Design and Performance of PRAN: A System for
Physical Implementation of Ad Hoc Network Routing Protocok

Amit Kumar Saha Khoa To Santashil PalChaudhuri Shu Du DavigtbBnson
Rice University, Houston, Texas

Abstract col, one for the simulation model and one for the real physica

Simulation and physical implementation are both valuabtdstin 'mplementat'on’ re_sultlng extra effort in coding, debuggi
evaluating ad hoc network routing protocols, but neithenalis ~ validation, and maintenance.
sufficient. In this paper, we present the design and perfocmaf PRAN allowsexistingsimulation models of ad hoc net-
PRAN, a new system for implementation of ad hoc network mauti  work routing protocols to be used without modificatior—
protocols that merges these two types of evaluation tooRANP o create a physical implementation of the same protoca. Th
(Physical Realization of Ad Hoc Networks) allows existing's 54 hoc network routing protocol functionality at each nale i
ulation models of ad hoc network routing protocols to be used entirely defined by the existing simulation code, but whem ru
without modification—to create a physical implementatidrtte under PRAN, the protocol executes in reality, with the node
same protocol. We have gvaluated the Simp”dty. and Pdmbif sending and’receiving real packets as a noéle in the ad hoc
our approach across multiple protocols and multiple opeyatys- . .
tems through example implementations in PRAN of the DSR andﬁetwork. Our system, _PRAN'_'S deglgned to take advantage
AODV routing protocols in FreeBSD and Linux using the exigti  Of the large base of existing simulation code and the ease of
unmodifiedns-2simulation models. We illustrate the ability of the implementation of new simulation code, but to move beyond
resulting protocol implementations to handle real, dermapap-  Simulation-only evaluation of the many new and proposed
plications by describing a demonstration with this DSR iempén-  ad hoc network routing protocols.
tation transmitting real-time video over a multihop mokélé hoc In PRAN, the protocol code on each node in the network
network; the demonstration features mobile robots beingptely 1< in a single user-level process and uses standard inter-
operated based on the. video stream transmitt.ed over therietw faces to transmit and receive packets from the kernel, sim-
We also.prgsentadetallgd performance evaluation of PRANdw plifying protocol debugging and making the system hi,ghly
the feasibility of our architecture. portable between different host operating systems. Our im-
plementation of PRAN is based on the-2network protocol
simulator, but the techniques used in PRAN should also be
PRAN (Physical Realization of Ad Hoc Networksy anew  readily portable to other network simulation environments
system for easy implementation of ad hoc network routingadditionally, while the implementation of PRAN is designed
protocols. PRAN is motivated by the need in the communityfor wireless ad hoc network routing protocols, the basic
for a system by which ad hoc network routing protocols canPRAN architecture can be extended to other types of proto-
be easily tested in a real-life system. The behavior of a reatols, such as transport protocols or wired routing promcol
_ad hoc network can be quite dynamic, as the wireless nodes \yje have evaluated the simplicity and portability of PRAN
in the network cooperate to forward packets for each othefqross multiple routing protocols and multiple operating
to allow nodes not within direct wireless transmission kng systems through example implementations in PRAN of
of each other to communicate. Factors such as node movese Dynamic Source Routing protocol (DSR) [7] and the
ment and variations in radio propagation conditions can Creaq hoc On-Demand Vector Routing protocol (AODV) [15]
ate frequent, rapid changes in network topology, presgmtin ., FreeBSD and Linux using the existing, unmodified
challenging environment for operation of the ad hoc network,s > simulation models. The user-level code is identical
routing protocol. _ between our implementations on FreeBSD and Linux, and

Ad hoc networking is currently a very active area of he small amount of new operating system kernel support
research, yet evaluating the many proposed routing prioco¢qde required by PRAN is identical for both protocols. We
for ad hoc networks remains difficult. Currently, most ad hocygq ijjjustrate the ability of the resulting protocol impien-
ngtwork routing protocol designers simulate new protogel d tations to handle real, demanding applications by presgnti
signs using one of the commonly available network simula; gemonstration of our DSR implementation transmitting
tors such a:is-2[4]. Only a handful of those designs are (gg|-time video over a multihop mobile ad hoc network
actually implemented and tested in a real system using re%cluding mobile robots being remotely operated based on
radios and mobility. Although, simulation and real physica {he transmitted video stream. All video and robot control

implementation are each valuable as techniques in evaBiati messages were transmitted over the ad hoc network running
ad hoc network protocols, a full evaluation of some protocol,,r pSR implementation.

normally requires two separate implementations of thegarot

1. Introduction

The rest of this paper is organized as follows. In Section 2,
1In Sanskrit, “pran” means “life” or “coming to life.” we describe the motivation behind PRAN, and in Section 3,




we compare PRAN to previous efforts in this field. In tation efforts is to base the new physical implementation of
Section 4, we describe the PRAN system architecture, ansome protocol on the existing code of a simulation model of
in Section 5, we discuss the protocol and operating systerthat protocol. For example, Royer and Perkins documented
portability of this architecture. We evaluate PRAN'’s per- their efforts in using an existings-2simulation model of the
formance and describe a demonstration of its operation iODV routing protocol as the basis for a new physical im-
Section 6. Section 7 discusses several issues with ourarchilementation of the protocol on Linux [18]. Like our work,

tecture, and Section 8 concludes the paper. their implementation of the routing protocol runs in a seg|
user-level process with interfaces to the kernel. Theyntepo
2. Motivation that many modifications were required to the AODV proto-

e?—OI design and to the Linux kernel in creating their imple-

There are many advantages inherent to evaluation of a n . A
. . . . . mentation, some due to simplifications that had been made
work protocol using simulation. Simulation allows repeat-.

: : in the existing AODV simulation model. Their implementa-
able experiments, for comparing one protocol or protocel ve tion also is not directly portable between different opiewat
sion to another under identical workloads. Also, it is gener yp heg

ally easier than full physical implementation, since it iago systems and supports only the AODV protocol; although they

: tate plans to create FreeBSD Unix and Windows implemen-
the need for moving the nodes under test and can evaluaje,. . L o i

. . . ations based on their work, significant modifications wél b
systems for which the necessary hardware is not available;

) . . . ._hecessary. For example, they suggest a new FreeBSD virtual
However, simulation may fail to capture the precise behavio ,~". . . .
A device driver to replace a Linux-only kernel interface usgd
of the real system, as it is difficult to accurately model the

. . . L . the user-level process for kernel routing table updatesr th
complexities of real radio propagation, realistic node ihob | . e ; :
) L : Linux kernel modifications also interact closely with the-ke
ity, and application data traffic workload. . . . .
) . ) nel routing table data structures, which are different ffedi
Physical protocol implementation, on the other hand, al- .
. ent operating systems.
lows the real system itself to be measured and can help to . . . L
. . : : T Another approach merging simulation and physical imple-
validate simulations, but protocol evaluations using phys o - o .
. : e mentation is the use of an existing physical implementation
cal implementation are generally much more difficult than . ; :
simulation evaluations. For examole. phvsical im IementaOf some protocol as the basis for a new simulation model of
: p'e, pny P the same protocol. For example, AODV-UU [12]is a physical

tion mu.st d_eal with real packet formats and appllca'u_on p.r.o'implementation of AODV, which can also be executed within
gramming interfaces, whereas such factors can be simplifie

o . e : . gs—Zas a simulation model of AODV. However, AODV-UU
and abstracted in simulation. In addition, evaluationgsgisi
physical implementation are generally much more time- an

gupports only the AODV protocol and does not attempt to be
equipment-intensive than simulations, due to the use of reé)ortable to operating systems other than Linux for which it
hardware and real mobility and the exposure of the exper-

was designed.
iments (and the experimenters) to the real environment in More general projects in this area, supporting arbitrary
which this mobility takes place.

ad hoc network routing protocols rather than a single spe-
cific protocol, include the Rooftop C++ Protocol Toolkit
nZCPT) [17], thensclicksimulation environment [13], and the
work of Allard et al. [1]. In CPT, protocols must be writ-
the protocol behaviooncein simulation code, the same code .ten withiq the proprietary CPT environment, WhiCh provides
its own simulator, plus platform wrapper functions and de-

can be usedithout modificatiorio also allow testing and ex- . . ) .
. . vice drivers for physical (and embedded) implementations.
perimentation of the protocol as part of a real ad hoc networ . ) . .
p nsclick protocols must be written using the separate Click

For example, as design and development of a new ad hoc ne}godular Router framework [10]; simulation can then be done
work routing protocol progress, the same code can be use

: . . Co . onns-2 but unlike PRAN nsclickreplaces most of the stan-
directly for simulation and physical implementation evalu . : ; .

. . . . dard operation ofis-2and is not compatible with the fufis-
ation, allowing new features or designs to be tested in th

: . : . : 9 environment. Allard et al. creates a new C++ framework
convenience of simulation and in the complex reality of real . . .

. . for ad hoc network routing protocol implementation and also
mobile nodes and real radios. . . . . .

provides a new, integrated simulator for simple testinggro
cols implemented in this environment.
3. Related Work TOSSIM [11] provides a high fidelity simulation for
Simulation models of many ad hoc network routing pro-TinyOS and mote hardware, such that TinyOS applications
tocols have been created in simulators suchnss [4], can be run in this simulation framework. The basic differ-
GloMoSim [23], OPNET [14], and QualNet [20], and physi- ence with PRAN is that TOSSIM was designed from scratch
cal implementations of several of these protocols have alswith the objective of easy portability of TinyOS applicatio
been created. We concentrate here on the different agrom the simulation environment to the actual mote hardware
proaches in merging simulation and physical implemematio whereas PRAN is more generic and provides for deploy-
One approach merging simulation and physical implemening any simulated ad hoc network routing protocolnis-2

to allow protocol evaluations to utilize both simulationdan
physical implementation with little extra effort. By wrritd



Moreover, unlike PRAN, TOSSIM does not model CPU time, The packet flow through a node implementing PRAN is
thereby leading to a case in which code that runs in simulatioillustrated in Figure 1, for several different packet sc@m
will not run in a real mote due to non-handling of interrupts. A packet to be forwarded by the node is received at the op-
EmStar [5] is a software environment for developing anderating system kernelevice driverof the network interface
deploying wireless sensor network applications on Linux-hardware, and is then passed to the user lemating pro-
based hardware platforms like iPAQs. It has a similar goatocol simulation modeVia the packet formatonverter the
as PRAN towards providing a useful environment for sim-routing protocol then passes the packet back to the opgratin
ulation as well as deployment. However, as with TOSSIM,system kernel via the converter, and the kernel finally masse
EmStar was designed from scratch to support easy migratioie packet to the device driver for transmission. For réoapt
from simulation to implementation, thus making it inapplic  of a packet destined to an application running on this node,
ble to existing and commonly used simulators. the routing protocol simulation model, after processing th
PRAN also shares some similarity to network emulationPacket, passes the packet back to kernel, which transfers it
systems [3, 9], but unlike network emulation, the resultingthe user application through the standard IP input function
protocol implementation under PRAN executes entirely as a}l 1
real system. Although the protocol behavior at each node™ ™
in PRAN is defined by the existing unmodified simulation In order for the network to interact with the user-level pro-
code, each node executes independently in the same way &0l module, we used a BSD raw IP socket [22], which al-
it would using any other technique for physical implementa-lowed us to pass whole IP packets between the physical net-
tion of a real ad hoc network. Additional details on network work and user-level protocol engine. We used a raw IP socket
emulation are discussed in Section 4.2.1. for this for several reasons. Raw sockets provide a standard
In contrast to each of these previous projects, PRAN alinterface for passing the payload and full headers of IP pack
lows the use oéxisting unmodifiecbrotocol simulation mod- ~ €ts in and out of the kernel. This allows the routing protocol
els to create new physical protocol implementations. $peci t0 manipulate the IP header and routing protocol-specific ex
cally, we support protocol models from the widely used2 ~ tension headers (not understood by the kernel) and to send
network simulator, rather than requiring use of new imple-@nd receive separate routing packets (such asarR Re-
mentation environments, and thus retain all the benefitsof QUESTS and ROUTE REPLYs). Additionally, raw sockets pro-
2 simulation, such as rapid prototyping and a widespread usefide socket buffering when sending packets between the ker-
community. Existing protocol modules can easily be used td'el and user level. Raw sockets are also standard BSD sock-
create new physical implementations, and new protocols ofts implementations, available in many operating systems i
modifications to existing protocols can easily be coded angluding UNIX, BSD, Linux, and Microsoft Windows. Thus,
tested in both simulation and physical implementation. Wethe use of raw sockets simplifies operating system portabili
demonstrate that PRAN can be ported to multiple routing proYVe also considered other techniques for passing data betwee
tocols and operating systems. Additionally, the PRAN archi kernel and user space, such as memory mapping and remote
tecture can be applied to other protocol simulation systems Procedure calls. However, since data to be passed between
kernel and user space resides in the IP stack, the use of a raw
4. PRAN System Architecture IP sp_cket is_ simpler_. Although memory mapping Woul_d allow
additional information to be easily passed along with each
The PRAN architecture consists of two parts: a singlepacket between kernel and user level, this technique would
user-level process and a small amount of operating systemot provide packet queueing. In UNIX-like systems, the use
kernel support. The user-level process executes the miotocof copyinandcopyoutrequires the size of data to be known,
implementation on the node, using the existing code for thavhile IP packets vary widely in size. Another option for
simulation model of the protocol. In this process, we crgate passing information between user and kernel space was Net-
an environment in which this protocol code can run unmod-graph [8]. Netgraph provides an efficient method to intexfac
ified, acting for that node as it would inside the original with different network components in the kernel, including
simulator, but operating on real packets and using reabsadi user-level process interfaces through socket nodes. Hawev
This environment is composed of an event scheduler, suppoitetgraph is not a standard feature in most operating systems
for handling asynchronous reception of packets, transomiss and is generally only available on FreeBSD.
of outgoing packets, and a packet format converterthaeserv ~ Changes in the kernel to support PRAN are small and exist
to translate between the protocol simulation packet formamainly in IP input and output processing routines in order to
and the native network packet format. For this module tosupport the user-level routing protocol implementation.
interface with the real network, we introduce a small amount Since most routing protocols potentially need to process
of kernel support to connect the simulation model in the usepackets destined for other nodes (such as in the case of
process to the physical network. The user process uses onBOUTE REPLY, ROUTE ERROR, and route forwarding for
standard network socket APl (Application ProgrammingDSR and AODV), it is necessary for the IP input routine to
Interface) calls to interface with this kernel support. pass all incoming packets to the user-level routing agent, r

Kernel-Level Support



CRoungprotocol | e ~ Sender
| S|rrnn1:)lgglon ‘ ””” > Receiver
i ’4”’1‘”:”" — Forwarder
User ‘,,L ,L,,L,L‘ User
Application = Converter 3;: I Application
User level i L] v i
Kernel level { g i §
P ? '35 P
output o [ - input
2 i)
& Y
I v i
Device driver R > . E— Device driver
— input P input IPoutput -] output L -
Figure 1: Flow of a Packet through a Node in PRAN in Differenéarios
gardless of the IP destination. Another area of changes we made was to allow the ad hoc

For packets originated by an application running on arnetwork routing protocol to take advantage of receivedalign
ad hoc network node, the packet is intercepted at the kegtrength information, for example to determine when the cur
nel IP output routine and passed back to IP input, where ifently used route is about to break. Based on this informatio
is then passed up to the user-level routing agent through raifi€ protocol can initiate a search for a new route to the des-
IP socket. The routing protoco| may then, for examp]e, addination while the current route is still active. This Opiim-

a protocol-specific header to the packet or modify existingion, known as preemptive Route Maintenance [6], reduces
packet header fields. The packet is then passed back to 9 €ven eliminates latency in searching for a new route when
kernel through the raw IP socket, to be transmitted. This patthe current route breaks. To support this or other uses of re-
is illustrated in Figure 1. ceive signal strength for a received packet, we modified the
In order to determine the address of the next-hop nod(gvireless network interface driver to append the receivgd si

towards the destination to which to forward a packet, somé1a| strength valge to each_incoming packet. This infornnati_o

ad hoc network routing protocols do not use the traditioRal | Is passed up with the entire packet to the u_ser-level_routlng

routing table. To allow the user-level routing protocoklfs process, where the pr_otocol can e_xtract t.h € signal stréngth

to determine the next-hop for a packet, the packet format Corformanon a_md determine appropriate ac_tlons.

verter in the user-level routing agent may pass this inferma  Finally, in order to a detect broken link to the next hop,

tion to the kernel by appending the IP address of the next-hoF"’my mobile ad hoc network routing protocols take advan-

to the packet. If next-hop information is present, this ealu [@9€ Of link-layer acknowledgment that already exists at th

is used by IP output rather than using the existing kernel IFIAC layer. To support this, the device driver is modified to

routing table mechanism to determine the next-hop addresB2SS the link-layer transmission status to the user-lexel p

The decision to append additional information to the packef€SS- We discuss in Section 4.2.5 how the user-level process

instead of passing them separately is closely related tdeur  Utilizes this information.

cision to use raw sockets. When the packetis passed betweﬁrb User-

the kernel and user level through raw socket, if information ™"

associated with that packet is separated from the packag so In this section, we describe the environment we created in

synchronization mechanism would be required to associatezhich unmodifiedhs-2protocol simulation models could be

the information to the packet. This would require substdnti executed, interfaced to the kernel to process real packets b

control overhead as data exchanged through raw sockets ai) sent, received, or forwarded by the node on which this

those through memory mappings happen asynchronously. simulation model is executed. The result is thatuhenodi-
Appended next hop information can be used by DSR td‘ieq protocol simulation code acts as the physical implemen-

indicate the next hop of the source route for a packet, with{ation code as well.

out the need for the kernel to know the format of the source

route header. Other protocols such as AODV could use thé'z'l' Event Scheduler

kernel’s routing table mechanism, but this creates problemin a discrete event simulator such @s2[4], the simulator

for a user-level routing protocol implementation, since th maintains a queue of pending events to simulate, and main-

protocol cannot correctly manage the contents of the kerndhins a global variable giving the currevittual time within

routing table by keeping track of the last time that eachetabl the simulation. The event scheduler repeats a loop in which

entry was used [18]. By instead utilizing this new mechanismit finds in the event queue the event that should occur at the

to allow the user-level routing process to completely manag earliest scheduled time, removes that event from the queue,

the routing decisions, these problems can be avoided. advances the global virtual time to the scheduled execution

Level Support



time for that event, and simulates the event. The thetsveen 4.2.3. Reception of Packets

event execution times is not simulated; rather, the global v |, 5 4gition to the basic event processing loop describedabo
tual ime immediately advances to the time at which the nexf, section 4.2.1, adapted from the existing event scheduler
eventis to occur. behavior ofns-2 we needed to handle the reception of pack-
In PRAN, we maintain that basic behavior, but we changests from outside the simulation environment. Each node in
the event scheduler to instead operate in real time. That ishe physical implementation runs its own copy of the simula-
rather than immediately advancing the global virtual time t tion model of the ad hoc network protocol, and packets sent
the next scheduled event time, the scheduler should wait Urby one node to another are sent over the real network as real
til real time (on the node itself) reaches the next scheduleghackets, rather than being handled internally as a nons:al
event execution time, and then execute the event. The global,ent.
virtual time is thus equal to the actual current real timehat t To integrate the reception of new packets from outside the
beginning of each event. The rest of the event scheduler, insimulation environment, we allow the receipt of such a new
cluding the event queue data structure and the interfadg to iexternal packet to terminate the event scheduler's wathier
are not changed in any way; the simulation code still mainreal time of the next scheduled event execution time. Specifi
tains its own queue of pending events to be executed, as if #ally, the event scheduler loop blocks itself with the ofiatg
were running in a standard simulation environment. system untileither the next scheduled event execution time
A similar type ofreal-timeevent scheduler is also used by arrivesor an external packet arrives at this node that must be
network emulation systems [3, 9]. In network emulation, ahandled by the protocol. If a packet arrives before the next
single simulation on a centralized machine executes the bescheduled event time, we handle that packet. This handling
havior of all nodes in a simulated ad hoc network and simu-of the packet can potentially generate other events that are
lates events for all nodes; some of those nodes also represénserted into the scheduler’s event queue in the same way as
real machines. When a real machine sends a packet, it is imther simulated events (in fact, they are generated by simu-
tercepted by the centralized simulation machine and iegect lation code operating in the same way as if it were running
into that simulation as a new event. The simulation then coninside the normal simulator). If, however, real time reache
trols the behavior of that packet. When the packet reachethe next scheduled event time first, then this existing event
another simulated node that represents a real machine, tlethe simulator event queue is removed from the queue and
packet is transmitted again onto the physical network to bexecuted (in the same way as if it were running inside the
received by the destination machine. However, in PRANnormal simulator). The following pseudocode summarizes
each node executes independently; the event queue inside tthe complete event processing loop in PRAN:

PRAN user-level protocol process contains only events that while 1 do

should occur at this node itself. nextEarliestEvent = getNextEvent();
eventTime = nextEarliestEvent.time;

4.2.2. Interaction with the MAC Layer timeout = eventTime gettimeofday();
Wait for (packet from rawSocket or timeout);

In ns-2 when a packet is being sent by a mobile node, the if (timeout expiredthen

routing layer schedules the packet to the link layer, which Remove nextEarliestEvent;

then schedules the packet to the Medium Access Control Execute nextEarliestEvent;

(MAC) layer and finally transmits the packet using the sim- else

ulated physical layer. Similarly, when a packet is receized Handle received packet;

a mobile node from the simulated physical layer, the MAC end if

layer schedules the received packet to the link layer, which end while

then schedules that packet to the routing layer. Other wire- \When the kernel receives a packet that must be handled by
less simulators provide similar detailed lower layers,ntted  the simulated protocol, the kernel uses a raw IP socket i sen
to accurately model the complex behaviors of these layers ithe packet to the converter which then sends the packet to the
real systems. user level protocol module. The following section descibe
However, in PRAN, we do not use the simulated link layer,the conversion of packets.
MAC layer, or physical layer, since these functions are pro- .
vided by the real system in the operating system and in th#-2-4. Conversion between Packet Formats
real hardware. So that the routing protocol layer can stillMost simulators, includingis-2 use an abstract, internal
interact with these lower layers without knowing that it is packet format that is different from native packet format, f
running in our PRAN environment rather than inside the ac-ease accessing different packet headers and packet header
tual simulator, we support the programming interfaces thafields in writing the simulation code for a protocol. For the
the simulator expects for these functions. These progransimulator to work transparently in a physical implemematati
ming interfaces are exported by the packet format conversiowith real packets and with the existing, unmodified protocol
module described in Section 4.2.4. simulation model code, an extra software layer must convert



between abstract and native packet formats. On receiving arorresponds to the delivered (or undelivered) native gacke

external packet from the kernel, this converter changes thappends that packet pointer value to the ACK or NACK

packet from native format into the simulation abstract gack packet, and sends the ACK or NACK packet to the simula-

format; on transmitting a packet outside the node’s sinutat tion environment through the raw IP packet in the same way

environment, this converter changes the packet from the sinas for other received packets.

ulation abstract packet format into the native packet farma Once the ACK or NACK packet reaches the converter in
o the simulation environment, the conversion routine catls a

4.2.5. Transmission of Packets ns-2function that takes the appropriate action on the original

When the user level protocol module needs to transmit gacket (indicated by the appendesi2packet pointer). Ifitis

packet, the packet is received by the converter which thean ACK packet, thems-2deletes thens-2packet as normal;

converts the format of the packet frons-2 packet format if, however, it is a NACK packet, thens-2has a reference

to native format (dependent on the host byte order). The corto the packet, and the packet can be processed exactly as a

verted packet is then sent to the operating system kermeg usi failed packet is processed in unmodifiest2

araw IP socket (the processing of this packet by the kernel i L .

described in Section 4.1). Thus, the routing layer nevedsee 2'2'6' Application to Other Network Simulators

to know the native packet format and is oblivious of how theA number of different discrete event simulators exist and

lower layers handle packets that the routing layer sends dtave been used for simulating and evaluating ad hoc net-

receives. work protocols. Among the more frequently used are

In addition, many ad hoc network routing protocols utilize Ns-2[4], GloMoSim [23], OPNET [14], and QualNet [20].
link-layer acknowledgements (e.g., as in IEEE 802.11) to deln Section 4.2, we described the implementation of PRAN
tect whether or not a transmitted packet is received by théor thens-2simulator. We believe that PRAN can be applied
intended next-hop node. For example, DSR uses this linkto other discrete event simulators as well.
layer feedback for its on-demand Route Maintenance func- In particular, any discrete event simulator has an event
tion [7]. In the real hardware and operating system devicécheduler loop similar to that discussed in Section 4.2, a
driver, this feedback is signaled by an interrupt that oscur the mechanism described in Section 4.2.3 can be used to
asynchronously after the packet has been transmitted: In ofnodify that loop in the same way as we have donenfo2
der to support this link-layer feedback feature of the sim-The simulator already has its own data structures for main-
ulated ad hoc network routing protocol, this asynchronougaining the event queue, and its own procedures for adding
packet transmission compléteerrupt, signaling the success €vents to the queue, removing events from the queue, and
or failure of the transmission attempt, must be passed to thénding the next event to simulate from the queue. None of
simulation environment in a way that is compatible with thethis needs to be modified in any way to apply PRAN to such
handling of this feedback by the simulated routing protocol & simulator.

In particular, inns-2 a pointer to the internais-2packet Furthermore, network protocol simulators generally all
data structure is passed down to the simulated MAC layer. Ifollow a layered structure based on the standard 7-layer OSI
the packet cannot be successfully delivered to the next-hopetwork reference model and on the protocol layering in real
node (as indicated by the link-layer feedback), this poilgte Operating systems. This makes it possible to replace their a
still available for the routing layer to use to access thgingl ~ stracted link-layer, MAC, and physical layers with the real
packet. Replacing the lower layers as presems2 with operating system and hardware, through our interface to the
the real Operating System and hardware does not allow us ]!@rnel. If abstract paCket formats are used in the Simulaﬁ)r
directly do this in the same way. in ns-2 the same type of packet format converter can be used.

We solve this by appending thes-2packet pointer to the . -
end of the native packet wheneverrai2packet is converted 5. PRAN Architecture Portability
to native packet format. When the packet is passed to the kefo demonstrate the simplicity, portability, and effectiess
nel through the raw IP socket, this-2packet pointer is saved of PRAN, we present in this section the example implemen-
inside the kernel as an opaque value (the kernel does not usation of two ad hoc network routing protocols, DSR and
the pointerasa pointer). The attached packet pointer is notAODV, on two different operating systems, FreeBSD and
transmitted with the packet when sending the packet over theinux. In this evaluation, we use the DSR and AODV mod-
wireless network interface. Instead, it is simply savedh®y t els fromns-2.26 However, as mentioned in Section 4.2.6,
kernel until the packet transmission complete interrupéis  the PRAN architecture is general purpose and should be able
ceived by the device driver. to be applied also to other network protocol simulators.

When this interrupt is received by the kernel, the kernel The small amount of new kernel support required by
constructs an ACK (acknowledgement) or NACK (nhegativePRAN is protocol-independent and hence is unaware of the
acknowledgement) packet to convey the success or failuractual protocol that is being implemented. Similarly, tihe-p
status of this packet back to the simulated environment. Théocol implementation is independent of the underlying eper
kernel looks up the saved (opaquesy2 packet pointer that ating system and hence is unaware of the operating system



that the machine is running. For example, in our exampleontrol packets are generated and freed by the DSR routing
protocol implementations described here, the user-le@dtc module, there is no non-DSR packet to modify. The converter
is identical between our implementations on FreeBSD ananly has to convert packets frons-2format to native packet

Linux, and the new kernel support code is identical for bothformat. After the DSR protocol module processes the packet

DSR and AODV. and constructs the new source route header, next hop infor-
- ) mation is passed from the protocol module to the converterto
5.1. Portability across Multiple Protocols be sent to the kernel.

In this section, we demonstrate the simplicity of suppa@rtin o

multiple ad hoc network routing protocols in PRAN. First, 2-1-2- Example AODV Implementation in PRAN

we describe our efforts in supporting two popular ad hoc netAODV is another widely studied on-demand ad hoc net-
work routing protocols, DSR and AODV. Then we explain work routing protocol. Here we briefly describe the proto-
how the support for other protocols, simulatednisr2 are  col. When a sourc& needs a route to a destinati@ny S

similar. broadcasts a ®TE REQUESTto its neighbors. This request
o contains the last known sequence numbeif¥om he request
5.1.1. Example DSR Implementation in PRAN is flooded throughout the network until it reaches a node that

DSR is a source routing protocol. Each packet sent usingjas a route t®. In this process each forwarding node creates
DSR contains a source route. Here we briefly describe thareverse routéack toS Upon reaching a node with a route
protocol. The DSR protocol consists of two mechanismsio D the node replies back 6 with a ROUTE REPLY con-
Route Discovery and Route Maintenance. To perform daining the number of hops thBtis from itself and the most
Route Discovery for a destination nofle a source nod&  recent sequence number forknown to the replying node.
broadcasts a ®TE REQUESTthat gets flooded through the When a node forwards this reply, it createsavard routeto
network in controlled manner. This request is answered by & by remembering the next-hop node towalils
RouTE REPLY from eitherD or some other node that knows  As with DSR, support for AODV requires only addition
a route taD. To reduce frequency and propagation @RE  of an AODV-specific packet format conversion module. Dif-
REQUEST each node aggressively caches source routes thigrent from DSR, however, AODV does not require its own
the node learns or overhears. Route Maintenance detegwotocol header. All AODV control packets are UDP pack-
when some link over which a data packet is being transmitte@ts with a special UDP port. A packets transmitted over
breaks. When such a route breakage is detectedh@arR  the AODV network are the same packets that were created by
ERRORIs sent toS. Upon receiving a RUTE ERROR, Scan  the application. Thus, the only requirement for the AODV
use any other route 1 that it has in its route cache, 8can  conversion module is to directly convert betweaesi2 and
initiate a new Route Discovery f@. native packet formats. SinagaTA packets transmitted on
Support for a new protocol in PRAN requires only the ad-the AODV network are regular packets, no special processing
dition of a new protocol-specific packet format conversion.needs to be done before the packets leave the AODV network
Kernel support is protocol- and simulator-independent, an or is delivered to the application at the final destinationowH
the protocol module itself already existsrin-2 We describe ever, for protocol-independent support in the kernel, adlkp
below DSR-specific considerations that the DSR conversioets arriving at a node are passed up to the conversion module
module needs to support. before being delivered to the application or to an extere&l n
DSR is a source routing protocol with its own IP protocol work. This also allows the routing protocol to extract usefu
number and header following the IP header. Thus, all packetsformation from the packet about the network, either fa-pr
transmitted over the DSR network have DSR as the IP protocol operation or for logging or statistics within the ool
tocol number identified in the IP header. To transnitaa simulation code. After the AODV protocol module processes
packet in a DSR network, the converter needs to insert a DSEhe packet and determines next hop information from its-rout
header between the IP header and transport protocol headig table, next hop information is passed from the protocol
The transport protocol header and its data becomes the dataodule to the converter to be sent to the kernel.
part of the newly created DSR packet. The converter also
needs to change the packet’s IP protocol field from the 0rigi-5'
nal transport protocol to DSR (the original IP protocol walu The unmodifiedhs-2simulation code for any ad hoc network
is stored in the DSR header as specified by the DSR specifiouting protocol can be used directly in PRAN as long as the
cation [7]). Before thedATA packet leaves the DSR network simulation code implements the following interfaces that a
or is delivered to the application at the final destinatidn, i a normal part ohs-2
needs to be sent up to the conversion module. The conver- For reception of unicast or broadcast packets;2 re-
sion module removes the DSR header and reconstructs tlggiires that the routing protocol module implementsré/()
original IP packet with the original transport protocol&sdP  function which is called by the MAC layer ins-2 Our con-
protocol. Similarly, DSR control packets also have theinow verter invokes the same function to pass packets to the-proto
DSR header on top of the IP header. However, since DSRol module.

1.3. Support for Other ns-2 Routing Protocols



1 1 1
c
= 1| Protocol Module ------ 1 - Protocol Module
T O ! |
Sz 1 ! 1 1 ! !
R o ' |
1 I 1 [ I I
[T i | 1 1! i |
LI | 1 1y | |
I 1 I |
o ; ' 1 [ Assign next hop address ] 1 ‘i p_route_out put () ‘ ¥ !
1 ! 1 N X . | B R o I
< ' ! ‘ i p_out put () ‘ ' [ Redirect local outgqmg application } ' ! ‘ i p_finish_out puE O ‘ !
55 ' ! ; ; ' packets to routing module ' ! | !
R | !
8& |g | | 1 [ ¥ 1
z
1 | | | 1 [ Redirect all IP packets to raw socket ) 1 i ‘ i p_l ocal _deliver_finish()
I I
1 — 1 1 Treat all IP packets as if ' | “ i p_route_input()
1 [ip_input() ! 1 final destination were local host " ! 1
1 | 1 [ | !
1 | 1 1 [ |
I | | I
[ | ‘ 1 | I |
" an_t xeof () i ! Pass transmit status ! 1 airo_interrupt()
[T | I i 1 1
2g ' ! A ' ' up to protocol module ' i ‘ !
83 |4 ! | L 1 ' i . | |
' ! ! an_start() | 4 Assoc_late transmit _frame ID 3 Lai ro_do_xnit () ! !
. | ‘ ' with packet pointer . I I
I I I I
[ 1 v 1 1 ¥ ! !
“_{é " ‘ Transmit complete interrupt ‘ ] [ Packet transmit status feedback ] ‘ Transmit complete interrupt ‘ |
5 1 1 from device 1 1
°
% : Packet from medium : [ Incoming packets from medium j : Packet from medium
1 1 1
(a) OSI Model (b) FreeBSD kernel implementation (c) Kernel modifications (d) Linux kernel implementation

Figure 2: Kernel Modifications in FreeBSD and Linux to SuggaiRAN

In order to handle link layer transmission failuress-  scribed in Section 4.1. In Figure 2, we show examples of
2 requires the simulation code for the routing protocol towhere the modifications are located within the FreeBSD 5.1
provide a callback function. For example, in the stan-and Linux 2.4.20 (RedHat 9.0) kernel code. Column (a) in
dard distribution ofns-2 DSR implements the function Figure 2 identifies the protocol layers presentin common net
XmitFailureCallback()and AODV implements the function work protocol stack implementations, e.g., based on the OSI
aodvrt_failed callback() This callback function is required Reference Model. Columns (b) and (d) show the relevant op-
only for those protocols that respond to link layer transmis eration in the FreeBSD and Linux kernels, respectively, for
sion failures. If such a callback is provided, then the con-each protocol layer, for incoming and outgoing packets. Be-
verter invokes the callback to notify the protocol module oftween these, column (c) shows the kernel modifications made
transmission failures. for PRAN; shaded boxes here represent modifications for in-

Some routing protocols operate the network interfacecoming packets, and white boxes represent modifications for
in promiscuous mode to overhear information contained iroutgoing packets. Each box in column (c) is aligned with the
packets for other nodes. For such routing protoamds2re-  actual functions in Linux and FreeBSD in columns (b) and (d)
quires the simulation code for the routing protocol to imple Where the modification is made.
ment thetap() function. If this function is provided, the con-
verter invokes the function to send promiscuously receive(;galti
packets to the protocol module.

In the FreeBSD kernel network protocol stack implemen-
on, incoming IP packets from the wireless medium are
processed in thg_input function. Modifications were done
in this function to pass all IP packets, regardless of thestiel
nations, through a raw socket to the user-level protocol-mod
Support for different ad hoc network routing protocols suchule. For outgoing traffic, after the protocol module sends
as DSR and AODV in PRAN is OS-independent. User-leveleach processed packet to the kernel with next-hop informa-
protocol code interfaces with the kernel through standardion, modifications are made in the outgoing IP function,
BSD socket programming interface. The socket interface isp_output to fill next-hop information with the value passed
common to many operating systems, including most UNIX-from the user-level routing protocol. For outgoing packets
based systems (e.g., FreeBSD and Linux) and Microsofthat originate from a local application, the packets arerint
Windows (with Winsock). All OS-dependent features residecepted aip_outputand redirected through_inputto the raw
in a small amount of kernel modifications, and porting thesocket, where they are passed up to PRAN'’s user-level pro-
implementation between different operating systems requi tocol module for routing decision. In the Cisco 350 wireless
only changes to this code. LAN device driver (used in our implementation), where each
General kernel modifications for the architecture were deoutgoing Ethernet frame that encapsulates the packet ig abo

5.2. Portability across Multiple Operating Systems



Table 1: Packet Processing Times in our PRAN Implementation

Kernel Processing Time

User Level Processing

Kernel Processing Time

Total Processing Time

Configuration for Incoming Packet$ys) Time (us) for Outgoing Packet§.s) (us)

AODV on Linux 16.67 18.41 6.11 41.19
DSR on Linux 17.66 27.68 7.76 53.10
AODV on FreeBSD 248.10 77.91 13.32 339.33
DSR on FreeBSD 229.64 118.72 17.28 365.64

to be transmitted bgn_start, we associate the Ethernet frame tionally separated from BSD code due to copyright issues
identifier (ID) with the packet pointer (Section 4.2.5). Wihe with the BSD stack at the time. The Linux networking stack

a transmission-complete interrupt occurs in the devioeedri  was originally developed, lead by Ross Biro, in 1992 [21].
the an_txeof function is called with the ID of the Ethernet The Linux networking stack, however, does share similari-
frame that has finished transmission. The frame ID is conties with FreeBSD in that both operating systems are POSIX
verted to its corresponding packet pointer, and a statufi-not compliant. However, the examples of FreeBSD and Linux
cation for this packet is passed up through the raw IP sockeaimplementations in this section show that modificationsie t

to the user-level protocol process. kernel are standard across all systems that have normal pro-

In the Linux kernel implementation, modifications take tocol layering and not just for POSIX-compliant systems.
place at similar interfaces with slightly different furanti )
calls. Incoming IP packet processing logic in Linux is di- 6.  Performance Evaluation

vided into multiple functions. Specifically, modificatiotts |, this section, we present quantitative measurementsto sh
treat all IP packets, regardless of their IP destinatiossf a  that the PRAN architecture with its user-level protocol ieap
they were destined for the local node (so that they will beyentation does not present a network bottleneck. We also de-
passed to the local user-level protocol implementatiop} ha scrihe 3 PRAN demonstration network to show that the archi-

pens at thép._route.inputfunction, where the kernel decides tecture implementation can support demanding application
whether to pass an incoming packet to a higher-layer progith realistic traffic loads.

tocol. The packet is then redirected to the raw socket in-
terface in functionip_local_deliverfinish, where the kernel 6.1. System Processing Overhead

determines which higher-layer protocol the packet shoeld b, o ger to measure the overhead incurred in the PRAN im-

delivered to. Similarly, outgoing IP processing logic imuk 0 entation, we set up a static network with IBM Thinkpad
is also divided into multiple functions. Kernel modificai® X31 laptops, each with a 1.4 GHz Pentium M processor and
to assign a next-hop address for an outgoing IP packet hagss MB of RAM. Table 1 shows the processing time that
pen in theip_route.outputfunction where the routing entry s jncrred in forwarding a single data packet at an inter-
is constructed. For an outgoing packet that originates ilom . jiate node: we show the times separately for our AODV
local application, the packet is intercepted and passe® up tnd DSR implementations under PRAN on Linux and on
the user-level protocol module for routing decision at the e FreeBSD. The version of Linux used was Red Hat 9 with

of the outgoing IP processing logic, in thg-finishoutput o he| version 2.4.20, and the version of FreeBSD used was
fl_mction. Modif_ications in th_e Cisco 350 Wir_eless LAN de_— 5.1-RELEASE. We show only results for data forwarding
vice driver in Linux hg\pp_en in the same logical place aS MNsince most transmissions are for data forwarding. These
FreeBSD. Here, thairo.interrupt and airo_doxmit func- a5 \were measured in the kernel in terms of CPU coun-
tions correspond to functioren.txeof andan start respec-  o15 ysing the Intel benchmarking instructiatisc() At the

tively, in FreeBSD. user level, the same machine instruction is called using an
Figure 2 shows that kernel modifications, as described imssembly level instruction.

Section 41, are located at similar interfaces in FreeBSID an The kernel processing time for an incoming packet in

in Linux, it also shows that they are located at well-definedraple 1 is the time between when the kernel is about to deter-
locations in the network protocol stack layering (i.e., P i mine routing information for the packet and when the packet
put/output, Ethernet input/output, device driver inputfiut, s received by the user level protocol module (Section 5.2).
and routing gateway assignment). The user level processing time for a packet is the time be-
Our choice of FreeBSD and Linux to illustrate operat-tween when the packet is received at the user level and when
ing system portability is due to the fact that they are pop-the packet is sent back to the kernel. The kernel process-
ular operating systems with freely available kernel sosirce ing time for an outgoing packet is the time between when
and not for any similarities between their codes. As a matthe user level protocol module passes the packet to thelkerne
ter of fact, the FreeBSD and Linux kernel networking codesand when the kernel's IP function for processing outgoing
evolved from entirely different code bases. FreeBSD netpackets receives this packet. Table 1 shows a large differ-
working code evolved from the original Berkeley Extensions ence between the processing times in FreeBSD and for Linux;
The Linux networking stack, on the other hand, was intenfrom our measurements, these differences appear to be due



700

1

—— PRAN one-hop

+ Kernel one-hop
PRAN two-hop
Kernel two—hop

—— PRAN one-hop
+ Kernel one-hop
4 PRAN two-hop R .
Kernel two-hop

Maximum output rate (packets/sec)

Maximum supported bandwidth (Mbps)

100 0
0 500 1000 1500 0 500 1000 1500
Input packet size (Byte) Input packet size (Byte)
(a) Maximum supported packet rate (b) Maximum supported bandwidth
700, 700
* 64B Kernel . « 64B Kernel
—— 64B PRAN 4 e —— 64B PRAN

800 14608 Kernel 50 14608 Kernel
2 1460B PRAN ] 1460B PRAN
2500 @500
L g
g g
8400 400
9 o E | . . .
2 300 / €300
5 /. 5
g / £
3 200 3200

100f 100t ¢

200 400 600 800 100 200 300 400 500
Input rate (packets/sec) Inout rate (nackets/sec)
(c) Performance scaling of PRAN for one-hop (d) Performance scaling of PRAN for two-hop

Figure 3: Comparison of supported packet rate and bandwid#RAN DSR and optimal FreeBSD kernel DSR implementation

mainly to the differences in the time required by each operat5.1-RELEASE version of FreeBSD.

ing system for getting in and out of the kernel, differencesi  \ynen forwarding packets over the 2-hop route, the max-
the existing network stack implementations in each opegati jmum achievable output packet rate (and thus the maximum
system, and differences in the implementation of common lixchjevable bandwidth) is about half that of the 1-hop sdenar
brary functlons_such asalloc(). H_owever, in all cases, the (Figures 3(a) and 3(b)). This is expected because unlikesin t
packet processing times are relatively small. 1-hop scenario, there is more contention for the same wire-
less channel in the 2-hop scenario. With increasing packet

ize, the supported packet rate goes down considerably, in

pIementapon under PRAN' we compared the p_erformar_lce qioth the optimal DSR kernel implementation kernel and in
our DSR implementation on PRAN to a theoretically optimal PRAN. The difference is due to the fact that PRAN copies

e e e e ogae e Pt (1 e Gt pyloa) o secepa
) ) T . “which requires allocating and deallocating memory as veell a
the packet sizes the same as they would be in DSR ('nCIUd'ngopying the data
the DSR source routing header), but we used the native ker- ' ) . ]
nel IP packet forwarding to process each packet (thus adding AS the rate of sending packets increases (Figures 3(c)
zero CPU processing time due to DSR for each packet). Oiind 3(d)), the PRAN implementation and the kernel imple-
goal in these measurements was to determine the maximufi€ntation are able to achieve the same output packet rates,
packet rates (and thus maximum bandwidth) that each psgtil reaching a point at which the ereless channel and net-
implementation could support, with one source node origi-Work hard_ware saturate; beyond this rate, the output packet
nating UDP packets at a constant rate. We carried out thigt€ remains roughly constant.
experiment for two scenarios: with two nodes using a 1-hop One source of overhead present due to the PRAN architec-
path, and with three nodes using a 2-hop path. The resultsire is the need to convert packets between the native (IP and
are shown in Figure 3. The output packet rates shown werBSR) format and the abstract formats used within rilse?
measured at the receiving node, counting the packets Bctualcode. However, much of the same conversion is effectively
received from the source node. These measurements wespread throughout the code for any protocol implementation
done using the same IBM ThinkPad X31 laptops, running thaising native packet formats, since accessing fields in vari-

To further quantify the overhead of routing protocol im-

10



ous packet headers during processing requires extratting t model X31 laptop identical to those described in Section 6.1
value from that field. For example, Figure 4 shows the assem- Of the six laptops, four were stationary, shown $&
bly language code generated by the compiler for incrementhrough S4 in Figure 5, and two were mobile, shown as
ing an embedded 3-bit integer field within a sample packeM1 and M2. W1 to W4 are Windows machines running
header; since PRAN uses abstract packet formats within thiglicrosoft Windows NetMeeting. By moving the mobile
protocol processing, incrementing this value is simple, anodesM1 andM2, changing multihop routes were created
each field has already been extracted by the packet formétrough a varying sequence of the stationary wireless nodes
converter. Whereas PRAN converts each field once wheand through the other mobile node. Each of these laptops
converting to abstract formats and when converting to rativused a Cisco Aironet 350 IEEE 802.11 wireless LAN card as
formats, a protocol implementation using the native packethe wireless interface, operating at 11 Mbps; we disabled th
formats directly may effectively convert some fields muéip built-in IBM wireless LAN interface in each laptop and used
times (if they are accessed multiple times in processing théhe Cisco cards instead, since these cards allow the transmi
packet) or may not convert some fields at all (if they are noower level to be modified. The stationary wireless nodes as
used in processing a given packet). well as the mobile ones used the same wireless configuration.
) To create a multihop ad hoc network of more than a few
6.2. PRAN Demonstration hops within the limited physical space of our building, we
In order to validate the usability of PRAN, and to demonstrat reduced the transmit power level of the wireless network
the resulting implementation of a protocol, we constru@ed interfaces to 20 mW rather than the default 100 mWw,
test network of mobile and stationary nodes in our departsubstantially reducing each node’s maximum transmission
ment building. Our test network consisted of two mobile distance (reducing the transmission power level by a factor
robots and four stationary ad hoc network nodes, with thef 2 generally reduces the maximum transmission distance
robots remotely controlled based on real-time live videorfr by at least a factor of 4) [16]. With this reduced transmit
each robot transmitted over the ad hoc network, using starpower level, our network created multihop routes of up to
dard Microsoft Windows NetMeeting video [2]. All video 5 hops in length. We validated during our demonstration that
and robot control messages were transmitted over the ad hdlee traffic was using multiple hops for substantial partdef t
network with our protocol implementation. We show heredemonstration period.
the operation of our implementation of DSR on FreeBSD Each mobile node in our network was implemented as a
and omit for brevity demonstrations for configurations gsin robot, which we could control by software commands over
AODV or Linux. We chose the DSR implementation on the ad hoc network. We used the Koala robot [19], manufac-
FreeBSD to show the usability of PRAN using the config-tured by K-Team S.A. of Switzerland. The robot is approx-
uration with the lowest supported data bandwidth (Table 1). imately 30 cm (12 inches) square and 20 cm (8 inches) in
Figure 5 summarizes the configuration of this network. Inheight. Each robot carried two laptops, one running Windows
this section, we describe the design and operation of the difNetMeeting on Microsoft Windows XP Professional for traf-
ferent components of this network, and we present the detaiffic generation, and one running FreeBSD as the gateway to
of the demonstration. the ad hoc network. Figure 6 illustrates the configuration of
each robot mobile node.
6.2.1. Wireless Nodes
Our test network included six wireless nodes implemented a€-2-2-  Data Traffic Generation
laptops with FreeBSD 5.1-RELEASE, modified as describedn order to generate some sample network traffic for evalu-
in Section 4.1. Each wireless node was an IBM Thinkpadating our implementation, and also to help with controlling
the motion of the robots as mobile nodes in our network, we
decided to send live video from each robot over the ad hoc

PRAN: Native: . . .

. network to a centralized control location. By watching the

incl 8(%eax) movl %eax, %ecx . . .
movb 8(%eax), %al video from a robot there, it would be possible to remotely
sall $5, %eax “drive” the robot by sending movement commands back to
sarb $5, %al the robot over the ad hoc network. In addition to exercising
movsbl %al, %%eax : : :
leal 1(%eax), Yedx and demonstrating the network, this approach also avoided
movb 8(obec), %al the need to otherwise program intelligent control directly
andl $7, %edx into the robot for autonomous motion. By using Windows
and| 0$'8('j Yoeax NetMeeting for the video, we also demonstrate compatybilit
orl /"Oe X, Yeax of our implementation with standard, unmodified IP-based
movb %al, 8(%ecx)

applications, as we do not have the source code for either

Figure 4: Comparison of assembly language code generatéacfement- Windows Or. NetMeeting. ) )
ing a field in a sample packet format in PRAN and native packenéts (the NetMeeting sends all video data packets using UDP.

%eax register points to the packet in memory) However, when a call is first placed, NetMeeting uses TCP

11



2% 3%

ioi @ @ <1%
D G

)

Il Route Request
o @ @ 159 packets
- - [ Route Reply
w2 M2 86 packets
Robot 2 [ Route Error
25 packets 1.395 MB data bytes +
D 0.075 MB source route
[ Data overhead bytes
4676 packets

Figure 5: PRAN Demonstration Configuration

95%

to setup a connection. This meant that we had to support

both UDP and TCP data over our ad hoc network. Figure 7: Packet Type and Overhead Distribution

6.3. PRAN Demonstration Evaluation

The use of video and remote control of the robots created aRRROR packets, as well as the DSR source route header in
engaging demonstration of PRAN’s capabilities. In partic-eaCh data packet. In this figure, each transmission of ar over

ular, in driving a robot, the user watches the video display’€ad packet (whether from the originator of the overhead
closely to avoid driving the robot into a wall; this is par- packet or from a forwarding intermediate node) is counted

ticularly true in turning a corner with a robot. If the video Separately.

stops or is not clear, or if movement commands to the robot Among ROUTE REQUEST, ROUTE REPLY, and ROUTE

are not executed quickly (visible in the video display), theERROR packets, the number of GUTE REQUEST is the

user immediately notices. Throughout the demonstrationdreatest, since these packets are flooded through the net-

the video display and robot control applications—and thugvork. The number of RUTE REPLYS is greater than ®UTE

the ad hoc network and the protocol implementation usingERRORS, since a Route Discovery is initiated from a single

PRAN — worked very well. RouUTE ERROR, but this may result in the return of more than
We collected measurements during one run of our demorf2€ FOUTE REPLY, if multiple paths to the target node ex-

stration network in order to evaluate its performance. ForSt Or if multiple other nodes reply with a route to this targe

simplicity, in this run, we used only a single robot, with the from their Route Cache.

live NetMeeting video and remote robot control both being  Figure 8 shows the Packet Delivery Ratio (PDR) for the

sent over the ad hoc network. During this run, the robot wagntire run of the demonstration. The PDR is defined as the

remotely driven around the perimeter of the floor of our build total fraction of application-level data packets origetit

ing and back to its starting position over a period of 13 min-that are actually received at the intended destination .node

utes (780 seconds). The horizontal dashed line shows the overall PDR for the
Figure 7 shows a summary of the types of packets trans€ntire demonstration run, and the solid line shows the PDR

mitted during the demonstration run and the number of byte§eparately for each 10-second interval. There is a sharp

of network overhead caused by each. Network overhead irflip in the PDR at around time 300 seconds, about half way
cludes all RUTE REQUEST, ROUTE REPLY, and PouTe  throughthe demonstration run. At this time, the mobile tobo

was the farthest from the rest of the network and thus was
experiencing temporary wireless signal fading. This barav
occurs in real networks but is not modeled accurately in most

0.7

Packet Delivery Ratio

0.651

0.6

0.551 — 10s Interval PDR |  {
— - Overall PDR

Figure 6: One of the mobile nodes in our PRAN demonstratidme Koala ©% 100 200 300 400 500 600 700 800

robot is carrying two laptops and a video camera. The topfaj run- Flapsed Time (Seconds)

ning FreeBSD and DSR, and the bottom laptop is running Wirsd&® and

NetMeeting. Figure 8: Packet Delivery Ratio (theaxis ranges from 0.5 to 1)

12



other implementations of the same protocol. More impor-
tantly, however, this approach will significantly affectopr
tocol behaviors due to the fact that sizes of different mativ
packet types are replaced by sizes of simulation packets. In
many simulations, for instances-2 all packets are repre-
sented by a common structure with different flags for dif-
ferent packet types. This common structure includes fields
for all packet types, making the structure much larger than
each native packet. Even in simulators where there aregdiffe
ent structures for each packet type, they are often repiesen

Packet Latency (millisec)

| | | | = W.“émt::i";gw in formats such as elassor astructwith integer and array
T RseaTime seconds) fields that are not nearly as compact as native packet formats
The effects of incorrect packet size on the protocol behav-
Figure 9: Packet Delivery Latency iors are especially magnified for wireless network protecol

where contentions for the medium and allocated medium ac-

purely simulation evaluations of ad hoc network protocols C€SS greatly depend on packet sizes.

since .it depends on more realistic physical layer radio; 5 ganefits of the PRAN Architecture
modeling than is usually done. ] )

Finally, Figure 9 shows the Packet Delivery Latency With PRAN, experimental changes to the protocol can be
during this demonstration run. Packet Delivery Latency isdUickly implemented at the user level. Additionally, a sin-
measured only for application packets, and is defined as thgle chgnge can be made in the S|mglat|0n_module that can be
time between originating a packet at the source node antgsted in both the simulator and validated in the real playsic

receiving it at the destination node. The horizontal dashe§nVironment. o _ .
line shows the overall Packet Delivery latency for the entir By sharing code with simulation modules, the architecture

demonstration run, and the solid line shows it separately€t&ins many useful debugging and logging features that are
for each 10-second interval. As with the PDR, the PackefOMmon in simulation code.

Delivery Latency is worse (increases) at around .time 306, 5 Applicability of the PRAN Architecture

seconds when the robot was farthest away. This created i ) ) )

longer routes for packets to travel from the robot to thePRAN provides an effective way to validate experimental
destination node. Additionally, the weak signal strength aProtocols on real physical networks. This also means that
this location can cause additional RTS/CTS retransmissionProtocol modules using this architecture cannot assume any

due to dropped packets at the IEEE 802.11 MAC |eve|,global knowledge (e.g. best routes, locations of all mobile
adding to Packet Delivery Latency. nodes, etc.) that are often available in simulation environ

ments. While a number of simulation protocols do require

7. Discussion some global knowledge from the simulator, and thus can-
) not be used in PRAN without additional modifications, any
7.1. An Alternative Approach deployment of such protocols to a distributed network en-

A simpler approach to PRAN would be to package the environment would require modifications to detach from such
tire simulation packet (in its abstract format) as datadesi knowledge, or to obtain them out-of-band. These deployable
an IP packet without being converted to native format. Thisversions can then be used unmodified with PRAN.
approach would no longer require the conversion module Since physical behaviors of wireless signals such as sig-
(Section 4.2.4). Next-hop information would still be pabse nal fading, multipaths, and delays are very difficult to mode
down to the kernel and processed as specified in Section 4.ith simulations, PRAN is most beneficial for testing wireless
When this IP packet reaches the next-hop node and arrivexetwork protocols. By employing real wireless transmissio
at the user process, the simulation packet would be immedand mobility, PRAN can uncover issues related to the dy-
ately available for the simulation protocol module to presce  namic wireless medium that cannot be accurately modelled in
By removing the conversion module, new simulation protocolsimulations. For example, when the wireless signal is weak,
module could be quickly be implemented, since there wouldsome routing packets may be successfully received, but most
be no protocol-specific implementation in either user or ker data packets will likely be dropped; use of such a route can
nel space, aside from a small effort to retrieve next hoprinfo substantially affect performance, but the subtlety of Whic
mation from the simulation module to the kernel. packets are received and which are not is difficult to model
There are, however, many problems with this approachaccurately in simulation.
making it inappropriate for most implementation purposes. For this particular implementation of the PRAN architec-
By not converting the simulation-specific format to native ture, we focused on supporting routing protocols and imple-
packet format, this approach prevents interoperabilithwi mented kernel modifications for packet interceptions at the

13



network layer (IP layer). Thus, protocols at other layerg.(e
transport protocols) cannot be supported with this specific
implementation of PRAN, although a similar approach could
be used. Specifically, to support protocol modules at any
layer, modifications parallel to that described in Sectidh 4 [3]
can be made at the appropriate layer in the kernel network-
ing stack. However, protocols that require tight constsain [«
on real-time processing such as IEEE 802.11 (e.g., retyrnin
a CTS after receiving an RTS) may not be able to be directly
supported due to the variable latency of entering the PRAN
user-level process and returning to the kernel. [5)

8. Conclusion

The common method of evaluation for ad hoc network proto- [g]
col is network simulation, allowing repeatable behaviod an
stressing the protocol. On the other hand, physical imple-
mentation allows the real protocol to be tested. Typically 7
these two methods are orthogonal to each other, requiring
completely separate implementations. Our PRAN architec-
ture allows the protocol code to be written just once, anduse 8]
in the simulation environment as well as in the physical im-
plementation. Furthermore, existingnmodifiedsimulation [9]
models of ad hoc network protocols can be used to create
such physical implementations. In addition to saving imple
mentation effort for the physical implementation, reuding |10
existing simulation code avoids introducing new bugs in the
implementation and eases later maintenance of the code. New
protocol features and options can also be tested and egdluatt!
first in simulation, and then moved without modification into
the physical environment.

In this paper, we have described the PRAN architecturél?]
and created example implementations of DSR and AODV[ 13]
on FreeBSD and Linux from their existints-2models. The
user-level code isdentical between our implementations
on FreeBSD and Linux, and the small amount of new

14]
operating system kernel support code required by PRAI\H
is identical for both protocols. We have also shown the [15]
ability of the resulting protocol implementations to handl
real, demanding applications by presenting a demonslratio[16]
of our DSR implementation transmitting real-time video
over a multihop mobile ad hoc network; the demonstratiorn17]
featured mobile robots being remotely operated based on
the transmitted video stream. All video and robot control
messages were transmitted over the ad hoc network running
our DSR implementation. We have also presented a detailed
performance evaluation of PRAN to show the feasibility of [19]
our architecture. [20]

We plan to publicly release the source code for our PRAN21j
system to allow other ad hoc network researchers to easily
experiment with a variety of protocols in real physical eyl 22
mentations.

[23]
References

[1] J. Allard, P. Gonin, M. Singh, and G. G. Richard. A User eelvrame-
work for Ad Hoc Routing. InProceedings of the 27th Annual IEEE

14

] Microsoft

Conference on Local Computer Netwoiks<CN 2002), pages 13-19,
November 2002.
Microsoft

page:

Corporation.

NetMeeting. NetMeeting home
http://www.microsoft.com/windows/netmeeting/

Kevin Fall. Network Emulation in the Vint/NS Simulatoin Proceed-
ings of the Fourth IEEE Symposium on Computers and Communica

tions (ISCC’99) July 1999.

] Kevin Fall and Kannan Varadhan, editors. TheManual (formerly

ns Notes and Documentation). The VINT Project, UC Berkeley,
LBL, USC/ISI, and Xerox PARC, November 2003. Available from
http://www.isi.edu/nsnam/ns/doc/

Lewis Girod, Jeremy Elson, Alberto Cerpa Thanos Statiudos,
Nithya Ramanathan, and Deborah Estrin. EmStar: a Softwave E
ronment for Developing and Deploying Wireless Sensor Ngtaioln
Proceedings of the 2004 USENIX Technical ConfereBaston, MA,
2004. To appear.

Tom Goff, Nael B. Abu-Ghazaleh, Dhananjay S. Phatak, RiaVan
Kahvecioglu. Preemptive Routing in Ad Hoc Networks. Rroceed-
ings of the Seventh Annual Internation Conference on M@mieput-
ing and Networking (MobiCom 2001pages 43-52, July 2001.

David B. Johnson and David A. Maltz. Dynamic Source Riogtin
Ad Hoc Wireless Networks. liMobile Computingedited by Tomasz
Imielinski and Hank Korth, chapter 5, pages 153-181. Klu/ea-
demic Publishers, 1996.

Julian Elischer. The Netgraph Networking System. Aabié at
http://www.elischer.org/netgraph/

Qifa Ke, David A. Maltz, and David B. Johnson Emulatiohhdulti-
Hop Wireless Ad Hoc Networks. IRroceedings of the Seventh Inter-
national Workshop on Mobile Multimedia Communications (MIQC
2000) October 2000.

E. Kohler, Robert Morris, B. Chen, J. Jannotti, and NK&ashoek. The
Click Modular Router. InACM Transactions on Computers Systems
pages 18(30):263-297, August 2000.

Philip Levis, Nelson Lee, Matt Welsh, and David CulleFOSSIM:
accurate and scalable simulation of entire tinyOS apjptioat InPro-
ceedings of the first international conference on Embed@tdarked
sensor systempages 126-137. ACM Press, 2003.
Henrik Lundgren and Erik Nordstr om.
http://user.it.uu.se/"henrikl/aodv/

Michael Neufeld, Ashish Jain, and Dirk Grunwald Nskli Bridging
Network Simulation and Deployment. RProceedings of the the Fifth
ACM International Workshop on Modeling, Analysis and Satiah of
Wireless and Mobile SystertdSWiM 2002), September 2002.
OPNET Technologies. OPNET Modeler.
http://www.opnet.com/products/modeler/home.html

Charles E. Perkins and Elizabeth M. Royer. Ad-Hoc Onri2aad DIS-
tance Vector Routing. I8econd IEEE Workshop on Mobile Computing
Systems and Applicationgages 90-100, February 1999.

Theodore S. RappaportWireless Communications: Principles and
Practice Prentice Hall, New Jersey, 1996.

Rooftop Communications. The Rooftop C++ Protocol kito{CPT).
http://web.archive.org/web/19980614083648/www.rooft

AODV-UU.

8] Elizabeth M. Royer and Charles E. Perkins. An Impleragan Study

of the AODV Routing Protocol. IrProceedings of the Second IEEE
Wireless Communications and Networking Confergli¢€NC 2000),
September 2000.

K-Team S.A. Koala Robotttp://www.k-team.com/robots/koala/index.html
Scalable Network Technologies.  QualNet Family of Ricid.
http://www.scalable-networks.com/products/qualnet.p

Terry Dawson and Alessandro Rubini. A brief history
of Linux Networking Kernel Development. Available at
http://www.sgmltools.org/HOWTO/NET-3-HOWTO/t151.htm l.
Gary R. Wright and W. Richard StevenBECP/IP lllustrated Vol 2 The
Implementation Addison Wesley, 1995.

Xiang Zeng, Rajive Bagrodia, and Mario Gerla. GloMoSiLibrary

for Parallel Simulation of Large-Scale Wireless Networks. Work-

shop on Parallel and Distributed Simulatiopages 154-161, 1998.

hp.

op.com/rr



