
Design and Performance of PRAN: A System for
Physical Implementation of Ad Hoc Network Routing Protocols

Amit Kumar Saha Khoa To Santashil PalChaudhuri Shu Du David B. Johnson

Rice University, Houston, Texas

Abstract
Simulation and physical implementation are both valuable tools in
evaluating ad hoc network routing protocols, but neither alone is
sufficient. In this paper, we present the design and performance of
PRAN, a new system for implementation of ad hoc network routing
protocols that merges these two types of evaluation tools. PRAN
(Physical Realization of Ad Hoc Networks) allows existing sim-
ulation models of ad hoc network routing protocols to be used—
without modification—to create a physical implementation of the
same protocol. We have evaluated the simplicity and portability of
our approach across multiple protocols and multiple operating sys-
tems through example implementations in PRAN of the DSR and
AODV routing protocols in FreeBSD and Linux using the existing,
unmodifiedns-2simulation models. We illustrate the ability of the
resulting protocol implementations to handle real, demanding ap-
plications by describing a demonstration with this DSR implemen-
tation transmitting real-time video over a multihop mobilead hoc
network; the demonstration features mobile robots being remotely
operated based on the video stream transmitted over the network.
We also present a detailed performance evaluation of PRAN toshow
the feasibility of our architecture.

1. Introduction
PRAN (Physical Realization of Ad Hoc Networks)1 is a new
system for easy implementation of ad hoc network routing
protocols. PRAN is motivated by the need in the community
for a system by which ad hoc network routing protocols can
be easily tested in a real-life system. The behavior of a real
ad hoc network can be quite dynamic, as the wireless nodes
in the network cooperate to forward packets for each other
to allow nodes not within direct wireless transmission range
of each other to communicate. Factors such as node move-
ment and variations in radio propagation conditions can cre-
ate frequent, rapid changes in network topology, presenting a
challenging environment for operation of the ad hoc network
routing protocol.

Ad hoc networking is currently a very active area of
research, yet evaluating the many proposed routing protocols
for ad hoc networks remains difficult. Currently, most ad hoc
network routing protocol designers simulate new protocol de-
signs using one of the commonly available network simula-
tors such asns-2 [4]. Only a handful of those designs are
actually implemented and tested in a real system using real
radios and mobility. Although, simulation and real physical
implementation are each valuable as techniques in evaluating
ad hoc network protocols, a full evaluation of some protocol
normally requires two separate implementations of the proto-

1In Sanskrit, “pran” means “life” or “coming to life.”

col, one for the simulation model and one for the real physical
implementation, resulting extra effort in coding, debugging,
validation, and maintenance.

PRAN allowsexistingsimulation models of ad hoc net-
work routing protocols to be used —without modification—
to create a physical implementation of the same protocol. The
ad hoc network routing protocol functionality at each node is
entirely defined by the existing simulation code, but when run
under PRAN, the protocol executes in reality, with the node
sending and receiving real packets as a node in the ad hoc
network. Our system, PRAN, is designed to take advantage
of the large base of existing simulation code and the ease of
implementation of new simulation code, but to move beyond
simulation-only evaluation of the many new and proposed
ad hoc network routing protocols.

In PRAN, the protocol code on each node in the network
runs in a single user-level process and uses standard inter-
faces to transmit and receive packets from the kernel, sim-
plifying protocol debugging and making the system highly
portable between different host operating systems. Our im-
plementation of PRAN is based on thens-2network protocol
simulator, but the techniques used in PRAN should also be
readily portable to other network simulation environments.
Additionally, while the implementation of PRAN is designed
for wireless ad hoc network routing protocols, the basic
PRAN architecture can be extended to other types of proto-
cols, such as transport protocols or wired routing protocols.

We have evaluated the simplicity and portability of PRAN
across multiple routing protocols and multiple operating
systems through example implementations in PRAN of
the Dynamic Source Routing protocol (DSR) [7] and the
Ad hoc On-Demand Vector Routing protocol (AODV) [15]
on FreeBSD and Linux using the existing, unmodified
ns-2 simulation models. The user-level code is identical
between our implementations on FreeBSD and Linux, and
the small amount of new operating system kernel support
code required by PRAN is identical for both protocols. We
also illustrate the ability of the resulting protocol implemen-
tations to handle real, demanding applications by presenting
a demonstration of our DSR implementation transmitting
real-time video over a multihop mobile ad hoc network
including mobile robots being remotely operated based on
the transmitted video stream. All video and robot control
messages were transmitted over the ad hoc network running
our DSR implementation.

The rest of this paper is organized as follows. In Section 2,
we describe the motivation behind PRAN, and in Section 3,

we compare PRAN to previous efforts in this field. In
Section 4, we describe the PRAN system architecture, and
in Section 5, we discuss the protocol and operating system
portability of this architecture. We evaluate PRAN’s per-
formance and describe a demonstration of its operation in
Section 6. Section 7 discusses several issues with our archi-
tecture, and Section 8 concludes the paper.

2. Motivation

There are many advantages inherent to evaluation of a net-
work protocol using simulation. Simulation allows repeat-
able experiments, for comparing one protocol or protocol ver-
sion to another under identical workloads. Also, it is gener-
ally easier than full physical implementation, since it avoids
the need for moving the nodes under test and can evaluate
systems for which the necessary hardware is not available.
However, simulation may fail to capture the precise behavior
of the real system, as it is difficult to accurately model the
complexities of real radio propagation, realistic node mobil-
ity, and application data traffic workload.

Physical protocol implementation, on the other hand, al-
lows the real system itself to be measured and can help to
validate simulations, but protocol evaluations using physi-
cal implementation are generally much more difficult than
simulation evaluations. For example, physical implementa-
tion must deal with real packet formats and application pro-
gramming interfaces, whereas such factors can be simplified
and abstracted in simulation. In addition, evaluations using
physical implementation are generally much more time- and
equipment-intensive than simulations, due to the use of real
hardware and real mobility and the exposure of the exper-
iments (and the experimenters) to the real environment in
which this mobility takes place.

With our PRAN architecture, we have designed a system
to allow protocol evaluations to utilize both simulation and
physical implementation with little extra effort. By writing
the protocol behavioroncein simulation code, the same code
can be usedwithout modificationto also allow testing and ex-
perimentation of the protocol as part of a real ad hoc network.
For example, as design and development of a new ad hoc net-
work routing protocol progress, the same code can be used
directly for simulation and physical implementation evalu-
ation, allowing new features or designs to be tested in the
convenience of simulation and in the complex reality of real
mobile nodes and real radios.

3. Related Work

Simulation models of many ad hoc network routing pro-
tocols have been created in simulators such asns-2 [4],
GloMoSim [23], OPNET [14], and QualNet [20], and physi-
cal implementations of several of these protocols have also
been created. We concentrate here on the different ap-
proaches in merging simulation and physical implementation.

One approach merging simulation and physical implemen-

tation efforts is to base the new physical implementation of
some protocol on the existing code of a simulation model of
that protocol. For example, Royer and Perkins documented
their efforts in using an existingns-2simulation model of the
AODV routing protocol as the basis for a new physical im-
plementation of the protocol on Linux [18]. Like our work,
their implementation of the routing protocol runs in a single
user-level process with interfaces to the kernel. They report
that many modifications were required to the AODV proto-
col design and to the Linux kernel in creating their imple-
mentation, some due to simplifications that had been made
in the existing AODV simulation model. Their implementa-
tion also is not directly portable between different operating
systems and supports only the AODV protocol; although they
state plans to create FreeBSD Unix and Windows implemen-
tations based on their work, significant modifications will be
necessary. For example, they suggest a new FreeBSD virtual
device driver to replace a Linux-only kernel interface usedby
the user-level process for kernel routing table updates; their
Linux kernel modifications also interact closely with the ker-
nel routing table data structures, which are different in differ-
ent operating systems.

Another approach merging simulation and physical imple-
mentation is the use of an existing physical implementation
of some protocol as the basis for a new simulation model of
the same protocol. For example, AODV-UU [12] is a physical
implementation of AODV, which can also be executed within
ns-2as a simulation model of AODV. However, AODV-UU
supports only the AODV protocol and does not attempt to be
portable to operating systems other than Linux for which it
was designed.

More general projects in this area, supporting arbitrary
ad hoc network routing protocols rather than a single spe-
cific protocol, include the Rooftop C++ Protocol Toolkit
(CPT) [17], thensclicksimulation environment [13], and the
work of Allard et al. [1]. In CPT, protocols must be writ-
ten within the proprietary CPT environment, which provides
its own simulator, plus platform wrapper functions and de-
vice drivers for physical (and embedded) implementations.
In nsclick, protocols must be written using the separate Click
Modular Router framework [10]; simulation can then be done
on ns-2, but unlike PRAN,nsclickreplaces most of the stan-
dard operation ofns-2and is not compatible with the fullns-
2 environment. Allard et al. creates a new C++ framework
for ad hoc network routing protocol implementation and also
provides a new, integrated simulator for simple testing proto-
cols implemented in this environment.

TOSSIM [11] provides a high fidelity simulation for
TinyOS and mote hardware, such that TinyOS applications
can be run in this simulation framework. The basic differ-
ence with PRAN is that TOSSIM was designed from scratch
with the objective of easy portability of TinyOS applications
from the simulation environment to the actual mote hardware,
whereas PRAN is more generic and provides for deploy-
ing any simulated ad hoc network routing protocol inns-2.

2

Moreover, unlike PRAN, TOSSIM does not model CPU time,
thereby leading to a case in which code that runs in simulation
will not run in a real mote due to non-handling of interrupts.

EmStar [5] is a software environment for developing and
deploying wireless sensor network applications on Linux-
based hardware platforms like iPAQs. It has a similar goal
as PRAN towards providing a useful environment for sim-
ulation as well as deployment. However, as with TOSSIM,
EmStar was designed from scratch to support easy migration
from simulation to implementation, thus making it inapplica-
ble to existing and commonly used simulators.

PRAN also shares some similarity to network emulation
systems [3, 9], but unlike network emulation, the resulting
protocol implementation under PRAN executes entirely as a
real system. Although the protocol behavior at each node
in PRAN is defined by the existing unmodified simulation
code, each node executes independently in the same way as
it would using any other technique for physical implementa-
tion of a real ad hoc network. Additional details on network
emulation are discussed in Section 4.2.1.

In contrast to each of these previous projects, PRAN al-
lows the use ofexisting, unmodifiedprotocol simulation mod-
els to create new physical protocol implementations. Specifi-
cally, we support protocol models from the widely usedns-2
network simulator, rather than requiring use of new imple-
mentation environments, and thus retain all the benefits ofns-
2 simulation, such as rapid prototyping and a widespread user
community. Existing protocol modules can easily be used to
create new physical implementations, and new protocols or
modifications to existing protocols can easily be coded and
tested in both simulation and physical implementation. We
demonstrate that PRAN can be ported to multiple routing pro-
tocols and operating systems. Additionally, the PRAN archi-
tecture can be applied to other protocol simulation systems.

4. PRAN System Architecture

The PRAN architecture consists of two parts: a single
user-level process and a small amount of operating system
kernel support. The user-level process executes the protocol
implementation on the node, using the existing code for the
simulation model of the protocol. In this process, we created
an environment in which this protocol code can run unmod-
ified, acting for that node as it would inside the original
simulator, but operating on real packets and using real radios.
This environment is composed of an event scheduler, support
for handling asynchronous reception of packets, transmission
of outgoing packets, and a packet format converter that serves
to translate between the protocol simulation packet format
and the native network packet format. For this module to
interface with the real network, we introduce a small amount
of kernel support to connect the simulation model in the user
process to the physical network. The user process uses only
standard network socket API (Application Programming
Interface) calls to interface with this kernel support.

The packet flow through a node implementing PRAN is
illustrated in Figure 1, for several different packet scenarios.
A packet to be forwarded by the node is received at the op-
erating system kerneldevice driverof the network interface
hardware, and is then passed to the user levelrouting pro-
tocol simulation modelvia the packet formatconverter; the
routing protocol then passes the packet back to the operating
system kernel via the converter, and the kernel finally passes
the packet to the device driver for transmission. For reception
of a packet destined to an application running on this node,
the routing protocol simulation model, after processing the
packet, passes the packet back to kernel, which transfers itto
the user application through the standard IP input function.

4.1. Kernel-Level Support

In order for the network to interact with the user-level pro-
tocol module, we used a BSD raw IP socket [22], which al-
lowed us to pass whole IP packets between the physical net-
work and user-level protocol engine. We used a raw IP socket
for this for several reasons. Raw sockets provide a standard
interface for passing the payload and full headers of IP pack-
ets in and out of the kernel. This allows the routing protocol
to manipulate the IP header and routing protocol-specific ex-
tension headers (not understood by the kernel) and to send
and receive separate routing packets (such as a ROUTE RE-
QUESTs and ROUTE REPLYs). Additionally, raw sockets pro-
vide socket buffering when sending packets between the ker-
nel and user level. Raw sockets are also standard BSD sock-
ets implementations, available in many operating systems in-
cluding UNIX, BSD, Linux, and Microsoft Windows. Thus,
the use of raw sockets simplifies operating system portability.
We also considered other techniques for passing data between
kernel and user space, such as memory mapping and remote
procedure calls. However, since data to be passed between
kernel and user space resides in the IP stack, the use of a raw
IP socket is simpler. Although memory mapping would allow
additional information to be easily passed along with each
packet between kernel and user level, this technique would
not provide packet queueing. In UNIX-like systems, the use
of copyinandcopyoutrequires the size of data to be known,
while IP packets vary widely in size. Another option for
passing information between user and kernel space was Net-
graph [8]. Netgraph provides an efficient method to interface
with different network components in the kernel, including
user-level process interfaces through socket nodes. However,
Netgraph is not a standard feature in most operating systems
and is generally only available on FreeBSD.

Changes in the kernel to support PRAN are small and exist
mainly in IP input and output processing routines in order to
support the user-level routing protocol implementation.

Since most routing protocols potentially need to process
packets destined for other nodes (such as in the case of
ROUTE REPLY, ROUTE ERROR, and route forwarding for
DSR and AODV), it is necessary for the IP input routine to
pass all incoming packets to the user-level routing agent, re-

3

model

User
Application

User
Application

input
Device driver Device driver

output

User level

Kernel level

IP input IP output

Converter

IP
output

IP
input

R
aw

 IP
 s

oc
ke

t R
aw

 IP
 socket

Routing protocol
simulation

Sender

Receiver
Forwarder

Figure 1: Flow of a Packet through a Node in PRAN in Different Scenarios

gardless of the IP destination.

For packets originated by an application running on an
ad hoc network node, the packet is intercepted at the ker-
nel IP output routine and passed back to IP input, where it
is then passed up to the user-level routing agent through raw
IP socket. The routing protocol may then, for example, add
a protocol-specific header to the packet or modify existing
packet header fields. The packet is then passed back to the
kernel through the raw IP socket, to be transmitted. This path
is illustrated in Figure 1.

In order to determine the address of the next-hop node
towards the destination to which to forward a packet, some
ad hoc network routing protocols do not use the traditional IP
routing table. To allow the user-level routing protocol itself
to determine the next-hop for a packet, the packet format con-
verter in the user-level routing agent may pass this informa-
tion to the kernel by appending the IP address of the next-hop
to the packet. If next-hop information is present, this value
is used by IP output rather than using the existing kernel IP
routing table mechanism to determine the next-hop address.
The decision to append additional information to the packet
instead of passing them separately is closely related to ourde-
cision to use raw sockets. When the packet is passed between
the kernel and user level through raw socket, if information
associated with that packet is separated from the packet, some
synchronization mechanism would be required to associate
the information to the packet. This would require substantial
control overhead as data exchanged through raw sockets and
those through memory mappings happen asynchronously.

Appended next hop information can be used by DSR to
indicate the next hop of the source route for a packet, with-
out the need for the kernel to know the format of the source
route header. Other protocols such as AODV could use the
kernel’s routing table mechanism, but this creates problems
for a user-level routing protocol implementation, since the
protocol cannot correctly manage the contents of the kernel
routing table by keeping track of the last time that each table
entry was used [18]. By instead utilizing this new mechanism
to allow the user-level routing process to completely manage
the routing decisions, these problems can be avoided.

Another area of changes we made was to allow the ad hoc
network routing protocol to take advantage of received signal
strength information, for example to determine when the cur-
rently used route is about to break. Based on this information,
the protocol can initiate a search for a new route to the des-
tination while the current route is still active. This optimiza-
tion, known as preemptive Route Maintenance [6], reduces
or even eliminates latency in searching for a new route when
the current route breaks. To support this or other uses of re-
ceive signal strength for a received packet, we modified the
wireless network interface driver to append the received sig-
nal strength value to each incoming packet. This information
is passed up with the entire packet to the user-level routing
process, where the protocol can extract the signal strengthin-
formation and determine appropriate actions.

Finally, in order to a detect broken link to the next hop,
many mobile ad hoc network routing protocols take advan-
tage of link-layer acknowledgment that already exists at the
MAC layer. To support this, the device driver is modified to
pass the link-layer transmission status to the user-level pro-
cess. We discuss in Section 4.2.5 how the user-level process
utilizes this information.

4.2. User-Level Support

In this section, we describe the environment we created in
which unmodifiedns-2protocol simulation models could be
executed, interfaced to the kernel to process real packets be-
ing sent, received, or forwarded by the node on which this
simulation model is executed. The result is that theunmodi-
fiedprotocol simulation code acts as the physical implemen-
tation code as well.

4.2.1. Event Scheduler

In a discrete event simulator such asns-2 [4], the simulator
maintains a queue of pending events to simulate, and main-
tains a global variable giving the currentvirtual time within
the simulation. The event scheduler repeats a loop in which
it finds in the event queue the event that should occur at the
earliest scheduled time, removes that event from the queue,
advances the global virtual time to the scheduled execution

4

time for that event, and simulates the event. The timebetween
event execution times is not simulated; rather, the global vir-
tual time immediately advances to the time at which the next
event is to occur.

In PRAN, we maintain that basic behavior, but we change
the event scheduler to instead operate in real time. That is,
rather than immediately advancing the global virtual time to
the next scheduled event time, the scheduler should wait un-
til real time (on the node itself) reaches the next scheduled
event execution time, and then execute the event. The global
virtual time is thus equal to the actual current real time at the
beginning of each event. The rest of the event scheduler, in-
cluding the event queue data structure and the interface to it,
are not changed in any way; the simulation code still main-
tains its own queue of pending events to be executed, as if it
were running in a standard simulation environment.

A similar type ofreal-timeevent scheduler is also used by
network emulation systems [3, 9]. In network emulation, a
single simulation on a centralized machine executes the be-
havior of all nodes in a simulated ad hoc network and simu-
lates events for all nodes; some of those nodes also represent
real machines. When a real machine sends a packet, it is in-
tercepted by the centralized simulation machine and injected
into that simulation as a new event. The simulation then con-
trols the behavior of that packet. When the packet reaches
another simulated node that represents a real machine, the
packet is transmitted again onto the physical network to be
received by the destination machine. However, in PRAN,
each node executes independently; the event queue inside the
PRAN user-level protocol process contains only events that
should occur at this node itself.

4.2.2. Interaction with the MAC Layer

In ns-2, when a packet is being sent by a mobile node, the
routing layer schedules the packet to the link layer, which
then schedules the packet to the Medium Access Control
(MAC) layer and finally transmits the packet using the sim-
ulated physical layer. Similarly, when a packet is receivedat
a mobile node from the simulated physical layer, the MAC
layer schedules the received packet to the link layer, which
then schedules that packet to the routing layer. Other wire-
less simulators provide similar detailed lower layers, in order
to accurately model the complex behaviors of these layers in
real systems.

However, in PRAN, we do not use the simulated link layer,
MAC layer, or physical layer, since these functions are pro-
vided by the real system in the operating system and in the
real hardware. So that the routing protocol layer can still
interact with these lower layers without knowing that it is
running in our PRAN environment rather than inside the ac-
tual simulator, we support the programming interfaces that
the simulator expects for these functions. These program-
ming interfaces are exported by the packet format conversion
module described in Section 4.2.4.

4.2.3. Reception of Packets

In addition to the basic event processing loop described above
in Section 4.2.1, adapted from the existing event scheduler
behavior ofns-2, we needed to handle the reception of pack-
ets from outside the simulation environment. Each node in
the physical implementation runs its own copy of the simula-
tion model of the ad hoc network protocol, and packets sent
by one node to another are sent over the real network as real
packets, rather than being handled internally as a normalns-2
event.

To integrate the reception of new packets from outside the
simulation environment, we allow the receipt of such a new
external packet to terminate the event scheduler’s wait forthe
real time of the next scheduled event execution time. Specifi-
cally, the event scheduler loop blocks itself with the operating
system untileither the next scheduled event execution time
arrivesor an external packet arrives at this node that must be
handled by the protocol. If a packet arrives before the next
scheduled event time, we handle that packet. This handling
of the packet can potentially generate other events that are
inserted into the scheduler’s event queue in the same way as
other simulated events (in fact, they are generated by simu-
lation code operating in the same way as if it were running
inside the normal simulator). If, however, real time reaches
the next scheduled event time first, then this existing event
in the simulator event queue is removed from the queue and
executed (in the same way as if it were running inside the
normal simulator). The following pseudocode summarizes
the complete event processing loop in PRAN:

while 1 do
nextEarliestEvent = getNextEvent();
eventTime = nextEarliestEvent.time;
timeout = eventTime -gettimeofday();
Wait for (packet from rawSocket or timeout);
if (timeout expired)then

Remove nextEarliestEvent;
Execute nextEarliestEvent;

else
Handle received packet;

end if
end while

When the kernel receives a packet that must be handled by
the simulated protocol, the kernel uses a raw IP socket to send
the packet to the converter which then sends the packet to the
user level protocol module. The following section describes
the conversion of packets.

4.2.4. Conversion between Packet Formats

Most simulators, includingns-2, use an abstract, internal
packet format that is different from native packet format, for
ease accessing different packet headers and packet header
fields in writing the simulation code for a protocol. For the
simulator to work transparently in a physical implementation
with real packets and with the existing, unmodified protocol
simulation model code, an extra software layer must convert

5

between abstract and native packet formats. On receiving an
external packet from the kernel, this converter changes the
packet from native format into the simulation abstract packet
format; on transmitting a packet outside the node’s simulation
environment, this converter changes the packet from the sim-
ulation abstract packet format into the native packet format.

4.2.5. Transmission of Packets

When the user level protocol module needs to transmit a
packet, the packet is received by the converter which then
converts the format of the packet fromns-2 packet format
to native format (dependent on the host byte order). The con-
verted packet is then sent to the operating system kernel using
a raw IP socket (the processing of this packet by the kernel is
described in Section 4.1). Thus, the routing layer never needs
to know the native packet format and is oblivious of how the
lower layers handle packets that the routing layer sends or
receives.

In addition, many ad hoc network routing protocols utilize
link-layer acknowledgements (e.g., as in IEEE 802.11) to de-
tect whether or not a transmitted packet is received by the
intended next-hop node. For example, DSR uses this link-
layer feedback for its on-demand Route Maintenance func-
tion [7]. In the real hardware and operating system device
driver, this feedback is signaled by an interrupt that occurs
asynchronously after the packet has been transmitted; In or-
der to support this link-layer feedback feature of the sim-
ulated ad hoc network routing protocol, this asynchronous
packet transmission completeinterrupt, signaling the success
or failure of the transmission attempt, must be passed to the
simulation environment in a way that is compatible with the
handling of this feedback by the simulated routing protocol.

In particular, inns-2, a pointer to the internalns-2packet
data structure is passed down to the simulated MAC layer. If
the packet cannot be successfully delivered to the next-hop
node (as indicated by the link-layer feedback), this pointer is
still available for the routing layer to use to access the original
packet. Replacing the lower layers as present inns-2with
the real operating system and hardware does not allow us to
directly do this in the same way.

We solve this by appending thens-2packet pointer to the
end of the native packet whenever anns-2packet is converted
to native packet format. When the packet is passed to the ker-
nel through the raw IP socket, thisns-2packet pointer is saved
inside the kernel as an opaque value (the kernel does not use
the pointeras a pointer). The attached packet pointer is not
transmitted with the packet when sending the packet over the
wireless network interface. Instead, it is simply saved by the
kernel until the packet transmission complete interrupt isre-
ceived by the device driver.

When this interrupt is received by the kernel, the kernel
constructs an ACK (acknowledgement) or NACK (negative
acknowledgement) packet to convey the success or failure
status of this packet back to the simulated environment. The
kernel looks up the saved (opaque)ns-2packet pointer that

corresponds to the delivered (or undelivered) native packet,
appends that packet pointer value to the ACK or NACK
packet, and sends the ACK or NACK packet to the simula-
tion environment through the raw IP packet in the same way
as for other received packets.

Once the ACK or NACK packet reaches the converter in
the simulation environment, the conversion routine calls an
ns-2function that takes the appropriate action on the original
packet (indicated by the appendedns-2packet pointer). If it is
an ACK packet, thenns-2deletes thens-2packet as normal;
if, however, it is a NACK packet, thenns-2has a reference
to the packet, and the packet can be processed exactly as a
failed packet is processed in unmodifiedns-2.

4.2.6. Application to Other Network Simulators

A number of different discrete event simulators exist and
have been used for simulating and evaluating ad hoc net-
work protocols. Among the more frequently used are
ns-2 [4], GloMoSim [23], OPNET [14], and QualNet [20].
In Section 4.2, we described the implementation of PRAN
for thens-2simulator. We believe that PRAN can be applied
to other discrete event simulators as well.

In particular, any discrete event simulator has an event
scheduler loop similar to that discussed in Section 4.2.1, and
the mechanism described in Section 4.2.3 can be used to
modify that loop in the same way as we have done forns-2.
The simulator already has its own data structures for main-
taining the event queue, and its own procedures for adding
events to the queue, removing events from the queue, and
finding the next event to simulate from the queue. None of
this needs to be modified in any way to apply PRAN to such
a simulator.

Furthermore, network protocol simulators generally all
follow a layered structure based on the standard 7-layer OSI
network reference model and on the protocol layering in real
operating systems. This makes it possible to replace their ab-
stracted link-layer, MAC, and physical layers with the real
operating system and hardware, through our interface to the
kernel. If abstract packet formats are used in the simulator, as
in ns-2, the same type of packet format converter can be used.

5. PRAN Architecture Portability
To demonstrate the simplicity, portability, and effectiveness
of PRAN, we present in this section the example implemen-
tation of two ad hoc network routing protocols, DSR and
AODV, on two different operating systems, FreeBSD and
Linux. In this evaluation, we use the DSR and AODV mod-
els fromns-2.26. However, as mentioned in Section 4.2.6,
the PRAN architecture is general purpose and should be able
to be applied also to other network protocol simulators.

The small amount of new kernel support required by
PRAN is protocol-independent and hence is unaware of the
actual protocol that is being implemented. Similarly, the pro-
tocol implementation is independent of the underlying oper-
ating system and hence is unaware of the operating system

6

that the machine is running. For example, in our example
protocol implementations described here, the user-level code
is identical between our implementations on FreeBSD and
Linux, and the new kernel support code is identical for both
DSR and AODV.

5.1. Portability across Multiple Protocols

In this section, we demonstrate the simplicity of supporting
multiple ad hoc network routing protocols in PRAN. First,
we describe our efforts in supporting two popular ad hoc net-
work routing protocols, DSR and AODV. Then we explain
how the support for other protocols, simulated inns-2, are
similar.

5.1.1. Example DSR Implementation in PRAN

DSR is a source routing protocol. Each packet sent using
DSR contains a source route. Here we briefly describe the
protocol. The DSR protocol consists of two mechanisms:
Route Discovery and Route Maintenance. To perform a
Route Discovery for a destination nodeD, a source nodeS
broadcasts a ROUTE REQUESTthat gets flooded through the
network in controlled manner. This request is answered by a
ROUTE REPLY from eitherD or some other node that knows
a route toD. To reduce frequency and propagation of ROUTE

REQUESTs each node aggressively caches source routes that
the node learns or overhears. Route Maintenance detects
when some link over which a data packet is being transmitted
breaks. When such a route breakage is detected, a ROUTE

ERROR is sent toS. Upon receiving a ROUTE ERROR, Scan
use any other route toD that it has in its route cache, orScan
initiate a new Route Discovery forD.

Support for a new protocol in PRAN requires only the ad-
dition of a new protocol-specific packet format conversion.
Kernel support is protocol- and simulator-independent, and
the protocol module itself already exists inns-2. We describe
below DSR-specific considerations that the DSR conversion
module needs to support.

DSR is a source routing protocol with its own IP protocol
number and header following the IP header. Thus, all packets
transmitted over the DSR network have DSR as the IP pro-
tocol number identified in the IP header. To transmit aDATA

packet in a DSR network, the converter needs to insert a DSR
header between the IP header and transport protocol header.
The transport protocol header and its data becomes the data
part of the newly created DSR packet. The converter also
needs to change the packet’s IP protocol field from the origi-
nal transport protocol to DSR (the original IP protocol value
is stored in the DSR header as specified by the DSR specifi-
cation [7]). Before theDATA packet leaves the DSR network
or is delivered to the application at the final destination, it
needs to be sent up to the conversion module. The conver-
sion module removes the DSR header and reconstructs the
original IP packet with the original transport protocol as its IP
protocol. Similarly, DSR control packets also have their own
DSR header on top of the IP header. However, since DSR

control packets are generated and freed by the DSR routing
module, there is no non-DSR packet to modify. The converter
only has to convert packets fromns-2format to native packet
format. After the DSR protocol module processes the packet
and constructs the new source route header, next hop infor-
mation is passed from the protocol module to the converter to
be sent to the kernel.

5.1.2. Example AODV Implementation in PRAN

AODV is another widely studied on-demand ad hoc net-
work routing protocol. Here we briefly describe the proto-
col. When a sourceS needs a route to a destinationD, S
broadcasts a ROUTE REQUESTto its neighbors. This request
contains the last known sequence number forD. The request
is flooded throughout the network until it reaches a node that
has a route toD. In this process each forwarding node creates
a reverse routeback toS. Upon reaching a node with a route
to D the node replies back toS with a ROUTE REPLY con-
taining the number of hops thatD is from itself and the most
recent sequence number forD known to the replying node.
When a node forwards this reply, it creates aforward routeto
D by remembering the next-hop node towardsD.

As with DSR, support for AODV requires only addition
of an AODV-specific packet format conversion module. Dif-
ferent from DSR, however, AODV does not require its own
protocol header. All AODV control packets are UDP pack-
ets with a special UDP port. DATA packets transmitted over
the AODV network are the same packets that were created by
the application. Thus, the only requirement for the AODV
conversion module is to directly convert betweenns-2 and
native packet formats. SinceDATA packets transmitted on
the AODV network are regular packets, no special processing
needs to be done before the packets leave the AODV network
or is delivered to the application at the final destination. How-
ever, for protocol-independent support in the kernel, all pack-
ets arriving at a node are passed up to the conversion module
before being delivered to the application or to an external net-
work. This also allows the routing protocol to extract useful
information from the packet about the network, either for pro-
tocol operation or for logging or statistics within the protocol
simulation code. After the AODV protocol module processes
the packet and determines next hop information from its rout-
ing table, next hop information is passed from the protocol
module to the converter to be sent to the kernel.

5.1.3. Support for Other ns-2 Routing Protocols

The unmodifiedns-2simulation code for any ad hoc network
routing protocol can be used directly in PRAN as long as the
simulation code implements the following interfaces that are
a normal part ofns-2.

For reception of unicast or broadcast packets,ns-2 re-
quires that the routing protocol module implements therecv()
function which is called by the MAC layer inns-2. Our con-
verter invokes the same function to pass packets to the proto-
col module.

7

ip_input()

an_txeof()

Protocol Module

User program

Transmit complete interrupt

Packet from medium

an_start()

Transmit complete interrupt

Packet from medium

Protocol Module

User program

ip_output()

H
ar

dw
ar

e

dr

iv
er

D

ev
ic

e
la

ye
r

N
et

w
or

k

airo_do_xmit()

ip_route_output()

ip_finish_output()

ip_local_deliver_finish()

ip_route_input()

airo_interrupt()

A
pp

lic
at

io
n

la
ye

r

Assign next hop address

Incoming packets from medium

Redirect all IP packets to raw socket

Treat all IP packets as if

final destination were local host

Packet transmit status feedback

from device

Redirect local outgoing application

packets to routing module

Associate transmit frame ID

with packet pointer

Pass transmit status

up to protocol module

(d) Linux kernel implementation
(c) Kernel modifications
(a) OSI Model
 (b) FreeBSD kernel implementation

Figure 2: Kernel Modifications in FreeBSD and Linux to Support PRAN

In order to handle link layer transmission failures,ns-
2 requires the simulation code for the routing protocol to
provide a callback function. For example, in the stan-
dard distribution ofns-2, DSR implements the function
XmitFailureCallback()and AODV implements the function
aodvrt failed callback(). This callback function is required
only for those protocols that respond to link layer transmis-
sion failures. If such a callback is provided, then the con-
verter invokes the callback to notify the protocol module of
transmission failures.

Some routing protocols operate the network interface
in promiscuous mode to overhear information contained in
packets for other nodes. For such routing protocols,ns-2re-
quires the simulation code for the routing protocol to imple-
ment thetap() function. If this function is provided, the con-
verter invokes the function to send promiscuously received
packets to the protocol module.

5.2. Portability across Multiple Operating Systems

Support for different ad hoc network routing protocols such
as DSR and AODV in PRAN is OS-independent. User-level
protocol code interfaces with the kernel through standard
BSD socket programming interface. The socket interface is
common to many operating systems, including most UNIX-
based systems (e.g., FreeBSD and Linux) and Microsoft
Windows (with Winsock). All OS-dependent features reside
in a small amount of kernel modifications, and porting the
implementation between different operating systems requires
only changes to this code.

General kernel modifications for the architecture were de-

scribed in Section 4.1. In Figure 2, we show examples of
where the modifications are located within the FreeBSD 5.1
and Linux 2.4.20 (RedHat 9.0) kernel code. Column (a) in
Figure 2 identifies the protocol layers present in common net-
work protocol stack implementations, e.g., based on the OSI
Reference Model. Columns (b) and (d) show the relevant op-
eration in the FreeBSD and Linux kernels, respectively, for
each protocol layer, for incoming and outgoing packets. Be-
tween these, column (c) shows the kernel modifications made
for PRAN; shaded boxes here represent modifications for in-
coming packets, and white boxes represent modifications for
outgoing packets. Each box in column (c) is aligned with the
actual functions in Linux and FreeBSD in columns (b) and (d)
where the modification is made.

In the FreeBSD kernel network protocol stack implemen-
tation, incoming IP packets from the wireless medium are
processed in theip input function. Modifications were done
in this function to pass all IP packets, regardless of their desti-
nations, through a raw socket to the user-level protocol mod-
ule. For outgoing traffic, after the protocol module sends
each processed packet to the kernel with next-hop informa-
tion, modifications are made in the outgoing IP function,
ip output, to fill next-hop information with the value passed
from the user-level routing protocol. For outgoing packets
that originate from a local application, the packets are inter-
cepted atip outputand redirected throughip input to the raw
socket, where they are passed up to PRAN’s user-level pro-
tocol module for routing decision. In the Cisco 350 wireless
LAN device driver (used in our implementation), where each
outgoing Ethernet frame that encapsulates the packet is about

8

Table 1: Packet Processing Times in our PRAN Implementation

Configuration
Kernel Processing Time

for Incoming Packets(µs)
User Level Processing

Time (µs)
Kernel Processing Time

for Outgoing Packets(µs)
Total Processing Time

(µs)

AODV on Linux 16.67 18.41 6.11 41.19
DSR on Linux 17.66 27.68 7.76 53.10
AODV on FreeBSD 248.10 77.91 13.32 339.33
DSR on FreeBSD 229.64 118.72 17.28 365.64

to be transmitted byan start, we associate the Ethernet frame
identifier (ID) with the packet pointer (Section 4.2.5). When
a transmission-complete interrupt occurs in the device driver,
the an txeof function is called with the ID of the Ethernet
frame that has finished transmission. The frame ID is con-
verted to its corresponding packet pointer, and a status notifi-
cation for this packet is passed up through the raw IP socket
to the user-level protocol process.

In the Linux kernel implementation, modifications take
place at similar interfaces with slightly different function
calls. Incoming IP packet processing logic in Linux is di-
vided into multiple functions. Specifically, modificationsto
treat all IP packets, regardless of their IP destinations, as if
they were destined for the local node (so that they will be
passed to the local user-level protocol implementation) hap-
pens at theip route input function, where the kernel decides
whether to pass an incoming packet to a higher-layer pro-
tocol. The packet is then redirected to the raw socket in-
terface in functionip local deliver finish, where the kernel
determines which higher-layer protocol the packet should be
delivered to. Similarly, outgoing IP processing logic in Linux
is also divided into multiple functions. Kernel modifications
to assign a next-hop address for an outgoing IP packet hap-
pen in theip route output function where the routing entry
is constructed. For an outgoing packet that originates froma
local application, the packet is intercepted and passed up to
the user-level protocol module for routing decision at the end
of the outgoing IP processing logic, in theip finish output
function. Modifications in the Cisco 350 wireless LAN de-
vice driver in Linux happen in the same logical place as in
FreeBSD. Here, theairo interrupt and airo do xmit func-
tions correspond to functionsan txeof andan start, respec-
tively, in FreeBSD.

Figure 2 shows that kernel modifications, as described in
Section 4.1, are located at similar interfaces in FreeBSD and
in Linux, it also shows that they are located at well-defined
locations in the network protocol stack layering (i.e., IP in-
put/output, Ethernet input/output, device driver input/output,
and routing gateway assignment).

Our choice of FreeBSD and Linux to illustrate operat-
ing system portability is due to the fact that they are pop-
ular operating systems with freely available kernel sources,
and not for any similarities between their codes. As a mat-
ter of fact, the FreeBSD and Linux kernel networking codes
evolved from entirely different code bases. FreeBSD net-
working code evolved from the original Berkeley Extensions.
The Linux networking stack, on the other hand, was inten-

tionally separated from BSD code due to copyright issues
with the BSD stack at the time. The Linux networking stack
was originally developed, lead by Ross Biro, in 1992 [21].
The Linux networking stack, however, does share similari-
ties with FreeBSD in that both operating systems are POSIX
compliant. However, the examples of FreeBSD and Linux
implementations in this section show that modifications in the
kernel are standard across all systems that have normal pro-
tocol layering and not just for POSIX-compliant systems.

6. Performance Evaluation
In this section, we present quantitative measurements to show
that the PRAN architecture with its user-level protocol imple-
mentation does not present a network bottleneck. We also de-
scribe a PRAN demonstration network to show that the archi-
tecture implementation can support demanding applications
with realistic traffic loads.

6.1. System Processing Overhead

In order to measure the overhead incurred in the PRAN im-
plementation, we set up a static network with IBM Thinkpad
X31 laptops, each with a 1.4 GHz Pentium M processor and
256 MB of RAM. Table 1 shows the processing time that
is incurred in forwarding a single data packet at an inter-
mediate node; we show the times separately for our AODV
and DSR implementations under PRAN on Linux and on
FreeBSD. The version of Linux used was Red Hat 9 with
kernel version 2.4.20, and the version of FreeBSD used was
5.1-RELEASE. We show only results for data forwarding
since most transmissions are for data forwarding. These
times were measured in the kernel in terms of CPU coun-
ters using the Intel benchmarking instructionrdtsc(). At the
user level, the same machine instruction is called using an
assembly level instruction.

The kernel processing time for an incoming packet in
Table 1 is the time between when the kernel is about to deter-
mine routing information for the packet and when the packet
is received by the user level protocol module (Section 5.2).
The user level processing time for a packet is the time be-
tween when the packet is received at the user level and when
the packet is sent back to the kernel. The kernel process-
ing time for an outgoing packet is the time between when
the user level protocol module passes the packet to the kernel
and when the kernel’s IP function for processing outgoing
packets receives this packet. Table 1 shows a large differ-
ence between the processing times in FreeBSD and for Linux;
from our measurements, these differences appear to be due

9

0 500 1000 1500
100

200

300

400

500

600

700

Input packet size (Byte)

M
ax

im
um

 o
ut

pu
t r

at
e

(p
ac

ke
ts

/s
ec

) PRAN one−hop
Kernel one−hop
PRAN two−hop
Kernel two−hop

(a) Maximum supported packet rate

0 500 1000 1500
0

1

2

3

4

5

Input packet size (Byte)

M
ax

im
um

 s
up

po
rt

ed
 b

an
dw

id
th

 (
M

bp
s) PRAN one−hop

Kernel one−hop
PRAN two−hop
Kernel two−hop

(b) Maximum supported bandwidth

200 400 600 800

100

200

300

400

500

600

700

Input rate (packets/sec)

O
ut

pu
t r

at
e

(p
ac

ke
ts

/s
ec

)

64B Kernel
64B PRAN
1460B Kernel
1460B PRAN

(c) Performance scaling of PRAN for one-hop

100 200 300 400 500

100

200

300

400

500

600

700

Input rate (packets/sec)

O
ut

pu
t r

at
e

(p
ac

ke
ts

/s
ec

)

64B Kernel
64B PRAN
1460B Kernel
1460B PRAN

(d) Performance scaling of PRAN for two-hop

Figure 3: Comparison of supported packet rate and bandwidthin PRAN DSR and optimal FreeBSD kernel DSR implementation

mainly to the differences in the time required by each operat-
ing system for getting in and out of the kernel, differences in
the existing network stack implementations in each operating
system, and differences in the implementation of common li-
brary functions such asmalloc(). However, in all cases, the
packet processing times are relatively small.

To further quantify the overhead of routing protocol im-
plementation under PRAN, we compared the performance of
our DSR implementation on PRAN to a theoretically optimal
native DSR implementation done entirely inside the kernel.
For the theoretically optimal DSR implementation, we made
the packet sizes the same as they would be in DSR (including
the DSR source routing header), but we used the native ker-
nel IP packet forwarding to process each packet (thus adding
zero CPU processing time due to DSR for each packet). Our
goal in these measurements was to determine the maximum
packet rates (and thus maximum bandwidth) that each DSR
implementation could support, with one source node origi-
nating UDP packets at a constant rate. We carried out this
experiment for two scenarios: with two nodes using a 1-hop
path, and with three nodes using a 2-hop path. The results
are shown in Figure 3. The output packet rates shown were
measured at the receiving node, counting the packets actually
received from the source node. These measurements were
done using the same IBM ThinkPad X31 laptops, running the

5.1-RELEASE version of FreeBSD.

When forwarding packets over the 2-hop route, the max-
imum achievable output packet rate (and thus the maximum
achievable bandwidth) is about half that of the 1-hop scenario
(Figures 3(a) and 3(b)). This is expected because unlike in the
1-hop scenario, there is more contention for the same wire-
less channel in the 2-hop scenario. With increasing packet
size, the supported packet rate goes down considerably, in
both the optimal DSR kernel implementation kernel and in
PRAN. The difference is due to the fact that PRAN copies
the entire packet (including the data payload) into user space,
which requires allocating and deallocating memory as well as
copying the data.

As the rate of sending packets increases (Figures 3(c)
and 3(d)), the PRAN implementation and the kernel imple-
mentation are able to achieve the same output packet rates,
until reaching a point at which the wireless channel and net-
work hardware saturate; beyond this rate, the output packet
rate remains roughly constant.

One source of overhead present due to the PRAN architec-
ture is the need to convert packets between the native (IP and
DSR) format and the abstract formats used within thens-2
code. However, much of the same conversion is effectively
spread throughout the code for any protocol implementation
using native packet formats, since accessing fields in vari-

10

ous packet headers during processing requires extracting the
value from that field. For example, Figure 4 shows the assem-
bly language code generated by the compiler for increment-
ing an embedded 3-bit integer field within a sample packet
header; since PRAN uses abstract packet formats within the
protocol processing, incrementing this value is simple, as
each field has already been extracted by the packet format
converter. Whereas PRAN converts each field once when
converting to abstract formats and when converting to native
formats, a protocol implementation using the native packet
formats directly may effectively convert some fields multiple
times (if they are accessed multiple times in processing the
packet) or may not convert some fields at all (if they are not
used in processing a given packet).

6.2. PRAN Demonstration

In order to validate the usability of PRAN, and to demonstrate
the resulting implementation of a protocol, we constructeda
test network of mobile and stationary nodes in our depart-
ment building. Our test network consisted of two mobile
robots and four stationary ad hoc network nodes, with the
robots remotely controlled based on real-time live video from
each robot transmitted over the ad hoc network, using stan-
dard Microsoft Windows NetMeeting video [2]. All video
and robot control messages were transmitted over the ad hoc
network with our protocol implementation. We show here
the operation of our implementation of DSR on FreeBSD
and omit for brevity demonstrations for configurations using
AODV or Linux. We chose the DSR implementation on
FreeBSD to show the usability of PRAN using the config-
uration with the lowest supported data bandwidth (Table 1).

Figure 5 summarizes the configuration of this network. In
this section, we describe the design and operation of the dif-
ferent components of this network, and we present the details
of the demonstration.

6.2.1. Wireless Nodes

Our test network included six wireless nodes implemented as
laptops with FreeBSD 5.1-RELEASE, modified as described
in Section 4.1. Each wireless node was an IBM Thinkpad

PRAN: Native:
incl 8(%eax) movl %eax, %ecx

movb 8(%eax), %al
sall $5, %eax
sarb $5, %al
movsbl %al, %eax
leal 1(%eax), %edx
movb 8(%ecx), %al
andl $7, %edx
andl $-8, %eax
orl %edx, %eax
movb %al, 8(%ecx)

Figure 4: Comparison of assembly language code generated for increment-
ing a field in a sample packet format in PRAN and native packet formats (the
%eax register points to the packet in memory)

model X31 laptop identical to those described in Section 6.1.
Of the six laptops, four were stationary, shown asS1

through S4 in Figure 5, and two were mobile, shown as
M1 and M2. W1 to W4 are Windows machines running
Microsoft Windows NetMeeting. By moving the mobile
nodesM1 andM2, changing multihop routes were created
through a varying sequence of the stationary wireless nodes
and through the other mobile node. Each of these laptops
used a Cisco Aironet 350 IEEE 802.11 wireless LAN card as
the wireless interface, operating at 11 Mbps; we disabled the
built-in IBM wireless LAN interface in each laptop and used
the Cisco cards instead, since these cards allow the transmit
power level to be modified. The stationary wireless nodes as
well as the mobile ones used the same wireless configuration.

To create a multihop ad hoc network of more than a few
hops within the limited physical space of our building, we
reduced the transmit power level of the wireless network
interfaces to 20 mW rather than the default 100 mW,
substantially reducing each node’s maximum transmission
distance (reducing the transmission power level by a factor
of 2 generally reduces the maximum transmission distance
by at least a factor of 4) [16]. With this reduced transmit
power level, our network created multihop routes of up to
5 hops in length. We validated during our demonstration that
the traffic was using multiple hops for substantial parts of the
demonstration period.

Each mobile node in our network was implemented as a
robot, which we could control by software commands over
the ad hoc network. We used the Koala robot [19], manufac-
tured by K-Team S.A. of Switzerland. The robot is approx-
imately 30 cm (12 inches) square and 20 cm (8 inches) in
height. Each robot carried two laptops, one running Windows
NetMeeting on Microsoft Windows XP Professional for traf-
fic generation, and one running FreeBSD as the gateway to
the ad hoc network. Figure 6 illustrates the configuration of
each robot mobile node.

6.2.2. Data Traffic Generation

In order to generate some sample network traffic for evalu-
ating our implementation, and also to help with controlling
the motion of the robots as mobile nodes in our network, we
decided to send live video from each robot over the ad hoc
network to a centralized control location. By watching the
video from a robot there, it would be possible to remotely
“drive” the robot by sending movement commands back to
the robot over the ad hoc network. In addition to exercising
and demonstrating the network, this approach also avoided
the need to otherwise program intelligent control directly
into the robot for autonomous motion. By using Windows
NetMeeting for the video, we also demonstrate compatibility
of our implementation with standard, unmodified IP-based
applications, as we do not have the source code for either
Windows or NetMeeting.

NetMeeting sends all video data packets using UDP.
However, when a call is first placed, NetMeeting uses TCP

11

S1

S4

S2

W3

S3 Hub

W4

Robot 2

W1 M1

Robot 1

W2 M2

Figure 5: PRAN Demonstration Configuration

to setup a connection. This meant that we had to support
both UDP and TCP data over our ad hoc network.

6.3. PRAN Demonstration Evaluation

The use of video and remote control of the robots created an
engaging demonstration of PRAN’s capabilities. In partic-
ular, in driving a robot, the user watches the video display
closely to avoid driving the robot into a wall; this is par-
ticularly true in turning a corner with a robot. If the video
stops or is not clear, or if movement commands to the robot
are not executed quickly (visible in the video display), the
user immediately notices. Throughout the demonstration,
the video display and robot control applications — and thus
the ad hoc network and the protocol implementation using
PRAN — worked very well.

We collected measurements during one run of our demon-
stration network in order to evaluate its performance. For
simplicity, in this run, we used only a single robot, with the
live NetMeeting video and remote robot control both being
sent over the ad hoc network. During this run, the robot was
remotely driven around the perimeter of the floor of our build-
ing and back to its starting position over a period of 13 min-
utes (780 seconds).

Figure 7 shows a summary of the types of packets trans-
mitted during the demonstration run and the number of bytes
of network overhead caused by each. Network overhead in-
cludes all ROUTE REQUEST, ROUTE REPLY, and ROUTE

Figure 6: One of the mobile nodes in our PRAN demonstration. The Koala
robot is carrying two laptops and a video camera. The top laptop is run-
ning FreeBSD and DSR, and the bottom laptop is running Windows XP and
NetMeeting.

3%2%
< 1%

95%

1.395 MB data bytes +
0.075 MB source route

overhead bytes

Route Request
159 packets

Route Repl
86 packet

y
s

Route Erro
25 packet

r
s

Data
4676 packets

Figure 7: Packet Type and Overhead Distribution

ERROR packets, as well as the DSR source route header in
each data packet. In this figure, each transmission of an over-
head packet (whether from the originator of the overhead
packet or from a forwarding intermediate node) is counted
separately.

Among ROUTE REQUEST, ROUTE REPLY, and ROUTE

ERROR packets, the number of ROUTE REQUESTs is the
greatest, since these packets are flooded through the net-
work. The number of ROUTE REPLYs is greater than ROUTE

ERRORs, since a Route Discovery is initiated from a single
ROUTE ERROR, but this may result in the return of more than
one ROUTE REPLY, if multiple paths to the target node ex-
ist or if multiple other nodes reply with a route to this target
from their Route Cache.

Figure 8 shows the Packet Delivery Ratio (PDR) for the
entire run of the demonstration. The PDR is defined as the
total fraction of application-level data packets originated
that are actually received at the intended destination node.
The horizontal dashed line shows the overall PDR for the
entire demonstration run, and the solid line shows the PDR
separately for each 10-second interval. There is a sharp
dip in the PDR at around time 300 seconds, about half way
through the demonstration run. At this time, the mobile robot
was the farthest from the rest of the network and thus was
experiencing temporary wireless signal fading. This behavior
occurs in real networks but is not modeled accurately in most

0 100 200 300 400 500 600 700 800
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Elapsed Time (Seconds)

P
ac

ke
t D

el
iv

er
y

R
at

io

10s Interval PDR
Overall PDR

Figure 8: Packet Delivery Ratio (they-axis ranges from 0.5 to 1)

12

0 100 200 300 400 500 600 700 800
0

10

20

30

40

50

60

70

80

Elapsed Time (Seconds)

P
ac

ke
t L

at
en

cy
 (

m
ill

is
ec

)

10s Packet Latency
Overall Packet Latency

Figure 9: Packet Delivery Latency

purely simulation evaluations of ad hoc network protocols,
since it depends on more realistic physical layer radio
modeling than is usually done.

Finally, Figure 9 shows the Packet Delivery Latency
during this demonstration run. Packet Delivery Latency is
measured only for application packets, and is defined as the
time between originating a packet at the source node and
receiving it at the destination node. The horizontal dashed
line shows the overall Packet Delivery latency for the entire
demonstration run, and the solid line shows it separately
for each 10-second interval. As with the PDR, the Packet
Delivery Latency is worse (increases) at around time 300
seconds when the robot was farthest away. This created
longer routes for packets to travel from the robot to the
destination node. Additionally, the weak signal strength at
this location can cause additional RTS/CTS retransmissions
due to dropped packets at the IEEE 802.11 MAC level,
adding to Packet Delivery Latency.

7. Discussion
7.1. An Alternative Approach

A simpler approach to PRAN would be to package the en-
tire simulation packet (in its abstract format) as data inside
an IP packet without being converted to native format. This
approach would no longer require the conversion module
(Section 4.2.4). Next-hop information would still be passed
down to the kernel and processed as specified in Section 4.1.
When this IP packet reaches the next-hop node and arrives
at the user process, the simulation packet would be immedi-
ately available for the simulation protocol module to process.
By removing the conversion module, new simulation protocol
module could be quickly be implemented, since there would
be no protocol-specific implementation in either user or ker-
nel space, aside from a small effort to retrieve next hop infor-
mation from the simulation module to the kernel.

There are, however, many problems with this approach,
making it inappropriate for most implementation purposes.
By not converting the simulation-specific format to native
packet format, this approach prevents interoperability with

other implementations of the same protocol. More impor-
tantly, however, this approach will significantly affect pro-
tocol behaviors due to the fact that sizes of different native
packet types are replaced by sizes of simulation packets. In
many simulations, for instancens-2, all packets are repre-
sented by a common structure with different flags for dif-
ferent packet types. This common structure includes fields
for all packet types, making the structure much larger than
each native packet. Even in simulators where there are differ-
ent structures for each packet type, they are often represented
in formats such as aclassor a struct with integer and array
fields that are not nearly as compact as native packet formats.
The effects of incorrect packet size on the protocol behav-
iors are especially magnified for wireless network protocols
where contentions for the medium and allocated medium ac-
cess greatly depend on packet sizes.

7.2. Benefits of the PRAN Architecture

With PRAN, experimental changes to the protocol can be
quickly implemented at the user level. Additionally, a sin-
gle change can be made in the simulation module that can be
tested in both the simulator and validated in the real physical
environment.

By sharing code with simulation modules, the architecture
retains many useful debugging and logging features that are
common in simulation code.

7.3. Applicability of the PRAN Architecture

PRAN provides an effective way to validate experimental
protocols on real physical networks. This also means that
protocol modules using this architecture cannot assume any
global knowledge (e.g. best routes, locations of all mobile
nodes, etc.) that are often available in simulation environ-
ments. While a number of simulation protocols do require
some global knowledge from the simulator, and thus can-
not be used in PRAN without additional modifications, any
deployment of such protocols to a distributed network en-
vironment would require modifications to detach from such
knowledge, or to obtain them out-of-band. These deployable
versions can then be used unmodified with PRAN.

Since physical behaviors of wireless signals such as sig-
nal fading, multipaths, and delays are very difficult to model
in simulations, PRAN is most beneficial for testing wireless
network protocols. By employing real wireless transmissions
and mobility, PRAN can uncover issues related to the dy-
namic wireless medium that cannot be accurately modelled in
simulations. For example, when the wireless signal is weak,
some routing packets may be successfully received, but most
data packets will likely be dropped; use of such a route can
substantially affect performance, but the subtlety of which
packets are received and which are not is difficult to model
accurately in simulation.

For this particular implementation of the PRAN architec-
ture, we focused on supporting routing protocols and imple-
mented kernel modifications for packet interceptions at the

13

network layer (IP layer). Thus, protocols at other layers (e.g.,
transport protocols) cannot be supported with this specific
implementation of PRAN, although a similar approach could
be used. Specifically, to support protocol modules at any
layer, modifications parallel to that described in Section 4.1
can be made at the appropriate layer in the kernel network-
ing stack. However, protocols that require tight constraints
on real-time processing such as IEEE 802.11 (e.g., returning
a CTS after receiving an RTS) may not be able to be directly
supported due to the variable latency of entering the PRAN
user-level process and returning to the kernel.

8. Conclusion
The common method of evaluation for ad hoc network proto-
col is network simulation, allowing repeatable behavior and
stressing the protocol. On the other hand, physical imple-
mentation allows the real protocol to be tested. Typically
these two methods are orthogonal to each other, requiring
completely separate implementations. Our PRAN architec-
ture allows the protocol code to be written just once, and used
in the simulation environment as well as in the physical im-
plementation. Furthermore, existing,unmodifiedsimulation
models of ad hoc network protocols can be used to create
such physical implementations. In addition to saving imple-
mentation effort for the physical implementation, reusingthe
existing simulation code avoids introducing new bugs in the
implementation and eases later maintenance of the code. New
protocol features and options can also be tested and evaluated
first in simulation, and then moved without modification into
the physical environment.

In this paper, we have described the PRAN architecture
and created example implementations of DSR and AODV
on FreeBSD and Linux from their existingns-2models. The
user-level code isidentical between our implementations
on FreeBSD and Linux, and the small amount of new
operating system kernel support code required by PRAN
is identical for both protocols. We have also shown the
ability of the resulting protocol implementations to handle
real, demanding applications by presenting a demonstration
of our DSR implementation transmitting real-time video
over a multihop mobile ad hoc network; the demonstration
featured mobile robots being remotely operated based on
the transmitted video stream. All video and robot control
messages were transmitted over the ad hoc network running
our DSR implementation. We have also presented a detailed
performance evaluation of PRAN to show the feasibility of
our architecture.

We plan to publicly release the source code for our PRAN
system to allow other ad hoc network researchers to easily
experiment with a variety of protocols in real physical imple-
mentations.

References
[1] J. Allard, P. Gonin, M. Singh, and G. G. Richard. A User Level Frame-

work for Ad Hoc Routing. InProceedings of the 27th Annual IEEE

Conference on Local Computer Networks(LCN 2002), pages 13–19,
November 2002.

[2] Microsoft Corporation. Microsoft
NetMeeting. NetMeeting home page:
http://www.microsoft.com/windows/netmeeting/ .

[3] Kevin Fall. Network Emulation in the Vint/NS Simulator.In Proceed-
ings of the Fourth IEEE Symposium on Computers and Communica-
tions (ISCC’99), July 1999.

[4] Kevin Fall and Kannan Varadhan, editors. Thens Manual (formerly
ns Notes and Documentation). The VINT Project, UC Berkeley,
LBL, USC/ISI, and Xerox PARC, November 2003. Available from
http://www.isi.edu/nsnam/ns/doc/ .

[5] Lewis Girod, Jeremy Elson, Alberto Cerpa, Thanos Stathopoulos,
Nithya Ramanathan, and Deborah Estrin. EmStar: a Software Envi-
ronment for Developing and Deploying Wireless Sensor Networks. In
Proceedings of the 2004 USENIX Technical Conference, Boston, MA,
2004. To appear.

[6] Tom Goff, Nael B. Abu-Ghazaleh, Dhananjay S. Phatak, andRidvan
Kahvecioglu. Preemptive Routing in Ad Hoc Networks. InProceed-
ings of the Seventh Annual Internation Conference on MobileComput-
ing and Networking (MobiCom 2001), pages 43–52, July 2001.

[7] David B. Johnson and David A. Maltz. Dynamic Source Routing in
Ad Hoc Wireless Networks. InMobile Computing, edited by Tomasz
Imielinski and Hank Korth, chapter 5, pages 153–181. KluwerAca-
demic Publishers, 1996.

[8] Julian Elischer. The Netgraph Networking System. Available at
http://www.elischer.org/netgraph/ .

[9] Qifa Ke, David A. Maltz, and David B. Johnson. Emulation of Multi-
Hop Wireless Ad Hoc Networks. InProceedings of the Seventh Inter-
national Workshop on Mobile Multimedia Communications (MOMUC
2000), October 2000.

[10] E. Kohler, Robert Morris, B. Chen, J. Jannotti, and M.F.Kaashoek. The
Click Modular Router. InACM Transactions on Computers Systems,
pages 18(30):263–297, August 2000.

[11] Philip Levis, Nelson Lee, Matt Welsh, and David Culler.TOSSIM:
accurate and scalable simulation of entire tinyOS applications. InPro-
ceedings of the first international conference on Embedded networked
sensor systems, pages 126–137. ACM Press, 2003.

[12] Henrik Lundgren and Erik Nordstr om. AODV-UU.
http://user.it.uu.se/˜henrikl/aodv/ .

[13] Michael Neufeld, Ashish Jain, and Dirk Grunwald. Nsclick: Bridging
Network Simulation and Deployment. InProceedings of the the Fifth
ACM International Workshop on Modeling, Analysis and Simulation of
Wireless and Mobile Systems(MSWiM 2002), September 2002.

[14] OPNET Technologies. OPNET Modeler.
http://www.opnet.com/products/modeler/home.html .

[15] Charles E. Perkins and Elizabeth M. Royer. Ad-Hoc On-Demand Dis-
tance Vector Routing. InSecond IEEE Workshop on Mobile Computing
Systems and Applications, pages 90–100, February 1999.

[16] Theodore S. Rappaport.Wireless Communications: Principles and
Practice. Prentice Hall, New Jersey, 1996.

[17] Rooftop Communications. The Rooftop C++ Protocol Toolkit (CPT).
http://web.archive.org/web/19980614083648/www.rooft op.com/rnd.sht

[18] Elizabeth M. Royer and Charles E. Perkins. An Implementation Study
of the AODV Routing Protocol. InProceedings of the Second IEEE
Wireless Communications and Networking Conference(WCNC 2000),
September 2000.

[19] K-Team S.A. Koala Robot.http://www.k-team.com/robots/koala/index.html
[20] Scalable Network Technologies. QualNet Family of Products.

http://www.scalable-networks.com/products/qualnet.p hp.
[21] Terry Dawson and Alessandro Rubini. A brief history

of Linux Networking Kernel Development. Available at
http://www.sgmltools.org/HOWTO/NET-3-HOWTO/t151.htm l .

[22] Gary R. Wright and W. Richard Stevens.TCP/IP Illustrated Vol 2 The
Implementation. Addison Wesley, 1995.

[23] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. GloMoSim: A Library
for Parallel Simulation of Large-Scale Wireless Networks.In Work-
shop on Parallel and Distributed Simulation, pages 154–161, 1998.

14

