
Data Leakage in Notebooks:
Static Detection and Better Processes

Chenyang Yang, Rachel Brower-Sinning, Grace A. Lewis, Christian Kästner

1

Why ML Models Fail in Production?

2

ML models

High test accuracy Low production accuracy

Software systems

When is Test Accuracy not Reliable?

3

Non-representative test data Low production accuracy

African Bush
Elephant

North America
Wild Horse

When is Test Accuracy not Reliable?

4

Data leakage: leak test data into model development
through repeated evaluation, pre-processing, and dependency

We use static analysis to detect data leakage in ~281k notebooks
~81k GitHub repositories created in Sep. 2021

2 top Kaggle competitions

Principle of Independent Evaluation

5

Model development

Model training

Model selection

Independent evaluation

Data Leakage #1: through Repeated Evaluation

6

Models overfit to test data after repeated evaluation

Inflated test accuracy!
Found by our tool in

~18% notebooks

Model training

Model selection

Independent evaluation

Model development

Data Leakage #2: through Preprocessing

7

Different distribution

Peeking at test data in competitions is common

Training data

Test data

Unknown words

Found by our tool in

~12% notebooks

Inflated test accuracy!

Data Leakage #3: through Dependency

8

Data augmentation could introduce dependency

data
augmented data

test

train

random split

Inflated test accuracy!

Train/test dependency

Found by our tool in

~6% notebooks

Data Leakage is Prevalent in Practice

~281k notebooks from GitHub and Kaggle

~30% GitHub notebooks have data leakage issues
33% assignments (keyword: ‘assignment’, ‘homework’)

20% popular notebooks (>=10 stars)

16% tutorials (keyword: ’this tutorial’)

55% competition solutions leak through preprocessing

9

Leakage Exhibits Non-local Patterns

10

Leakage and training are often far apart
span >20% of the whole notebook in >50% cases

Hard for manual detection!

Leakage

Training

11

Could we statically detect data leakage?

Statically Detecting Data Leakage

12

Raw Python Python (SSA) Datalog Facts

Type Inference

Front-end

Pointer
Analysis

Data-flow
Analysis

Datalog
Facts

Related Data
Analysis

API Specs

Data-Model
Mappings

Leakage
Detection

Dataset
Transformations

Back-end

2-call-site-sensitive

flow-sensitive

Walkthrough Example

13

Load data

Feature selection

Model training & evaluation

Test Data is Used for Feature Selection

14

Preprocessing Leakage
Feature selection

When is an Operation Leakage-inducing?

15

col1 col2

1 3 4

2 0 1

3 6 3

4 -3 6

5 2 1

col1

Computing across rows could lead to leakage

When is an Operation Leakage-inducing?

16

col1 col2

1 3 4

2 0 1

3 6 3

4 -3 6

5 2 1

col1

1 3

2 0

3 6

4 -3

5 2

Computing each row independently is safe

When is an Operation Leakage-inducing?

17

col1

1 3

2 0

3 6

4 -3

5 2

col1

1 3

2 0

3 6

Computing each row independently is safe

Reduce-like Operations could Lead to Leakage

18

col1 col2

1 3 4

2 0 1

3 6 3

4 -3 6

5 2 1

col1

col1 col2

1 3 4

2 0 1

3 6 3

4 -3 6

5 2 1

col1

1 3

2 0

3 6

4 -3

5 2

col1

1 3

2 0

3 6

reduce map filter

Detecting Data Leakage with Data-flow

19

reduce

map/filter

Preprocessing Leakage!

*There are more subtleties in tracking data-flow and
determining whether two datasets are related: see
our paper for details.

Implementation

20

Raw Python Python (SSA) Datalog Facts

Type Inference

Front-end

Pointer
Analysis

Data-flow
Analysis

Datalog
Facts

Related Data
Analysis

API Specs

Data-Model
Mappings

Leakage
Detection

Dataset
Transformations

Back-end

2-call-site-sensitive

flow-sensitive

Evaluation: Accuracy & Efficiency

93% accuracy from comparing results with 100 manually labeled sample notebooks

3 seconds (avg.) of analysis on a standard desktop with Intel Xeon CPU and 32GB memory

21

Recall: Data Leakage is Prevalent in Practice

~30% GitHub notebooks have data leakage issues
33% assignments
20% popular notebooks
16% tutorials

55% competition solutions leaks through preprocessing

22

23

Could we avoid data leakage in practice?

Data Leakage: Better Processes

Static analysis as warnings in notebooks

24

Data Leakage: Better Processes

Limited access to test label/data

25

Do not share test data

Data Leakage: Better Processes

API Design to prevent leakage

26

Takeaways

Data Leakage is prevalent in practice
(in ~30% GitHub notebooks)

27

Static analysis and better
process designs could help

Contact me & Read the paper!

Bonus: Practical Impact of Data Leakage

Data leakage makes models
“learn” from random data

28

Data leakage leads to flawed
experiments and wasted time

Often marginal accuracy differences

