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Why ML Models Fail in Production?
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ML models

High test accuracy Low production accuracy

Software systems



When is Test Accuracy not Reliable?
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Non-representative test data Low production accuracy

African Bush 
Elephant 

North America 
Wild Horse



When is Test Accuracy not Reliable?
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Data leakage: leak test data into model development
through repeated evaluation, pre-processing, and dependency

We use static analysis to detect data leakage in ~281k notebooks
~81k GitHub repositories created in Sep. 2021

2 top Kaggle competitions



Principle of Independent Evaluation 
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Model development 

Model training

Model selection

Independent evaluation



Data Leakage #1: through Repeated Evaluation
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Models overfit to test data after repeated evaluation

Inflated test accuracy!
Found by our tool in

~18% notebooks

Model training

Model selection

Independent evaluation

Model development 



Data Leakage #2: through Preprocessing
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Different distribution

Peeking at test data in competitions is common

Training data

Test data

Unknown words

Found by our tool in

~12% notebooks

Inflated test accuracy!



Data Leakage #3: through Dependency
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Data augmentation could introduce dependency

data
augmented data

test

train

random split 

Inflated test accuracy!

Train/test dependency

Found by our tool in

~6% notebooks



Data Leakage is Prevalent in Practice

~281k notebooks from GitHub and Kaggle

~30% GitHub notebooks have data leakage issues
33% assignments (keyword: ‘assignment’, ‘homework’)

20% popular notebooks (>=10 stars)

16% tutorials (keyword: ’this tutorial’)

55% competition solutions leak through preprocessing
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Leakage Exhibits Non-local Patterns
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Leakage and training are often far apart
span >20% of the whole notebook in >50% cases

Hard for manual detection!

Leakage

Training
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Could we statically detect data leakage?



Statically Detecting Data Leakage
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Raw Python Python (SSA) Datalog Facts

Type Inference

Front-end

Pointer 
Analysis

Data-flow 
Analysis

Datalog
Facts

Related Data 
Analysis

API Specs

Data-Model 
Mappings

Leakage 
Detection

Dataset 
Transformations

Back-end

2-call-site-sensitive

flow-sensitive



Walkthrough Example
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Load data

Feature selection

Model training & evaluation



Test Data is Used for Feature Selection
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Preprocessing Leakage
Feature selection



When is an Operation Leakage-inducing?
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col1 col2

1 3 4

2 0 1

3 6 3

4 -3 6

5 2 1

col1

Computing across rows could lead to leakage



When is an Operation Leakage-inducing?
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col1 col2

1 3 4

2 0 1

3 6 3

4 -3 6

5 2 1

col1

1 3

2 0

3 6

4 -3

5 2

Computing each row independently is safe



When is an Operation Leakage-inducing?
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col1

1 3

2 0

3 6

4 -3

5 2

col1

1 3

2 0

3 6

Computing each row independently is safe



Reduce-like Operations could Lead to Leakage
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reduce map filter



Detecting Data Leakage with Data-flow
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reduce

map/filter

Preprocessing Leakage!

*There are more subtleties in tracking data-flow and 
determining whether two datasets are related: see 
our paper for details.



Implementation
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Raw Python Python (SSA) Datalog Facts

Type Inference

Front-end

Pointer 
Analysis

Data-flow 
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Datalog
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Data-Model 
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Leakage 
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Back-end

2-call-site-sensitive

flow-sensitive



Evaluation: Accuracy & Efficiency

93% accuracy from comparing results with 100 manually labeled sample notebooks

3 seconds (avg.) of analysis on a standard desktop with Intel Xeon CPU and 32GB memory
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Recall: Data Leakage is Prevalent in Practice

~30% GitHub notebooks have data leakage issues
33% assignments
20% popular notebooks 
16% tutorials

55% competition solutions leaks through preprocessing
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Could we avoid data leakage in practice?



Data Leakage: Better Processes

Static analysis as warnings in notebooks
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Data Leakage: Better Processes

Limited access to test label/data
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Do not share test data



Data Leakage: Better Processes

API Design to prevent leakage
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Takeaways

Data Leakage is prevalent in practice
(in ~30% GitHub notebooks)
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Static analysis and better 
process designs could help

Contact me & Read the paper! 



Bonus: Practical Impact of Data Leakage

Data leakage makes models 
“learn” from random data 
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Data leakage leads to flawed 
experiments and wasted time  

Often marginal accuracy differences


