

Capabilities for Better ML Engineering

Chenyang Yang, Rachel Brower-Sinning, Grace A. Lewis, Christian Kästner, Tongshuang Wu

TL;DR: fine-grained
specifications
for ML models

Motivation
Coarse-grained metrics like test accuracy often can not reveal potential (safety) issues in production.
Existing work focuses on various model qualities and evaluation strategies but are largely scattered and unconnected.

Capabilities
A **unifying framework** for scattered work on **ML specifications**
A **useful abstraction** to reason about in **ML engineering**, especially in safety-critical systems

Example: Pedestrian Detection

Capabilities **unite existing efforts** on model qualities and data augmentation.

Broad Usage Scenarios

Model Debugging

Use **capabilities** to generalize from individual mistakes to systematic problems.

Stakeholders: Data scientists

Stages: Model design, development

Collaboration

Use **capabilities** as a communication interface between different stakeholders.

Stakeholders: Data scientists, software engineers...

Stages: Model requirements, documentation

Model Maintenance

Use **capabilities** to characterize data shift and build regression tests.

Stakeholders: Data scientists, end users....

Stages: Model deployment

External Quality Assurance

Use **capabilities** to provide a holistic view of how models perform in different scenarios.

Stakeholders: External evaluators, regulators...

Stages: Model evaluation

Data Documentation

Use **capabilities** to provide abstractions for concrete data points.

Stakeholders: Data scientists, data collectors, data annotators....

Stages: Data curation, documentation

Experiment Findings

Experiment setup: We collected 8 capability test suites for sentiment analysis and measured models' performance on capability test suites and out-of-distribution data.

Finding 1: Model performance on capability tests is a **strong signal for model's generalizability**.

Finding 2: Capability tests especially **helps predict** how well models **generalize to further distributions**.

Finding 3: Different capabilities add **different amount of information**.

Finding 4: Different capabilities add **different kinds of information** (from complementary, similar, to conflicting).

Research Opportunities

1 Identification

How to identify capabilities?

- 1 How to support more effective **discovery and reuse of domain knowledge**? When and how can we automate discovery?
- 2 How to support more efficient **human-AI interaction** in error analysis?
- 3 How to design a better process to help both experts and non-experts identify capabilities?

2 Assessment

How to assess capabilities' importance?

- 4 What is a good **granularity** for a capability?
- 5 How to evaluate or rank capabilities by context?

3 Communication

How to communicate capabilities?

- 6 How to develop a **shared language or interface** to facilitate capability communication?
- 7 How can capabilities support **conflict resolution** between different stakeholders?

4 Instantiation

How to instantiate capabilities to concrete examples?

- 8 How to **select instantiation strategies** in different scenarios? How to measure and trade off **costs and benefits**?
- 9 How do different instantiation strategies complement each other?

Checkout our paper!

