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The tail latency challenge. Large webservices like
Amazon and Google frequently emphasize the role of
low tail latency (e.g., the 99 percentile of the latency)
in user satisfaction [7]. Unfortunately, maintaining low
tail latencies in real-world systems is a challenging prob-
lem [1, 7, 8, 13].

How real-world traffic affects tail latency. As a case
study, we consider tail latency at Wikipedia.org, one
of the world’s busiest websites. A simplified view of
Wikipedia’s architecture includes two backend clusters
as shown in Figure 1a. The “text” cluster is a distributed
database which contains the text of all Wikipedia articles.
The “upload” cluster is a media storage system for photos
and other media shown in Wikipedia articles. Figure 1b
shows the overall rate of the two types of requests during
the 2016 US election week. We find that over five days,
the daily peak rate increases by 33% for text requests,
while remaining mostly constant for upload requests. The
increased text cluster load leads to significantly increased
tail latency for text requests. As Wikipedia articles consist
of both text and upload content, user latency is determined
by the maximum of the two latencies.

Goal: minimize maximum tail latency. Formally, if
P99text and P99upload denote the 99-percentile latency
for text and upload requests, respectively, our goal is to
minimize the maximum tail latency:

min
{
max {P99text, P99upload}

}
. (1)

Why classical load-balancing is not applicable. One
might think of shifting load from the text cluster to the
upload cluster. Unfortunately, this does not work because
the two clusters require different software and data.

A novel approach to solving the load imbalance
problem. Instead of using separate dedicated text and
upload caches, as is currently done at Wikipedia, this
poster proposes using a shared cache for both types of
requests. As caches serve as a filter for reducing requests
sent to backend systems, a shared cache would enable us
to cache more text requests, and thus reduce load on the
text cluster. Unfortunately, there are several challenges in
building such a shared caching system.

Why classic shared caching policies fail. The sim-
plest configuration shares the capacity between text and
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(a) Wikipedia’s two
types of clusters.
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(b) US election week request rates.

Figure 1: (a) Simplified architecture of Wikipedia.org:
there are two large backend systems (the “text” and the
“upload” cluster), each with a dedicated caching system
with statically allocated resources. (b) This static setup
leads to different loads for the backend systems as their
request rates behave differently over time.

upload, and uses LRU eviction. Unfortunately, LRU does
not work well for sharing due to its inherent bias against
infrequently accessed objects. For example, the lower re-
quest rate to objects in the upload cluster results in a 10x
higher P99 latency than the P99 latency of text requests,
as shown in Figure 2a.

While there are many more sophisticated caching poli-
cies than LRU [2, 4], they either ignore latency, or prove
to be ineffective for tail latency in our experiments.

Why static cache partitions fail. To mitigate LRU’s
bias, some caching systems statically partition the cache
space for each request type [3, 12]. We experimentally
determine the optimal partition for November 5 and the
week prior (which is similar). Figure 2b shows the cor-
responding P99 latency: while text and upload latencies
are low before November 6, text latency is 3-5x higher on
average during November 7-9.

Why prior dynamic partitioning techniques fail. In-
stead of a static partitioning, several prior works have pro-
posed dynamic partitioning algorithms. These algorithms
focus on maximizing the overall hit ratio [5, 6, 9, 10]. Un-
fortunately, hit ratio is not a good metric for representing
the tail latency performance of a partition. A similar
problem occurs with fair-allocation algorithms [11].

RobinHood: tail-latency-aware dynamic partition-
ing. We propose a new partitioning algorithm, called
RobinHood, which minimizes Eq.(1). Our proposal relies
on two observations. Firstly, tail latency occurs mostly
due to excessive queueing in the system [8,12], and queue-
ing theory tells us that the relationship between request-
rate and P99-latency is convex, as shown in Figure 3a.
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(a) Shared LRU Partition.
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(b) Static Partitions.
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(c) RobinHood.
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(d) Capacity under RobinHood.
Figure 2: We simulate a simplified and scaled-down version of Wikipedia.org on the trace from Figure 1. The total
cache capacity is 1TB, and there always exists a cache capacity allocation that keeps the cluster load below 40%. We
track the P99 latency over 30min intervals for text requests and upload requests and show aggregate box plots for each
day. We find that (a), a shared LRU partition results in high latency for upload requests, (b), static partitions result in
high latency for text requests, and (c), our novel RobinHood algorithm achieves low latency for both request types on
all days. (d) RobinHood dynamically partitions cache capacity between text and upload requests over time.
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(a) Request rate vs P99 latency. (b) Capacity vs. request rate.
Figure 3: Simulation results of the text cluster with traces
from November 8. (a) The P99 (99-percentile) latency is
a convex function of the cluster’s request rate. (b) The
cluster’s request rate is a convex function of the allocated
cache capacity. The upload cluster behaves similarly.

Secondly, there are diminishing returns from additional
cache capacity, which leads to a convex relationship be-
tween cache capacity and backend request-rate1, as shown
in Figure 3b. Our two observations lead to a convex rela-
tionship between cache capacity and P99 latency. There-
fore, a simple hill climbing algorithm will be theoretically
optimal for minimizing the P99 latency. Specifically,
RobinHood measures the P99 latency per partition over
intervals of 100K requests. At the end of the interval,
RobinHood transfers 1% of the capacity of the partition
with the lowest P99 latency to the partition with the high-
est P99 latency.

Improving tail latency via RobinHood. Figure 2c
shows that RobinHood keeps the P99 latencies for text
and upload requests low and within 10% of each other on
every day. Compared to Static Partitioning, RobinHood
improves the tail latency of text by 40-60% on November
7-9. Compared to Shared LRU, RobinHood improves the
tail latency of upload requests by 60% on average.

Figure 2d shows how RobinHood partitions the capac-
ity over time. RobinHood makes more than 500 changes,
and prevents high load to the text cluster by allocating an
increasing fraction of cache capacity for text requests.

Conclusions. This poster shows that dynamic parti-
tioning of cache space can be an effective method for tail-

1This is true for highly multiplexed traffic, e.g., Wikipedia.org. In
other cases, the method from [6] can convexify the curve.

latency-aware load balancing accross different backend
systems. As many webservices use cache partitions [12],
we believe that this type of load balancing can prove
useful in many other contexts besides Wikipedia.org.
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