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Abstract. We consider Pareto optimal matchings as a means of cop-
ing with instances of the Stable Roommates problem (SR) that do not
admit a stable matching. Given an instance I of SR, we show that the
problem of finding a maximum Pareto optimal matching is solvable in
O(y/na(m,n)mlog®? n) time, where n is the number of agents and m
is the total length of the preference lists in I. By contrast we prove that
the problem of finding a minimum Pareto optimal matching is NP-hard,
though approximable within 2. We also show that the problem of find-
ing a Pareto optimal matching with the fewest number of blocking pairs
is NP-hard. However, for a fixed integer K, we give a polynomial-time
algorithm that constructs a Pareto optimal matching with at most K
blocking pairs, or reports that no such matching exists.

1 Introduction

The Stable Roommates problem (SR) is a classical combinatorial problem that
has been studied extensively in the literature [9,12,10,17,14,13]. An instance
I of SR contains a graph G = (A4, F) where A = {ay,...,a,} and m = |E|.
We assume that G contains no isolated vertices. We interchangeably refer to the
vertices of G as the agents, and we refer to G as the underlying graph of I. The
vertices adjacent to a given agent a; € A are the acceptable agents for a;, denoted
by A;. If a; € A;, we say that a; finds a; acceptable. Moreover we assume that
in I, a; has a linear order over A;, which we refer to as a;’s preference list. If a;
precedes aj, in a;’s preference list, we say that a; prefers a; to ay.

Let M be a matching in G and let a; € A. If {a;,a;} € M for some a; € A,
we say that a, is matched in M and M (a;) denotes a;, otherwise a; is unmatched
in M. A blocking pair with respect to a matching M is an edge {a;,a;} € E\M
such that (i) either a; is unmatched in M, or a; is matched in M and prefers
a; to M(a;), and (ii) either a; is unmatched in M, or a; is matched in M and
prefers a; to M (a;). A matching is stable if it admits no blocking pair.

Gale and Shapley [9] showed that an instance of SR need not admit a stable
matching. Irving [12] gave an O(m) algorithm that finds a stable matching or
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reports that none exists, given an instance I of SR. The algorithm in [12] assumes
that in I, all preference lists are complete (i.e. A; = A\{a;} for each a; € A) and
n is even, though it is straightforward to generalize the algorithm to the problem
model defined here (i.e. the case of incomplete lists) [10]. Henceforth we denote
by SRC the special case of SR in which all preference lists are complete.

Empirical results seem to suggest that, as n increases, the probability that
an SR instance with n agents admits a stable matching decreases fairly steeply.
For example, for various values of n, Thomson [19] generated x,, random SRC
instances, each with n agents, and calculated p,,, the proportion of instances
that admitted a stable matching. For n = 10, 100, 1000 and 10000, the values
of p, were 90.1%, 65.3%, 37.7% and 18.7% respectively. In the first two cases
x, = 10000, whilst in the last two cases x,, = 1000.

Given this observation, it is natural to consider an alternative, weaker opti-
mality property that could always be satisfied by some matching in an instance
of SR. One such property is Pareto optimality. Informally, a matching M is
Pareto optimal if there is no other matching M’ such that some agent is better
off in M’ than in M, whilst no agent is worse off in M’ than in M.

Formally, Pareto optimality may be defined as follows. Firstly we define the
preferences of an agent over matchings. Given two matchings M and M’ we
say that an agent a; prefers M’ to M if either (i) a; is matched in M’ and
unmatched in M, or (ii) a; is matched in both M and M’ and prefers M’(a;)
to M(a;). Given this definition, we may define a relation < on the set of all
matchings as follows: M’ < M if and only if no agent prefers M to M’, and
some agent prefers M’ to M. It is straightforward to show that < forms a strict
partial order over the set of matchings in I. A matching is defined to be Pareto
optimal if and only if it is <-minimal. Intuitively a matching is Pareto optimal
if no agent a; can improve without another agent a; becoming worse off.

Pareto optimality has received much attention, particularly from the Eco-
nomics community, and has recently been considered in the bipartite graph set-
ting from an algorithmic point of view [1]. As a further motivation for consider-
ing Pareto optimality, we note that, in many applications a prime objective is to
match as many agents as possible. It is known that, given an instance I of SR,
all stable matchings in I (assuming at least one exists) are of the same size [10,
Theorem 4.5.2]. However in Section 2, we give an infinite family of SR instances
for which Pareto optimal matchings may have different sizes, and moreover the
size of a stable matching is half the size of a maximum cardinality Pareto optimal
matching (henceforth a maximum Pareto optimal matching).

Given that Pareto optimal matchings may be of different sizes in I, it is nat-
ural to consider the algorithmic complexity of each of the problems of finding a
maximum and minimum Pareto optimal matching. Moreover, if I does not admit
a stable matching, it is of interest to ask whether there is an efficient algorithm
for constructing a matching that contains the fewest number of blocking pairs,
S0 as to obtain a matching that is “as stable as possible”. As we demonstrate in
Section 4, such a matching must be Pareto optimal.

The remainder of this paper is organised as follows. In Section 2 we give a nec-
essary and sufficient condition for an arbitrary matching to be Pareto optimal,



leading to an O(m) algorithm for checking the Pareto optimality of a matching.
We also give a straightforward O(m) greedy algorithm for finding a Pareto opti-
mal matching in an instance of SR. In Section 3 we show that the problem of find-
ing a maximum Pareto optimal matching is solvable in O(y/na(m,n)m logg/2 n)
time, where « is the inverse of Ackermann’s function. However in Section 4 we
show that, given an instance of SR, the problem of finding a (Pareto optimal)
matching with the fewest number of blocking pairs is NP-hard. On the other
hand, for a fixed integer K, we give a polynomial-time algorithm that constructs
a Pareto optimal matching with at most K blocking pairs, or else reports that no
such matching exists. Finally, in Section 5, we consider minimum Pareto optimal
matchings. We show that, given an SR instance, the problem of finding such a
matching is NP-hard, though approximable within a factor of 2.

We conclude this section with two remarks regarding related work. Firstly,
an alternative method has been considered in the literature for coping with
instances of SR that do not admit a stable matching. Tan [18] presented an O(n?)
algorithm that finds, given an SR instance I, a largest matching M in I with
the property that the matched pairs in M are stable within themselves. However
again we note that such a matching may be half the size of a maximum Pareto
optimal matching. For example, we may choose any insoluble SRC instance I
with 4 agents — there are 48 such instances [10, p.220]. In I, Tan’s algorithm is
bound to construct a matching of size 1, though the size of a maximum Pareto
optimal matching is 2. Clearly this instance may be replicated to produce an
arbitrarily large SR instance for which the size of a maximum Pareto optimal
matching is twice the size of a matching output by Tan’s algorithm.

Secondly, a related property to Pareto optimality that has been studied is
exchange-stability. A matching M in an SRC instance is exchange-stable [2] if
there are no two agents a;, a;, each of whom prefers the other’s partner to his
own partner. Exchange-stability and Pareto optimality are distinct concepts:
one may construct example instances and matchings to show that each property
need not imply the other (see Example 1 in the Appendix). Moreover an SRC
instance I need not admit an exchange-stable matching [2], and the problem of
deciding whether I does admit such a matching is NP-complete [3, 4].

2 Preliminary definitions and results

We begin this section by defining a property of a matching M that forms a
necessary and sufficient condition for M to be Pareto optimal in an SR instance
I. In what follows, bp;(M) denotes the set of blocking pairs with respect to M
in I (we omit the subscript if the instance is clear from the context).

Definition 1. Let M be a matching in an instance of SR. An improving coali-
tion with respect to M is a sequence of distinct agents C = (ag,a1,...,a2—1),
for some r > 1, such that:

1. {agi,l,a%} eM (]. §i§r71);
2. {agi,a2i+1} S bp(M) (0 <i<r-— 1),‘



3. Fither (a) ag, az,—1 are unmatched in M, or (b) r > 2 and {ag,a2,—1} € M.

If C satisfies Condition 3(a), we also refer to C' as an augmenting coalition,
otherwise we also refer to C' as a cyclic coalition. Henceforth all subscripts are
taken module 2r when reasoning about improving coalitions. We define the size
of C to be 2r.

If M admits no improving (resp. augmenting, cyclic) coalition, we say that
M is improving (resp. augmenting, cylic) coalition-free. The matching

M = (M\{{azi-1,a2:} : 1 <i <r})U{{az;, a2i41}:0<i <r—1}

is defined to be the matching obtained from M by satisfying C. (We remark that
if C is an augmenting coalition then {ag,a2-—1} ¢ M.)

A matching M is mazimal in G if M U {e} is not a matching for any e € F\ M.
By Definition 1, M is maximal if and only if M admits no improving coalition of
size 2. The following proposition indicates that Pareto optimality is equivalent
to the absence of an improving coalition.

Proposition 1. Let M be a matching in a given instance I of SR. Then M s
Pareto optimal if and only if M is improving coalition-free.

Proof. Let M be a Pareto optimal matching in I. If M admits an improving
coalition C|, let M’ be the matching obtained by satisfying C. Then M’ < M, a
contradiction.

Conversely let M be a matching that is improving coalition-free, and sup-
pose for a contradiction that M is not Pareto optimal. Then there exists some
matching M’ such that M’ < M. Let H = M & M’ (i.e. H is the graph obtained
by taking the symmetric difference of M and M’) and let C' be a connected
component of H. Then C' is a path or cycle whose edges alternate between M
and M’. We consider three cases.

— Case (i): C is an alternating path with an even number of edges. Then some
agent is matched in M and unmatched in M’, a contradiction since M/ < M.

— Case (ii): C is an alternating path with an odd number of edges. If both
end edges of C' are in M, then we reach a similar contradiction to Case (i).
Hence both end edges of C are in M’'. As M’ < M, each agent a in C who
is matched in M is also matched in M’, and moreover a prefers M’ to M.
Hence C' is an augmenting coalition with respect to M, a contradiction.

— Case (ii1): C is an alternating cycle. Each agent ¢ in C' is matched in both
M and M’, and as in Case (ii), a prefers M’ to M. Hence C is a cyclic
coalition with respect to M, a contradiction.

Hence M is Pareto optimal in 1. a

We now show that Proposition 1 leads to an O(m) algorithm for checking an
arbitrary matching for Pareto optimality in an instance I of SR. Let M be a
matching in I and let G be the underlying graph of I. We form a subgraph G,
of G by letting Gy contain only those edges that belong to M U bp(M); any



set each agent to be unlabelled;

M = 0;

for each agent a;

if a; is unlabelled
if a, finds some unlabelled agent acceptable

let a; be the most-preferred such agent;
label each of a; and aj;
M = MU {{ai,a;}};

Fig. 1. Algorithm Greedy-POM.

isolated vertices are removed from Gj;. By Proposition 1, M is Pareto optimal
in I if and only if M admits no augmenting path or alternating cycle in Gj;. We
may test for the existence of the former structure in O(m) time [5,7]. For the
latter structure, we remove any unmatched vertices from Gj; (and any edges
incident to them) and apply the O(m) alternating cycle detection algorithm of
[6]. This discussion leads to the following conclusion.

Proposition 2. Let M be a matching in a given instance of SR. Then we may
check whether M is Pareto optimal in O(m) time.

We next note that every instance of SR admits at least one Pareto optimal
matching, and such a matching may be found in O(m) time using Algorithm
Greedy-POM as shown in Figure 1. The correctness and complexity of this algo-
rithm is established by the following proposition, whose proof is straightforward
and appears in the Appendix.

Proposition 3. Let I be an instance of SR. Then Algorithm Greedy-POM finds
a Pareto optimal matching in I in O(m) time.

We now show that stability is a stronger condition than Pareto optimality.

Proposition 4. Let I be an instance of SR and let M be a matching in I. Then
M is stable implies that M is Pareto optimal.

Proof. By Definition 1, if there is an improving coalition with respect to M then
bp(M) # 0. But M is stable, so that M is Pareto optimal by Propostion 1. 0O

It is easy to construct an SR instance [ that admits Pareto optimal matchings of
different sizes. Suppose there are four agents, a1, as, as, aq, where A; = {ag, a4},
As = {a1}, A3 = {as}, Ay = {a1, a3}, a; prefers ay to as and ay prefers a; to as.
Then M; = {{a1,a4}} is stable (and hence Pareto optimal by Proposition 4) and
My = {{a1,a2},{as,as}} is Pareto optimal. Moreover Algorithm Greedy-POM
constructs M; given the agent ordering (a1, as, as,as), and constructs M, given
the agent ordering (as,a1,as,aq). By creating r copies of I, we may construct
an SR instance I" with 4r agents that admits a stable matching M7 of size r
and a Pareto optimal matching MJ of size 2r. By Propositions 4 and 1, each
of M{ and MJ is a maximal matching in the graph G" underlying I". But the
sizes of maximal matchings in G” differ by at most a factor of 2 [15]. Hence we
have an infinite family of instances for which the size of a stable matching is the
smallest possible compared to the size of a maximum Pareto optimal matching.



3 Maximum Pareto optimal matchings

Given an SR instance I with underlying graph G = (A, E), a maximum Pareto
optimal matching in I may be constructed in polynomial time by imposing
weights on the edges of G as follows. For each edge {a;,a;} € E, the weight
of this edge is rank;(j) + rank;(i) where rank;(j) denotes the rank of a; in
a;'s preference list. We may construct a minimum weight maximum cardinality
matching M in G in O(y/na(m,n)mlog®?n) time [8]. The following result
indicates that M is a maximum Pareto optimal matching.

Proposition 5. Let M be a minimum weight mazimum cardinality matching in
the weighted graph G. Then M is a mazimum Pareto optimal matching in I.

Proof. Suppose not. Then M’ < M for some matching M’. Every agent matched
in M is also matched in M’, so |M’| > |M|. But M is a maximum matching in
G, so |[M'| = |M|, and it follows that the same set of agents are matched in M
and M’ — we denote these agents by A’. Since M’ < M, for any agent a; € A’ it
follows that rank;(M’(i)) < rank;(M(i)). Moreover, there exists some a; € A’
such that rank;(M’'(j)) < rank;(M(j)). Hence if wt(M) denotes the weight of
matching M, we have

wt(M")=> " (rank;(j)+rank;(i))=y _ rank;(M'(i))<>_ rank;(M(i))=wt(M)

{ai,aj}EM’ a; €A’ a; €A’
which is a contradiction. Hence M is Pareto optimal. O

Note that the above proposition also indicates that the size of a maximum Pareto
optimal matching in I is equal to the size of a maximum matching in G. We
remark that an arbitrary matching M in G may be transformed into a Pareto
optimal matching M’ in I, where M’ < M and |M’| > | M|, by repeatedly finding
and satisfying improving coalitions. By the discussion preceding Proposition 2,
we may find and satisfy an improving coalition with respect to M in O(m) time
if one exists. These operations may be repeated until no improving coalition is
found, which must occur within m iterations, so the overall process takes O(m?)
time. If M is a maximum matching in G, then all improving coalitions are cyclic
coalitions, so |M’| = |M| and M’ is a maximum Pareto optimal matching. Tt
remains to consider whether a maximum Pareto optimal matching can be con-
structed in O(y/nm) time. This is the complexity of the fastest current algorithm
for finding a maximum matching in a general graph [16].

4 Matchings with the fewest number of blocking pairs

We begin this section by presenting two useful results concerned with blocking
pairs relative to matchings.

Proposition 6. Let I be an instance of SR and let M, M’ be two matchings in
I. Then if M’ < M, it follows that bp(M'") C bp(M).



Proof. We firstly show that bp(M’) C bp(M). Let {a;,a;} € bp(M'). Since nei-
ther a; nor a; prefers M to M’, it follows that {a;, a;} € bp(M). We now show
that there exists some {a;,a;} € bp(M)\bp(M'). Let H = M & M’ and let C be
a connected component of H. Then C is a path or cycle whose edges alternate
between M and M’. We consider three cases.

— Case (i): C is an alternating path with an even number of edges. Then some
agent is matched in M and unmatched in M’, a contradiction since M’ < M.

— Case (ii): C is an alternating path with an odd number of edges. If both
end edges of C are in M, then we reach a similar contradiction to Case (i).
Hence both end edges of C are in M’. If C' is of length 1, the single edge
of C belongs to bp(M)\bp(M'). Otherwise, let {a;,a;} be an end-edge of C.
Then without loss of generality a; is matched in M, to a; say. But then a;
prefers a; to ay, since M’ < M. Hence {a;,a;} € bp(M)\bp(M").

— Case (#i): C is an alternating cycle. Pick any edge of C' that belongs to M’,
say {a;, a;}. Then neither a; nor a; has the same partner in M and M'. But
M’ < M, so that {a;,a;} € bp(M)\bp(M"). O

Corollary 1. Let I be an instance of SR and let M be a matching with the
fewest number of blocking pairs. Then M is Pareto optimal in I.

Proof. Suppose not. Then some matching M’ satisfies M’ < M. By Proposition
6, |bp(M")| < |bp(M)|, a contradiction. Hence M is Pareto optimal in I. O

NP-hardness proof

We now consider the problem of finding a matching with the fewest number of
blocking pairs (which is necessarily Pareto optimal by Corollary 1). Let Min-
BP denote the problem deciding, given an instance I of SR and an integer K,
whether I admits a matching M such that |bp(M)| < K. Define also Min-MM
(respectively Exact-MM) to be the problem of deciding, given a graph G and
integer K, whether G admits a maximal matching of size at most (respectively
exactly) K. We prove that Min-BP is NP-complete, even when all preference
lists are complete, using a reduction from Exact-MM. Note that Min-MM is NP-
complete, even for cubic graphs [11]. Using an argument based on augmenting
paths (see Lemma 1 in the Appendix), it follows that Exact-MM is also NP-
complete for the same class of graphs.

Theorem 1. Min-BP is NP-complete, even for complete preference lists.

Proof. Clearly Min-BP belongs to NP. To show NP-hardness, we reduce from
Exact-MM restricted to cubic graphs, which is NP-complete by Lemma 1. Let
G = (V, E) (a cubic graph) and K (a positive integer) be an instance of Exact-
MM. Assume that V = {v1,...,v,}. Create a new graph G’ = (W, E’) such
that W ={w;, : 1 <i <nAl<r <3}, each vertex in W is of degree 1 in
G', and each edge {v;,v,;} € E corresponds to a unique edge {w;,,w;s} € E’
(1 < r,s < 3); denote this latter edge by ¢({v;,v;}). For each w;, € W, let
e(w;,,) denote the unique wj ¢ such that {w; ,, w; s} € E'. For each i (1 <i < n),
define W; = {w; 1, wi 2, w; 3} and E; = {w, 3 : {v;,v,;} € E}.



Define also W' = {w; . : wi, € W}, W' = {w], 1w, € W}, H = {h; :
1<i<n—-2K}, H ={h,:h; € H} and H" = {h : h; € H}. We create an
instance I of SRC in which the agents are A= WUW' UW"”"UHUH' UH", so
that |A] = 6(2n — K). We create a preference list for each agent in I as follows
(assume that 1 <i<n, 1 <j<n—2K and 1 <r <3):

. . . X / "
Wi Wi Wiz e(ws ) W1 Wiy
. / "
wig w3 wi e(w;z2) Wy o Wi o

W;,3 - Wil Wi2 e(wi73) [E,\{e(wl,g)}} hl h2 hn_gK w§73 ’LUZ3
wi s wl L Wi
7/5/,7" : wiﬂ’ w'li,r
hj:w173 w23 ... Wnp3 h; h;’
/AN
oy
J I

In a given agent a’s preference list, [S] denotes all members of the set S listed
in arbitrary strict order at the position in which the symbol appears. Also ...
denotes all agents other than a who have not been explicitly listed elsewhere on
a’s list — such agents are listed in arbitrary strict order at the position in which
the symbol appears. We remark that, in the case of w; 3’s list, it is possible that
e(w;3) ¢ E;. For each w;, € W, any agent whom w; ,. prefers to wgm is defined
to be a proper agent for w; ,. Similarly, for each h; € H, any agent whom h;
prefers to h;- is defined to be a proper agent for h;.

We claim that G admits a maximal matching of size K if and only if I admits
a matching with at most n blocking pairs.

For, suppose that G admits a maximal matching M, where |M| = K. We
form a matching M’ in I as follows. Suppose that {v;,v;} € M. Let {w; ,,w; s} =
c({vi,v;}), let {r', "} = {1,2,3}\{r} and let {s',s"} = {1,2,3}\{s}. Without
loss of generality choose ' and s’ such that w;, and w, s is the first choice of
w; + and wj ¢ respectively. Add {w; ., w; s}, {wir, w; -} and {w; s, w;j e} to
M’. These three assignments imply that {{w; ,, w;}, {w; s, w; s }} C bp(M’).

There are n—2K vertices in G that are unmatched in M. Let j; < ja < ... <
Jjn—2K be an increasing sequence of integers such that v;_ is unmatched in M
(1<r<n-2K). Add {wj, 1,w;j, 2} and {w;j, 3,h-} to M’ (1 <r <n—2K).
These two assignments imply that {wj 2, w; s} € bp(M’). Finally, for each
w;» € W, add {w;] ., w/.} to M', and for each h; € H, add {h, 1} to M'.

We claim that M’ is a matching in I such that |bp(M’)| = n (the proof of
this claim appears as Lemma 2 in the Appendix).

Conversely suppose that M’ is a matching in I such that |bp(M’)| = k < n.
We firstly show that k& > n. For, let ¢ be given (1 < ¢ < n). If {w;1,w; 2} € M’
then {w; 9, w;3} € bp(M’). If {w;1,w;3} € M’ then {w;1,w;2} € bp(M').
Finally if w; 1 has a partner of rank > 3 in M’ then {w; 1,w; 3} € bp(M'). Hence
for each i (1 < i < n) there exists a blocking pair of M’ comprising a pair of
agents belonging to W;, so that k& > n. Moreover, by the previous inequality,
k = n and these are all the blocking pairs of M’.



We next claim that each w;, € W has a proper agent as his partner in M.
For if {w; ,,w},} € M’ then {w],.,w} .} € bp(M'). If {w;,,w, } € M' then
{wir,w;,} € bp(M'). Finally if w; , has a partner worse than w;’, in M’ then
{wir,wi,} € bp(M'). By a similar argument it follows that each h; € H has a
proper agent as his partner in M’.

Next we show that, for each 7 (1 < i < n), at most one member of W; can have
a partner of rank > 3 in M'. For if two members of W; have a partner of rank
> 3 in M’ then all members of W; do, and hence each of {w; 1, w; 2}, {w; 1, wi s},
{w; 2, w; 3} belongs to bp(M'), so that [bp(M')| > n + 2, a contradiction. Hence
the set M = {{v;,v;} : {w;r, wjs} € M'} is a matching in G.

Now each h; € H has a partner in M’ whom he prefers to h;-, so there exists
a sequence k, of integers such that {wy, 3,h,} € M’ (1 <r < n —2K). By the
preceding argument, {wy,_ 1, wg, 2} € M’ (1 <r <n —2K), so that |[M| < K.
But for each ¢ (1 < i <), some w;, € W; has a partner of rank > 3, and since
w; » has a proper agent as his partner in M’, it follows that |M| = K.

Finally we show that M is maximal in G. For suppose that two vertices
v;,v; € V are unmatched in M, where {v;,v;} € E. Then by construction
of M, {w;3,hi} € M' and {w,3,h} € M’, for some hy,hy € H. But then
{w; 3,wj 3} € bp(M’), a contradiction. O

Note that, by Corollary 1, the above reduction also proves that, given an instance
of SRC, the problem of finding a Pareto optimal matching with the fewest num-
ber of blocking pairs is NP-hard.

Polynomial-time algorithm for fixed K

We now consider the case where I is an SR instance with underlying graph
G = (A,E) and K > 1 is a fixed constant. We give an O(m®*1) algorithm
that finds a matching M with at most K blocking pairs, or reports that no such
matching exists. We further show how to extend this algorithm if M is required
to be Pareto optimal and/or of maximum cardinality.

Our algorithm is based on generating subsets B of edges of G, where |B| < K
— these edges will form the blocking pairs with respect to a matching to be
constructed in a subgraph of G. Given such a set B, we form a subgraph Gp =
(A, Ep) of G as follows. For each agent a; incident to an edge e = {a;,a;} € B,
if e is a blocking pair of a matching M, it follows that {a;,a;} ¢ M and q;
cannot be matched in M to an agent whom he prefers to a; in /. Hence we
delete {a;,a;} from Ep, and also we delete {a;,ar} from Ep for any aj such
that a; prefers ar to a; in I. If any such edge {a;,ax} is not in B, then we
require that {a;, ax} is not a blocking pair of a constructed matching M. This
can only be achieved if aj is matched in M to an agent whom he prefers to a;
in I. Hence we invoke truncate,, (a;), which represents the operation of deleting
{ag,a;} from Ep, for any a; such that aj prefers a; to a; in I. Additionally we
add aj to a set P to subsequently check that aj is matched.

Having completed the construction of G g, we denote by Iz the SR instance
with underlying graph G and preference lists obtained by restricting the pref-
erences in I to Ep. Any matching M in Gp satisfies B C bp;(M). To avoid



for each B C F such that |B| < K
Eg:=F; // Gg= (A, Eg) is a subgraph of G
P:=0;
for each agent a; incident to some {a;,a;} € B
delete {ai, a;} from Ep;
for each agent aj such that a; prefers ay to a; in I
delete {ai,ar} from Ep;
if {a;,ar} ¢ B
truncateq, (a;);
P:=PU{a};
if there is a stable matching M in Ip
if every agent in P is matched in M
output M and halt;
report that no matching with < K blocking pairs exists;

Fig. 2. Algorithm K-BP

any additional blocking pairs in I, we seek a stable matching in Ig in which
all agents in P are matched. We apply Irving’s algorithm for SR [10] to Ip —
suppose it finds a stable matching M in Ig. If all agents in P are matched, then
it follows that bp;(M) = B, and hence |bp(M)| < K — thus we may output M
and halt. If some agents in P are unmatched in M then we need not consider any
other stable matching in I, since Theorem 4.5.2 of [10] asserts that the same
agents are matched in all stable matchings in I. Hence (and also in the case
that no stable matching in I is found), we may consider the next subset B. If
we complete the generation of all subsets B without having output a matching
M, we report that no matching with the desired property exists. The algorithm
is displayed as Algorithm K-BP in Figure 2.

Clearly the outermost loop iterates O(m®) times. Within a loop iteration,
construction of G g takes O(m) time, as does the invocation of Irving’s algorithm.
All other operations are O(m), and hence we may summarise the preceding
discussion by the following result (the full proof appears in the Appendix).

Theorem 2. Given an SR instance I and a fized constant K, Algorithm K-BP
finds a matching with at most K blocking pairs, or reports that no such matching
exists, in O(m=+1) time.

Note that, if Algorithm K-BP outputs a matching M with at most K blocking
pairs, by the discussion at the end of Section 3, we may transform M into a
Pareto optimal matching M’ such that M’ < M (and |M’'| > |M|) in O(m?)
time. By Proposition 6, |bp(M')] < K. Also, it is straightforward to modify
Algorithm K-BP so that it outputs the largest stable matching taken over all
subsets B — we may then find a matching M such that (i) M is Pareto optimal,
(ii) |bp(M)| < K, and (iii) M is of maximum cardinality with respect to (i) and
(ii). This extension uses the fact that all stable matchings in Ip have the same
size [10, Theorem 4.5.2], so that the choice of stable matching constructed by
the algorithm is not of significance for Condition (iii).



5 Minimum Pareto optimal matchings

In this section, we consider minimum Pareto optimal matchings. Let Min-POM
denote the problem deciding, given an instance I of SR and an integer K, whether
I admits a Pareto optimal matching of size at most K. We prove that Min-POM
is NP-complete via a reduction from Min-MM, as defined in Section 4.

Theorem 3. Min-POM is NP-complete.

Proof. By Proposition 2, Min-POM belongs to NP . To show NP-hardness, we
reduce from Min-MM restricted to cubic graphs, which is NP-complete [11]. Let
G = (V, E) (a cubic graph) and K (a positive integer) be an instance of Min-
MM. Assume that V = {vy,...,v,}. We create a new graph G’ = (W, E’) as
in the proof of Theorem 1 and use the notation c({v;,v;}), e(w; ;) as defined in
that proof. We construct an instance I of SR in which W is the set of agents. We
create a preference list for each agent in W as follows (assume that 1 < i < n):

w1t wie wig e(win)
Wi w3 wi e(w;2)
wiz w1 wi e(w;3)

We claim that G admits a maximal matching of size at most K if and only if T
admits a Pareto optimal matching of size at most K + n.

For, suppose that G admits a maximal matching M, where |M| < K. We
form a matching M’ in I as follows. For each {v;,v;} € M, add c({v;,v;}) to
M’. Now let i (1 < i < n) be given. As M is a matching in G, there exists r, s
(1 <r < s<3)such that w; , and w; s are as yet unmatched. Add {w; ,,w; s}
to M'. Then |[M'| = |M|+n < K +n.

As in the proof of Theorem 1, any matching in I admits at least n blocking
pairs. But the maximality of M in G implies that any blocking pair of M’ in
I is of the form {w;,,w;s} (1 <i<mn,1 <r <s <3). By inspection of the
preference lists in I, it follows that |bp(M’)| = n. Hence M’ is Pareto optimal in
I by Corollary 1.

Conversely suppose that I admits a Pareto optimal matching of size at most
K +n. Choose M’ to be a minimum Pareto optimal matching. Let i (1 <14 < n)
be given and suppose that {w;,,e(w;,)} € M’ and {w; s, e(w;s)} € M’ (1 <
r < s < 3). Then it can be shown (see Lemma 3 in the Appendix) that we
may construct a Pareto optimal matching M" in I, where |M"| = |M'| — 1,
contradicting the choice of M’. Hence it follows that the set

M = {{vivvj} : {wiypﬂwj»q} € MI}
is a matching in G. Also for each i (1 < ¢ < n), there exists p,q (1 <p < ¢ <3)

such that {w; ,,w; ¢} € M'. Hence |M| = |M'| —n < K. The maximality of M’
in I clearly ensures that M is maximal in G. a

As observed at the end of Section 2, the size of a minimum Pareto optimal
matching is at least half the size of a maximum Pareto optimal matching. Hence
Algorithm Greedy-POM is a 2-approximation algorithm for the problem of find-
ing a minimum Pareto optimal matching.



6

Concluding remarks

The results of this paper leave open some interesting questions. Firstly as men-
tioned in Section 3, it remains to consider whether there is a faster algorithm for
finding a maximum Pareto optimal matching in an SR instance. Secondly, the
results of Section 4 leave open the question of the approximability of the problem
of finding a matching with the minimum number of blocking pairs. Finally, the
case where preference lists in SR may include ties merits further investigation.
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Appendix

This appendix contains the full proofs of some results that were referred to in
brief in the main body of the paper.

Ezample 1. Consider the two SRC instances I; and Iy as follows (in an agent’s
preference list, the symbol ... denotes all remaining agents listed in arbitrary
strict order):

4 3
: 3 4
12
1

W N =

: 2

2
1
4
3
Instance I

DU W N
= ot W o
D W =N

15 ...
Instance I
In I, the matching M; = {{1,3},{2,4}} is Pareto optimal but not exchange-

stable. In I, the matching My = {{1,2},{3,4},{5,6}} is exchange-stable but
not Pareto optimal. O

Proposition 4. Let I be an instance of SR. Then Algorithm Greedy-POM finds
a Pareto optimal matching in I in O(m) time.

Proof. Without loss of generality suppose that the greedy algorithm considered
the agents in order aq, as, .. ., a,, and constructed the matching M. Now suppose
that M’ < M for some matching M’. Let i be the smallest integer (1 < i < n)
such that a; prefers M’ to M. Then a; is matched in M’, to a; say. When q;
was considered by the algorithm, either (i) a; was already labelled, or (ii) a;
was already labelled. In Case (i), a; became matched in M to some a, when the
algorithm considered a,, where r < 4. In Case (ii), a; became matched in M
to some aj when the algorithm considered either a; or ay — let » = min{j, k};
then r < i. In both cases a, does not have the same partner in M’ as in M. But
M’ < M, so a, prefers M'(a,.) to M(a,), contradicting the choice of i. Clearly
the running time is bounded by the total length of the preference lists. a

Lemma 1. Ezact-MM is NP-complete, even for cubic graphs.

Proof. Clearly Exact-MM belongs to NP. To show NP-hardness, we reduce from
Min-MM, which is NP-complete even for cubic graphs [11]. Let G (a cubic graph)
and K (a positive integer) be an instance of the latter problem. Without loss
of generality we may assume that K < §(G), where 3(G) denotes the size of a
maximum matching of G. Suppose that G admits a maximal matching M, where
|[M| =k < K.If k= K, we are done. Otherwise suppose that k < K. Let M’ be
a maximum matching in G. Now let H = M @ M’. Each connected component
of H is either a path or cycle whose edges alternate between M and M’. Since
M| =k < K <|M'|, it follows that M admits at least K —k disjoint augmenting
paths in H, which we denote by Pi,...,Px_r. Let P =P U...U Px_j and let
M" = M & P. Then |M"”| = K and the maximality of M implies that M" is
also a maximal matching. The converse is clear. O



Lemma 2. Let I be the SR instance constructed by the reduction given in the
proof of Theorem 1. Given a mazimal matching M in G where |M| = K, let M’
be the matching constructed in I by the proof of Theorem 1. Then |bp(M')| = n.

Proof. Tt is clear that no member of W/ U W"” U H' U H” can be involved in a
blocking pair of M’. Neither can any h; € H, since if {w; 3, h} € M’ for some
w;3 € W, and h; prefers some w; 3 € W to w; 3, then either w; 3 has a partner
of rank < 3 in M’ (whom he prefers to h;), or {w; 3, hi} € M’ for some hy, € H.
But then i < j, so that k < [ by construction of M’, so w; 3 prefers hy to hy.
Finally suppose that {w; s, hi} € M’ for some w; 3 € W and hy, € H. Then v; is
unmatched in M, and hence by the maximality of M, each w;, € E; U {e(w;3)}
has a partner of rank < 3 (whom he prefers to w; 3) in M’. Thus every blocking
pair of M’ comprises a pair of agents belonging to some W; (1 <i < n).

As previously mentioned, every edge of M gives rise to exactly two blocking
pairs of M’, and furthermore, every vertex in G that is unmatched in M gives
rise to exactly one blocking pair of M’. By the above paragraph these are all the
blocking pairs of M’, and hence |bp(M’)| = 2K + (n — 2K) = n. ad

Theorem 2. Given an SR instance I and a fixed constant K, Algorithm K-BP
finds a matching with at most K blocking pairs, or reports that no such matching
exists, in O(mE+1) time.

Proof. Suppose firstly that the algorithm outputs a matching M when the out-
ermost loop considered a set B. We show that M is a matching in I such that
bpr(M) = B. For, let {a;,a;} € B. Then by construction of Gg, {a;,a;} ¢ M.
Moreover either a; is unmatched in M, or a; is matched in M and prefers a;
to M(a;) in I. Similarly either a; is unmatched in M, or a; is matched in M
and prefers a; to M(a;) in I. Hence {a;,a;} € bpr(M), so that B C bpr(M).
We now show that bp; (M) C B. For, suppose that {ax,a;} € (E\B) Nbp;(M).
Then {ay,a;} ¢ Ep, as M is stable in Ig. Hence {aj,a;} has been deleted by
the algorithm. Thus without loss of generality ay € P, so that ay is matched in
M and ay, prefers M(ag) to a; in I. Hence {ax,a;} ¢ bpr(M) after all, so that
bpr(M) = B.

Now suppose that M is a matching in I such that bp;(M) = B, where |B| <
K. By the above paragraph, if, before considering B, the outermost loop had
already output a matching M’ when considering a subset B’, then bpy(M') = B/,
and |B'| < K. Otherwise, when the outermost loop considers the subset B, it
must be the case that no edge of M is deleted when constructing G'g. Hence
M C Ep. Moreover M is stable in Ip, for if not then e € bpy, (M) for some
e € Ep, and hence e € bpr(M). Since BNEp = 0, it follows that e € bp;(M)\B,
a contradiction. Finally every member of P is matched in M, for suppose ai € P
is unmatched in M. As ai € P, there is some agent a; such that a; prefers ay
to a; in I, where {a;,a;} € B and {a;,ar} ¢ B. Hence {a;,ar} € bpr(M)\B,
a contradiction. Hence by [10, Theorem 4.5.2], Irving’s algorithm finds a stable
matching M’ in Iz (possibly M’ = M) such that all members of P are matched
in M’. Thus the algorithm outputs M’ in this case. By the above paragraph,
pr (M/) = B.



Finally suppose that there is no matching M in I such that |bp(M)| < K. By
the first paragraph, if the algorithm outputs a matching M’ when the outermost
loop considered a subset B, then bp;(M’) = B, a contradiction. Hence the
algorithm reports that no such matching M exists in this case. a

Lemma 3. Let I be the SR instance constructed by the reduction of Theorem
3 and let M’ be a Pareto optimal matching in I, where |[M'| < K. Let i (1 <
i < n) be given and suppose that {w; ,,e(w; )} € M and {w; s, e(w;s)} € M’
(1 <r <s<3). Then we may construct a Pareto optimal matching M" in I,
where |M"| = |M'| — 1.

Proof. We construct a sequence of vertices starting with w;, as follows. Let

Wiy 5y = Wi and wy, 1, = e(w; ). Let {jo, ko} = {1,2,3}\{l2}. By the maxi-

mality of M’ in I, at least one of w;, j,, ws, k, is matched in M’ If {w;, j,, wi, k, } €
M’ then we have finished constructing our sequence. Otherwise suppose without

loss of generality that {w;, j,,e(w;, j,)} € M'. Let w;, 1, = e(w;, j,). In general

we may construct a sequence w;, ;. (1 < a < t, for some ¢t > 1) of distinct

vertices such that {w;, j.,e(w;, ;.)} € M’'. We claim there exists some b > 1

such that ¢ = b — 1 and {w;, 2, Wi, 2oy € M’ (1 < 21 < 22 < 3). For if not,

there exists some b > a > 1 such that t = b — 1 and 4, = i,. Choose b to be the

minimum integer for which this is the case. Then

<wia,+1,ln,+1 s Wigiq,gar1s Wigyolayas s Wiy_q,5p—15 Wiy, lp» wiamja>

is a cyclic coalition with respect to M’, a contradiction. By a similar argument,
it follows that there exists a sequence wy, ., (1 < a < ¢, for some ¢ > 1) of
distinct vertices such that {wy, ,,,e(ws, y.)} € M and {wy, ., Wy, ., } € M,
where wg, 4, = w; s and 1 < z3 < 24 < 3. Define the following set of edges:

P = {{wimjave(wimja)} 1<a< b} U {{e(wiayja)’wia-f—laja-%—l} 1<a<b- 1}
U {we, y,re(We, )} 11 <a<chU {{e(wmayya)’w$a+l7ya+1} 1<a<c—1}

U {{wiyr,wi,s}}.

Let M" = M'@®P. Then it may be verified that M" is a Pareto optimal matching.
For, the newly-introduced edges in M" are of the form {w; ,, w; ,}. Without loss
of generality wj; , has his first-choice partner in M", so that there cannot be an
improving coalition with respect to M". Moreover |M"| = |M'| — 1. O



