the parameters for our smoothing HMM
so that the ’null’ codeword (all annotation bits being off) is unlikely. In Fig.3, system
(1) responds to a jumping jack sequence (star jump, in some circles) with a combina-
tion of walking and jumping while waveing. In system (2), we see an additional
standing annotation for when the figure is near the closed stance.

References
[1] J. K. Aggarwal and Q. Cai. Human motion analysis: A review. Computer Vision and Image

Understanding: CVIU, 73(3):428–440, 1999.
[2] O. Arikan, D. Forsyth, and J. O’Brien. Motion synthesis from annotations. 2003. to appear,

SIGGRAPH.
[3] O. Arikan and D. A. Forsyth. Interactive motion generation from examples. In Proceedings

of the 29th annual conference on Computer graphics and interactive techniques, pages
483–490. ACM Press, 2002.

[4] A. Bobick. Movement, activity, and action: The role of knowledge in the perception of
motion. Philosophical Transactions of Royal Society of London, B-352:1257–1265, 1997.

[5] A. F. Bobick and J. Davis. The recognition of human movement using temporal templates.
IEEE T. Pattern Analysis and Machine Intelligence, 23(3):257–267, 2001.

[6] C. Bregler and J. Malik. Tracking people with twists and exponential maps. In IEEE Conf.
on Computer Vision and Pattern Recognition, pages 8–15, 1998.

[7] L. W. Campbell and A. F. Bobick. Recognition of human body motion using phase space
constraints. In ICCV, pages 624–630, 1995.

[8] C. C. Chang and C. J. Lin. Libsvm: Introduction and benchmarks. Technical report, De-
partment of Computer Science and Information Engineering, National Taiwan University,
2000.

[9] J. Deutscher, A. Blake, and I. Reid. Articulated body motion capture by annealed particle
filtering. In IEEE Conf. on Computer Vision and Pattern Recognition, pages II:126–133,
2000.

[10] erased for anonymity. a motion tracking paper.
[11] P. Felzenschwalb and D. Huttenlocher. Efficient matching of pictorial structures. In Proc

CVPR, 2000.
[12] D. M. Gavrila. The visual analysis of human movement: A survey. Computer Vision and

Image Understanding: CVIU, 73(1):82–98, 1999.
[13] J. K. Hodgins and N. S. Pollard. Adapting simulated behaviors for new characters. In

SIGGRAPH - 97, 1997.
[14] D. Hogg. Model based vision: a program to see a walking person. Image and Vision

Computing, 1(1):5–20, 1983.
[15] M. I. Jordan, editor. Learning in Graphical Models. MIT Press, Cambridge, MA, 1999.
[16] M. Leventon and W. Freeman. Bayesian estimation of 3D human motion from an image

sequence. Technical Report TR-98-06, MERL, 1998.

11



[17] G. Mori, , and J. Malik. Estimating human body configurations using shape context match-
ing. In European Conference on Computer Vision LNCS 2352, volume 3, pages 666–680,
2002.

[18] R. Polana and R. Nelson. Recognition of activities. In Proc. International Conference on
Pattern Recognition, 1994.

[19] D. Ramanan and D. Forsyth. Finding and tracking people from the bottom up. In Proc
CVPR, 2003.

[20] K. Rohr. Incremental recognition of pedestrians from image sequences. In IEEE Conf. on
Computer Vision and Pattern Recognition, pages 9–13, 1993.

[21] H. Sidenbladh, M. J. Black, and D. J. Fleet. Stochastic tracking of 3d human figures using
2d image motion. In European Conference on Computer Vision, 2000.

[22] Y. Song, X. Feng, and P. Perona. Towards detection of human motion. In IEEE Conf. on
Computer Vision and Pattern Recognition, pages 810–17, 2000.

[23] C. Taylor. Reconstruction of articulated objects from point correspondences in a single
uncalibrated image. In IEEE Conf. on Computer Vision and Pattern Recognition, pages
677–84, 2000.

12


