Learning to Explore using Active Neural SLAM

ICLR-20

Webpage: https://devendrachaplot.github.io/projects/Neural-SLAM
Code: https://github.com/devendrachaplot/Neural-SLAM

Devendra Singh Chaplot
Dhiraj Gandhi
Saurabh Gupta
Abhinav Gupta
Ruslan Salakhutdinov
Exploration
Exploration
Exploration
Exploration
Exploration
Exploration

• How to efficiently explore an unseen environment?
 • Memory/Mapping: Where have you been?
 • State/Pose Estimation: Where are you now?
 • Planning: Where do you need to go?
Exploration

• How to efficiently explore an unseen environment?
 • Memory/Mapping: Where have you been?
 • State/Pose Estimation: Where are you now?
 • Planning: Where do you need to go?

• Limitations of end-to-end RL:
 • High sample complexity
 • Ineffective in large environments
Exploration

• How to efficiently explore an unseen environment?
 • Memory/Mapping: Where have you been?
 • State/Pose Estimation: Where are you now?
 • Planning: Where do you need to go?

• Limitations of end-to-end RL:
 • High sample complexity
 • Ineffective in large environments

• Our solution: Active Neural SLAM
 • Structured spatial representations
 • Hierarchical policies
 • Analytical planners
Active Neural SLAM: Overview
Active Neural SLAM: Overview
Active Neural SLAM: Overview

Sensor Pose Reading (x'_t)
Observation (s_t)

Neural SLAM (f_{SLAM})

Pose Estimate (\hat{x}_t)
Map (m_t)

Global Policy (π_G)

Long-term goal (g^t)
Active Neural SLAM: Overview

Sensor Pose Reading (x_t')

Observation (s_t)

Neural SLAM (f_{SLAM})

Pose Estimate (\hat{x}_t)

Global Policy (π_G)

Long-term goal (g_t^l)

Map (m_t)

Short-term goal (g_t^s)

f_{Plan}
Active Neural SLAM: Overview

Sensor Pose Reading (x_t')

Observation (s_t)

Action (a_t)

Neural SLAM (f_{SLAM})

Local Policy (π_L)

Pose Estimate (\hat{x}_t)

Global Policy (π_G)

Map (m_t)

Short-term goal (g_t')

Long-term goal (g'_t)

Map (m_t)

f_{Plan}
Neural SLAM Module

- Conv-Deconv Neural Network
- Trained with supervised learning
- Learns explicit structured map and pose representations
Global Policy

- Convolutional Neural Network
- Trained with reinforcement learning
- Operates at a course time-scale
Local Policy

- Convolutional Neural Network
- Trained with imitation learning
- Operates at a fine time-scale
Neural SLAM Module
Neural SLAM Module

Sensor Pose Reading \((x'_{t-1})\)

Observation \((s_{t-1})\)

Sensor Pose Reading \((x'_t)\)

Observation \((s_t)\)
Neural SLAM Module

Sensor Pose Reading \((x'_{t-1}) \)

Observation \((s_{t-1}) \)

Mapper \((f_{Map}) \)

Sensor Pose Reading \((x'_t) \)

Observation \((s_t) \)

Mapper \((f_{Map}) \)
Neural SLAM Module

Sensor Pose Reading (x'_{t-1}) → Mapper (f_{Map}) → Egocentric Proj. (p_{t-1}^{ego})

Observation (s_{t-1})

Sensor Pose Reading (x'_t) → Mapper (f_{Map}) → Egocentric Proj. (p_{t}^{ego})

Observation (s_t)
Neural SLAM Module

Sensor Pose Reading \((x_t') \)

Observation \((s_t) \)

Sensor Pose Reading \((x_t') \)

Observation \((s_t-1) \)

Mapper \((f_{map}) \)

Relative Pose Change \((dx) \)

Mapper \((f_{map}) \)

Egocentric Proj. \((p_{ego}^{ego}) \)

Egocentric Proj. \((p_{ego}^{ego}) \)
Neural SLAM Module

Sensor Pose Reading (x'_t)

Observation (s_{t-1})

Mapper (f_{Map})

Relative Pose Change (dx)

Sensor Pose Reading (x'_t)

Observation (s_t)

Mapper (f_{Map})

Egocentric Proj. (P_{t-1}^{ego})

Egocentric Proj. (P_t^{ego})

ST
Neural SLAM Module

Sensor Pose Reading (x'_t)

Observation (s_{t-1})

Mapper (f_{Map})

Relative Pose Change (dx)

ST

Sensor Pose Reading (x'_t)

Observation (s_t)

Mapper (f_{Map})

Egocentric Proj. (p_{t-1}^{ego})

Egocentric Proj. (p_t^{ego})
Neural SLAM Module

Sensor Pose Reading (x'_t)

Observation (s_{t-1})

Mapper (f_{Map})

Egocentric Proj. (p_{t-1}^{ego})

Relative Pose Change (dx)

Mapper (f_{Map})

Egocentric Proj. (p_t^{ego})

ST

Pose Estimate (\hat{x}_{t-1})

Pose Estimator (f_{PE})

Observation (s_t)

Sensor Pose Reading (x'_t)
Neural SLAM Module

Sensor Pose Reading (x_{t-1})
Observation (s_{t-1})
Mapper (f_{Map}) → Relative Pose Change (d_x)
Mapper (f_{Map}) → Egocentric Proj. (p_t^{ego})
Pose Estimate (\hat{x}_t)

Observation (s_t)
Sensor Pose Reading (x'_t)
Mapper (f_{Map}) → Egocentric Proj. (p_t^{ego})
ST
Pose Estimate (\hat{x}_t)

Pose Estimate (\hat{x}_{t-1})
Neural SLAM Module

Sensor Pose Reading (x'_t)

Observation (s_{t-1})

Mapper (f_{Map})

Egocentric Proj. (p_{t-1}^{ego})

Relative Pose Change (dx)

ST

Pose Estimate (\hat{x}_{t-1})

Mapper (f_{Map})

Egocentric Proj. (p_{t}^{ego})

ST

Pose Estimate (\hat{x}_{t})

Pose Estimator (f_{PE})

8
Neural SLAM Module

Sensor Pose Reading (x_t^r)

Observation (s_t)

Sensor Pose Reading (x_{t-1}^r)

Observation (s_{t-1})

Mapper (f_{Map})

Relative Pose Change (dx)

Egocentric Proj. (p_t^{ego})

Poses Estimate (\hat{x}_t)

ST

Egocentric Proj. (p_t^{ego})

Mapper (f_{Map})

Geocentric Proj. (p_t^{geo})

ST

Pose Estimate (\hat{x}_{t-1})

Pose Estimate (\hat{x}_{t-1})
Neural SLAM Module

Sensor Pose Reading (x'_{t-1})
Observation (s_{t-1})

Mapper (f_{Map})

Relative Pose Change (d_x)

Egocentric Proj. ($p^{{ego}}_{t-1}$)

Mapper (f_{Map})

Egocentric Proj. ($p^{{ego}}_t$)

Pose Estimator (f_{PE})

Pose Estimate (\hat{x}_{t})

ST

Pose Estimate (\hat{x}_{t-1})

ST

ST

ST

ST

Channel Pool

Map (m_{t-1})

Map (m_t)
Neural SLAM Module

Sensor Pose Reading (x_{t-1}')

Observation (s_{t-1})

Sensor Pose Reading (x_t')

Observation (s_t)

Mapper (f_{Map})

Relative Pose Change (dx)

Mapper (f_{Map})

Egocentric Proj. (p_{t-1}^{ego})

Egocentric Proj. (p_t^{ego})

Poses Estimator (f_{PE})

Pose Estimate (\hat{x}_t)

Pose Estimate (\hat{x}_{t-1})

Mapper (f_{Map})

Channel Pool

Geocentric Proj. (p_t^{geo})

Map (m_t)

Map (m_{t-1})

Pose Estimate (\hat{x}_t)

Pose Estimate (\hat{x}_{t-1})
Exploration: Task Setup
Exploration: Task Setup

Exploration: Task Setup

- **Physical Realism**: Actuation and motion sensor noise models based on real-data

Exploration: Task Setup

- **Physical Realism**: Actuation and motion sensor noise models based on real-data
- **Objective**: Maximize the explored area
 - A cell is explored when it is known to be traversable
- **Metrics**:
 - **Coverage (m²)** - absolute explored area or coverage
 - % **Coverage** - percentage of the environment explored

Exploration: Task Setup

- **Physical Realism:** Actuation and motion sensor noise models based on real-data
- Objective: Maximize the explored area
 - A cell is explored when it is known to be traversable
- Metrics:
 - **Coverage \((m^2) \)** - absolute explored area or coverage
 - % **Coverage** - percentage of the environment explored
- Fixed episode length of 1000 steps

Exploration: Task Setup

- **Physical Realism:** Actuation and motion sensor noise models based on real-data
- **Objective:** Maximize the explored area
 - A cell is explored when it is known to be traversable
- **Metrics:**
 - **Coverage (m^2)** - absolute explored area or coverage
 - % **Coverage** - percentage of the environment explored
- Fixed episode length of 1000 steps
- All methods trained for 10 million frames

Demo Video: Exploration

Observation

Predicated Map and Pose

https://youtu.be/tlyz68j_jvE
Exploration Results
Exploration Results

% Coverage

RL + 3LConv [1]
RL + Res18
RL + Res18 + AuxDepth [2]
RL + Res18 + ProjDepth [3]
Active Neural SLAM

Exploration Results

% Coverage

Gibson

- RL + 3LConv [1] 73.7
- RL + Res18 74.7
- RL + Res18 + ProjDepth [3] 78.9
- Active Neural SLAM 94.8

Coverage (m^2)

- 22.838
- 23.188
- 24.467
- 24.863
- 32.701

Exploration Results

<table>
<thead>
<tr>
<th>Method</th>
<th>% Coverage</th>
<th>Coverage (m^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL + 3LConv [1]</td>
<td>73.7</td>
<td>22.838</td>
</tr>
<tr>
<td>RL + Res18</td>
<td>74.7</td>
<td>23.188</td>
</tr>
<tr>
<td>RL + Res18 + ProjDepth [3]</td>
<td>78.9</td>
<td>24.863</td>
</tr>
<tr>
<td>Active Neural SLAM</td>
<td>94.8</td>
<td>32.701</td>
</tr>
</tbody>
</table>

Exploration Results

Domain Generalization

MP3D

<table>
<thead>
<tr>
<th>Method</th>
<th>% Coverage</th>
<th>Coverage (m^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL + 3LConv [1]</td>
<td>33.2</td>
<td>47.758</td>
</tr>
<tr>
<td>RL + Res18</td>
<td>34.1</td>
<td>49.175</td>
</tr>
<tr>
<td>RL + Res18 + ProjDepth [3]</td>
<td>37.8</td>
<td>54.775</td>
</tr>
<tr>
<td>Active Neural SLAM</td>
<td>52.1</td>
<td>73.281</td>
</tr>
</tbody>
</table>

Ablation

<table>
<thead>
<tr>
<th>Method</th>
<th>Gibson Val Overall</th>
<th>Gibson Val Large</th>
<th>Gibson Val Small</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Cov.</td>
<td>Cov. (m²)</td>
<td>% Cov.</td>
</tr>
<tr>
<td>ANS w/o Local Policy + Det. Planner</td>
<td>0.941</td>
<td>32.188</td>
<td>0.845</td>
</tr>
<tr>
<td>ANS w/o Global Policy + FBE</td>
<td>0.925</td>
<td>30.981</td>
<td>0.782</td>
</tr>
<tr>
<td>ANS w/o Pose Estimation</td>
<td>0.916</td>
<td>30.746</td>
<td>0.771</td>
</tr>
<tr>
<td>ANS</td>
<td>0.948</td>
<td>32.701</td>
<td>0.862</td>
</tr>
</tbody>
</table>
Ablation

<table>
<thead>
<tr>
<th>Method</th>
<th>Gibson % Cov.</th>
<th>Val Overall Cov. (m²)</th>
<th>Gibson % Cov.</th>
<th>Val Large Cov. (m²)</th>
<th>Gibson % Cov.</th>
<th>Val Small Cov. (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANS w/o Local Policy + Det. Planner</td>
<td>0.941</td>
<td>32.188</td>
<td>0.845</td>
<td>53.999</td>
<td>0.980</td>
<td>23.464</td>
</tr>
<tr>
<td>ANS w/o Global Policy + FBE</td>
<td>0.925</td>
<td>30.981</td>
<td>0.782</td>
<td>49.731</td>
<td>0.982</td>
<td>23.481</td>
</tr>
<tr>
<td>ANS w/o Pose Estimation</td>
<td>0.916</td>
<td>30.746</td>
<td>0.771</td>
<td>49.518</td>
<td>0.973</td>
<td>23.237</td>
</tr>
<tr>
<td>ANS</td>
<td>0.948</td>
<td>32.701</td>
<td>0.862</td>
<td>55.608</td>
<td>0.983</td>
<td>23.538</td>
</tr>
</tbody>
</table>

Replace Local Policy by Analytical Deterministic Policy
Ablation

<table>
<thead>
<tr>
<th>Method</th>
<th>Gibson Val Overall</th>
<th>Gibson Val Large</th>
<th>Gibson Val Small</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Cov.</td>
<td>Cov. (m²)</td>
<td>% Cov.</td>
</tr>
<tr>
<td>ANS w/o Local Policy + Det. Planner</td>
<td>0.941</td>
<td>32.188</td>
<td>0.845</td>
</tr>
<tr>
<td>ANS w/o Global Policy + FBE</td>
<td>0.925</td>
<td>30.981</td>
<td>0.782</td>
</tr>
<tr>
<td>ANS w/o Pose Estimation</td>
<td>0.916</td>
<td>30.746</td>
<td>0.771</td>
</tr>
<tr>
<td>ANS</td>
<td>0.948</td>
<td>32.701</td>
<td>0.862</td>
</tr>
</tbody>
</table>

Replace Local Policy by
Analytical Deterministic Policy

Replace Global Policy by
Frontier-based Exploration
Ablation

<table>
<thead>
<tr>
<th>Method</th>
<th>Gibson % Cov.</th>
<th>Val Overall Cov. (m²)</th>
<th>Gibson % Cov.</th>
<th>Val Large Cov. (m²)</th>
<th>Gibson % Cov.</th>
<th>Val Small Cov. (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANS w/o Local Policy + Det. Planner</td>
<td>0.941</td>
<td>32.188</td>
<td>0.845</td>
<td>53.999</td>
<td>0.980</td>
<td>23.464</td>
</tr>
<tr>
<td>ANS w/o Global Policy + FBE</td>
<td>0.925</td>
<td>30.981</td>
<td>0.782</td>
<td>49.731</td>
<td>0.982</td>
<td>23.481</td>
</tr>
<tr>
<td>ANS w/o Pose Estimation</td>
<td>0.916</td>
<td>30.746</td>
<td>0.771</td>
<td>49.518</td>
<td>0.973</td>
<td>23.237</td>
</tr>
<tr>
<td>ANS</td>
<td>0.948</td>
<td>32.701</td>
<td>0.862</td>
<td>55.608</td>
<td>0.983</td>
<td>23.538</td>
</tr>
</tbody>
</table>

Local Policy does not improve much over deterministic policy.

Replace Local Policy by Analytical Deterministic Policy.
Replace Global Policy by Frontier-based Exploration.
Ablation

Local Policy does not improve much over deterministic policy

<table>
<thead>
<tr>
<th>Method</th>
<th>Gibson % Cov.</th>
<th>Val Overall Cov. (m²)</th>
<th>Gibson Val Large % Cov.</th>
<th>Val Large Cov. (m²)</th>
<th>Gibson Val Small % Cov.</th>
<th>Val Small Cov. (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANS w/o Local Policy + Det. Planner</td>
<td>0.941</td>
<td>32.188</td>
<td>0.845</td>
<td>53.999</td>
<td>0.980</td>
<td>23.464</td>
</tr>
<tr>
<td>ANS w/o Global Policy + FBE</td>
<td>0.925</td>
<td>30.981</td>
<td>0.782</td>
<td>49.731</td>
<td>0.982</td>
<td>23.481</td>
</tr>
<tr>
<td>ANS w/o Pose Estimation</td>
<td>0.916</td>
<td>30.746</td>
<td>0.771</td>
<td>49.518</td>
<td>0.973</td>
<td>23.237</td>
</tr>
<tr>
<td>ANS</td>
<td>0.948</td>
<td>32.701</td>
<td>0.862</td>
<td>55.608</td>
<td>0.983</td>
<td>23.538</td>
</tr>
</tbody>
</table>

Replace Local Policy by Analytical Deterministic Policy
Replace Global Policy by Frontier-based Exploration

Global Policy and Pose Estimation mostly help in Large Estimation
Pointgoal: Task Transfer
Pointgoal: Task Transfer

• Objective: Navigate to goal coordinates
Pointgoal: Task Transfer

- Objective: Navigate to goal coordinates
- Metric: Success weighted by inverse Path Length (SPL)

\[
\frac{1}{N} \sum_{i=1}^{N} \text{Success} \times \frac{\text{ShortestPathLength}}{\text{PathLength}}
\]
Pointgoal: Task Transfer

- Objective: Navigate to goal coordinates
- Metric: Success weighted by inverse Path Length (SPL)

\[
\frac{1}{N} \sum_{i=1}^{N} \text{Success} \times \frac{\text{ShortestPathLength}}{\text{PathLength}}
\]

- Global Policy -> always gives the pointgoal as the long-term goal
Harder Datasets

- **Hard-GEDR**
 - Higher Geodesic to Euclidean distance ratio (GEDR)
 - Avg GEDR 2.5 vs 1.37, minimum GEDR is 2

- **Hard-Dist**
 - Higher Geodesic distance
 - Avg Dist 13.5m vs 7.0m, minimum Dist is 10m
PointGoal Results
PointGoal Results

PointGoal Results

<table>
<thead>
<tr>
<th>Method</th>
<th>SPL</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>0.021</td>
<td>0.027</td>
</tr>
<tr>
<td>RL + Blind</td>
<td>0.421</td>
<td>0.625</td>
</tr>
<tr>
<td>RL + 3LConv [1]</td>
<td>0.406</td>
<td>0.550</td>
</tr>
<tr>
<td>RL + Res18</td>
<td>0.422</td>
<td>0.561</td>
</tr>
<tr>
<td>RL + Res18 + AuxDepth [2]</td>
<td>0.461</td>
<td>0.640</td>
</tr>
<tr>
<td>RL + Res18 + ProjDepth [3]</td>
<td>0.436</td>
<td>0.614</td>
</tr>
<tr>
<td>IL + Res18</td>
<td>0.725</td>
<td>0.823</td>
</tr>
<tr>
<td>IL + CMP [4]</td>
<td>0.73</td>
<td>0.827</td>
</tr>
<tr>
<td>Active Neural SLAM (ANS)</td>
<td>0.848</td>
<td>0.951</td>
</tr>
<tr>
<td>ANS + Task Transfer</td>
<td>0.846</td>
<td>0.950</td>
</tr>
</tbody>
</table>

PointGoal Results

<table>
<thead>
<tr>
<th>Method</th>
<th>SPL</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>0.021</td>
<td>0.027</td>
</tr>
<tr>
<td>RL + Blind</td>
<td>0.421</td>
<td>0.625</td>
</tr>
<tr>
<td>RL + 3LConv [1]</td>
<td>0.406</td>
<td>0.550</td>
</tr>
<tr>
<td>RL + Res18</td>
<td>0.422</td>
<td>0.561</td>
</tr>
<tr>
<td>RL + Res18 + AuxDepth [2]</td>
<td>0.461</td>
<td>0.640</td>
</tr>
<tr>
<td>RL + Res18 + ProjDepth [3]</td>
<td>0.436</td>
<td>0.614</td>
</tr>
<tr>
<td>IL + Res18</td>
<td>0.725</td>
<td>0.823</td>
</tr>
<tr>
<td>IL + CMP [4]</td>
<td>0.731</td>
<td>0.827</td>
</tr>
<tr>
<td>Active Neural SLAM (ANS)</td>
<td>0.848</td>
<td>0.951</td>
</tr>
<tr>
<td>ANS + Task Transfer</td>
<td>0.846</td>
<td>0.950</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>SPL</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>0.021</td>
<td>0.027</td>
</tr>
<tr>
<td>Reinforcement Learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RL + Blind</td>
<td>0.421</td>
<td>0.625</td>
</tr>
<tr>
<td>RL + 3LConv [1]</td>
<td>0.406</td>
<td>0.550</td>
</tr>
<tr>
<td>RL + Res18</td>
<td>0.422</td>
<td>0.561</td>
</tr>
<tr>
<td>RL + Res18 + AuxDepth [2]</td>
<td>0.461</td>
<td>0.640</td>
</tr>
<tr>
<td>RL + Res18 + ProjDepth [3]</td>
<td>0.436</td>
<td>0.614</td>
</tr>
<tr>
<td>Imitation Learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL + Res18</td>
<td>0.725</td>
<td>0.823</td>
</tr>
<tr>
<td>IL + CMP [4]</td>
<td>0.73</td>
<td>0.827</td>
</tr>
<tr>
<td>Active Neural SLAM (ANS)</td>
<td>0.848</td>
<td>0.951</td>
</tr>
<tr>
<td>ANS + Task Transfer</td>
<td>0.846</td>
<td>0.950</td>
</tr>
</tbody>
</table>

PointGoal Results

<table>
<thead>
<tr>
<th>Method</th>
<th>SPL</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>0.021</td>
<td>0.027</td>
</tr>
<tr>
<td>RL + Blind</td>
<td>0.421</td>
<td>0.625</td>
</tr>
<tr>
<td>RL + 3LConv [1]</td>
<td>0.406</td>
<td>0.550</td>
</tr>
<tr>
<td>RL + Res18</td>
<td>0.422</td>
<td>0.561</td>
</tr>
<tr>
<td>RL + Res18 + AuxDepth [2]</td>
<td>0.461</td>
<td>0.640</td>
</tr>
<tr>
<td>RL + Res18 + ProjDepth [3]</td>
<td>0.436</td>
<td>0.614</td>
</tr>
<tr>
<td>IL + Res18</td>
<td>0.725</td>
<td>0.823</td>
</tr>
<tr>
<td>IL + CMP [4]</td>
<td>0.73</td>
<td>0.827</td>
</tr>
<tr>
<td>Active Neural SLAM (ANS)</td>
<td>0.848</td>
<td>0.951</td>
</tr>
<tr>
<td>Ours</td>
<td>0.846</td>
<td>0.950</td>
</tr>
</tbody>
</table>

PointGoal Results

<table>
<thead>
<tr>
<th>Method</th>
<th>SPL</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>RL +盲</td>
<td>0.02</td>
<td>0.052</td>
</tr>
<tr>
<td>RL + 3LConv [1]</td>
<td>0.046</td>
<td>0.072</td>
</tr>
<tr>
<td>RL + Res18</td>
<td>0.109</td>
<td>0.176</td>
</tr>
<tr>
<td>RL + Res18 + AuxDepth [2]</td>
<td>0.197</td>
<td>0.277</td>
</tr>
<tr>
<td>RL + Res18 + ProjDepth [3]</td>
<td>0.129</td>
<td>0.180</td>
</tr>
<tr>
<td>IL + Res18</td>
<td>0.558</td>
<td>0.682</td>
</tr>
<tr>
<td>IL + CMP [4]</td>
<td>0.553</td>
<td>0.670</td>
</tr>
<tr>
<td>Active Neural SLAM (ANS)</td>
<td>0.71</td>
<td>0.824</td>
</tr>
<tr>
<td>Ours: ANS + Task Transfer</td>
<td>0.703</td>
<td>0.821</td>
</tr>
</tbody>
</table>

PointGoal Results

<table>
<thead>
<tr>
<th>Method</th>
<th>SPL</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Reinforcement Learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RL + Blind</td>
<td>0.006</td>
<td>0.008</td>
</tr>
<tr>
<td>RL + 3LConv [1]</td>
<td>0.006</td>
<td>0.006</td>
</tr>
<tr>
<td>RL + Res18</td>
<td>0.003</td>
<td>0.004</td>
</tr>
<tr>
<td>RL + Res18 + AuxDepth [2]</td>
<td>0.011</td>
<td>0.013</td>
</tr>
<tr>
<td>RL + Res18 + ProjDepth [3]</td>
<td>0.004</td>
<td>0.008</td>
</tr>
<tr>
<td>Imitation Learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL + Res18</td>
<td>0.31</td>
<td>0.359</td>
</tr>
<tr>
<td>IL + CMP [4]</td>
<td>0.318</td>
<td>0.369</td>
</tr>
<tr>
<td>Active Neural SLAM (ANS)</td>
<td>0.534</td>
<td>0.662</td>
</tr>
<tr>
<td>Ours</td>
<td>0.532</td>
<td>0.665</td>
</tr>
</tbody>
</table>

PointGoal Results

<table>
<thead>
<tr>
<th>Method</th>
<th>SPL</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>0.01</td>
<td>0.010</td>
</tr>
<tr>
<td>Reinforcement Learning:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RL + Blind</td>
<td>0.087</td>
<td>0.136</td>
</tr>
<tr>
<td>RL + 3LConv [1]</td>
<td>0.08</td>
<td>0.102</td>
</tr>
<tr>
<td>RL + Res18</td>
<td>0.125</td>
<td>0.160</td>
</tr>
<tr>
<td>RL + Res18 + AuxDepth [2]</td>
<td>0.143</td>
<td>0.189</td>
</tr>
<tr>
<td>RL + Res18 + ProjDepth [3]</td>
<td>0.111</td>
<td>0.134</td>
</tr>
<tr>
<td>Imitation Learning:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL + Res18</td>
<td>0.318</td>
<td>0.365</td>
</tr>
<tr>
<td>IL + CMP [4]</td>
<td>0.27</td>
<td>0.320</td>
</tr>
<tr>
<td>Active Neural SLAM (ANS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ours: ANS + Task Transfer</td>
<td>0.496</td>
<td>0.593</td>
</tr>
<tr>
<td>Ours: Ours</td>
<td>0.49</td>
<td>0.588</td>
</tr>
</tbody>
</table>

Results

Gibson

Domain Generalization (Matterport 3D)

Goal Generalization (Harder goals)

Exploration

https://youtu.be/tlyz68j_jvE

https://youtu.be/T2yfqrxP0Gg

Task Generalization

Pointgoal

https://youtu.be/4a3Mt7lmSK8

https://youtu.be/_k9r19qCcsk

https://youtu.be/G6kc_GtltR8
Results

Gibson

Domain Generalization
(Matterport 3D)

Goal Generalization
(Harder goals)

Exploration

Task Generalization
Pointgoal

https://youtu.be/tlyz68j_jvE

https://youtu.be/T2yfqrxP0Gg

https://youtu.be/4a3Mt7lmSK8

https://youtu.be/_k9r19qCcsk

https://youtu.be/G6kc_GlttR8
Winner of CVPR 2019 Habitat Challenge

<table>
<thead>
<tr>
<th>Rank</th>
<th>Team</th>
<th>SPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Active Neural SLAM (Arnold)</td>
<td>0.805</td>
</tr>
<tr>
<td>1</td>
<td>Mid-level-Features</td>
<td>0.800</td>
</tr>
<tr>
<td>3</td>
<td>CHROMA</td>
<td>0.712</td>
</tr>
<tr>
<td>4</td>
<td>ARF-RL</td>
<td>0.699</td>
</tr>
<tr>
<td>5</td>
<td>MTank</td>
<td>0.260</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rank</th>
<th>Team</th>
<th>SPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Active Neural SLAM (Arnold)</td>
<td>0.948</td>
</tr>
<tr>
<td>2</td>
<td>Pansy</td>
<td>0.927</td>
</tr>
<tr>
<td>3</td>
<td>Titardrew</td>
<td>0.868</td>
</tr>
<tr>
<td>4</td>
<td>Hiccup</td>
<td>0.846</td>
</tr>
<tr>
<td>5</td>
<td>CHROMA</td>
<td>0.843</td>
</tr>
</tbody>
</table>
Winner of CVPR 2019 Habitat Challenge

RGB Leaderboard

<table>
<thead>
<tr>
<th>Rank</th>
<th>Team</th>
<th>SPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Active Neural SLAM (Arnold)</td>
<td>0.805</td>
</tr>
<tr>
<td>2</td>
<td>Pansy</td>
<td>0.927</td>
</tr>
<tr>
<td>3</td>
<td>Titardrew</td>
<td>0.866</td>
</tr>
<tr>
<td>4</td>
<td>ARF-RL</td>
<td>0.846</td>
</tr>
<tr>
<td>5</td>
<td>MTank</td>
<td>0.260</td>
</tr>
</tbody>
</table>

RGBD Leaderboard

<table>
<thead>
<tr>
<th>Rank</th>
<th>Team</th>
<th>SPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Active Neural SLAM (Arnold)</td>
<td>0.948</td>
</tr>
<tr>
<td>2</td>
<td>Pansy</td>
<td>0.927</td>
</tr>
<tr>
<td>3</td>
<td>Titardrew</td>
<td>0.866</td>
</tr>
<tr>
<td>4</td>
<td>Hiccup</td>
<td>0.846</td>
</tr>
<tr>
<td>5</td>
<td>CHROMA</td>
<td>0.843</td>
</tr>
</tbody>
</table>
Sim-to-Real Transfer

Observation

Third-person view

Predicted Map and Pose

https://youtu.be/afqbn3gpeiA
Learning to Explore using Active Neural SLAM

Webpage: https://devendrachaplot.github.io/projects/Neural-SLAM

Code: https://github.com/devendrachaplot/Neural-SLAM

Thank you

Devendra Singh Chaplot

Email: chaplot@cs.cmu.edu

Twitter: @dchaplot