Capabilities for Better ML Engineering

Chenyang Yang, Rachel Brower-Sinning, Grace A. Lewis, Christian Kästner, Tongshuang Wu

Motivation

Coarse-grained metrics like test accuracy often can not reveal potential (safety) issues in production. Existing work focuses on various model qualities and evaluation strategies but are largely scattered and unconnected.

Capabilities

A unifying framework for scattered work on ML specifications A useful abstraction to reason about in ML engineering, especially in safety-critical systems

Example: Pedestrian Detection

Capabilities unite existing efforts on model qualities and data augmentation.

Detect pedestrians...

- **Robustness**: in extreme weather using wheelchairs of different body sizes in rural area wearing costumes on a scooter of different skin colors
- **Generalizability**: Perturbation
- **Fairness**: Data slicing
- **Capabilities**: Counterfactual

Model qualities

- **Capabilities**
- **Augmentation strategies**

Research Opportunities

1. **Identification**
 - How to identify capabilities?
 - How to support more effective discovery and reuse of domain knowledge? When and how can we automate discovery?
 - How to support more efficient human-AI interaction in error analysis?
 - How to design a better process to help both experts and non-experts identify capabilities?

2. **Assessment**
 - How to assess capabilities' importance?
 - What is a good granularity for a capability?
 - How to evaluate or rank capabilities by context?

3. **Communication**
 - How to communicate capabilities?
 - How to develop a shared language or interface to facilitate capability communication?
 - How can capabilities support conflict resolution between different stakeholders?

4. **Instantiation**
 - How to instantiate capabilities to concrete examples?
 - How to select instantiation strategies in different scenarios? How to measure and trade off costs and benefits?
 - How do different instantiation strategies complement each other?

Broad Usage Scenarios

- **Model Debugging**
 - Use capabilities to generalize from individual mistakes to systematic problems.
 - **Stakeholders**: Data scientists
 - **Stages**: Model design, development

- **Model Maintenance**
 - Use capabilities to characterize data shift and build regression tests.
 - **Stakeholders**: Data scientists, end users...
 - **Stages**: Model deployment

- **External Quality Assurance**
 - Use capabilities to provide a holistic view of how models perform in different scenarios.
 - **Stakeholders**: External evaluators, regulators...
 - **Stages**: Model evaluation

- **Collaboration**
 - Use capabilities as a communication interface between different stakeholders.
 - **Stakeholders**: Data scientists, software engineers...
 - **Stages**: Model requirements, documentation

- **Data Documentation**
 - Use capabilities to provide abstractions for concrete data points.
 - **Stakeholders**: Data scientists, data collectors, data annotators....
 - **Stages**: Data curation, documentation

Experiment Findings

Experiment setup: We collected 8 capability test suites for sentiment analysis and measured models’ performance on capability test suites and out-of-distribution data.

Finding 1: Model performance on capability tests is a strong signal for model's generalizability.

Finding 2: Capability tests especially helps predict how well models generalize to further distributions.

Finding 3: Different capabilities add different amount of information.

Finding 4: Different capabilities add different kinds of information (from complementary, similar, to conflicting).

Check out our paper!