Capabilities for Better ML Engineering

Chenyang Yang!, Rachel Brower-Sinning?, Grace A. Lewis?, Christian Kastner! and

Tongshuang Wu?

ISchool of Computer Science, Carnegie Mellon University

2Carnegie Mellon Software Engineering Institute

Abstract

In spite of machine learning’s rapid growth, its engineering support is scattered in many forms, and tends to favor certain
engineering stages, stakeholders, and evaluation preferences. We envision a capability-based framework, which uses fine-
grained specifications for ML model behaviors to unite existing efforts towards better ML engineering. We use concrete
scenarios (model design, debugging, and maintenance) to articulate capabilities’ broad applications across various different
dimensions, and their impact on building safer, more generalizable and more trustworthy models that reflect human needs.
Through preliminary experiments, we show the potential of capabilities for reflecting model generalizability, which can
provide guidance for the ML engineering process. We discuss challenges and opportunities for the integration of capabilities

into ML engineering.

Keywords

machine learning engineering, capability, specification, testing, evaluation

1. Introduction

Despite the rapid evolution of machine learning models,
most effort has been on prototyping models — developing
models under idealized settings (e.g., with static datasets,
following the i.i.d. assumption, assuming equal impor-
tance of all mistakes). These models tend to suffer in the
wild where the ideal assumptions do not hold, leading
to safety issues, fairness issues, and project failures [1].
For example, a pedestrian detection model trained on
images taken on sunny days would not correctly respond
to natural weather changes [2] and may have never seen
a wheelchair user in training or test data. Oversimplifi-
cation has real consequences. If we had only tested the
aforementioned pedestrian detector on similar, sunny
test examples, and used our overly optimistic evaluation
to support deployment decisions, then an automated ve-
hicle with the detector would be likely to cause accidents.

To actually integrate models into production, substan-
tial additional engineering effort is required by interdis-
ciplinary teams [3]: Not only do we need to make care-
ful decisions at the model level (e.g., develop evaluation
metrics that reflect human expectations on models [4]),
but we also need to connect the model with the broader
system design (e.g., the model functionalities should be
well-specified in a requirements engineering process [5],
similar to how we design user interfaces).

The importance of these efforts, commonly referred to
as ML engineering [6], has been well-recognized, but the
actual implementation tends to be scattered. For example,
academic research on ML engineering tends to focus on

The AAAI-23 Workshop on Artificial Intelligence Safety (SafeAl 2023)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).
===1 CEUR Workshop Proceedings (CEUR-WS.org)

the narrow space of model testing and debugging for data
scientists [e.g., 7, 8], whereas industrial efforts are mostly
limited to supporting pipeline automation and model
deployment (“MLOps”) [9]. More importantly, because
these efforts are isolated, it is unclear how insights from
one stage can be transferred to benefit the entire ML
engineering process (e.g., how error analysis results help
update model design decisions). In other words, there is
still a lack of synergy among existing efforts for better
ML engineering practices.

In this work, we envision a unified framework for
ML engineering. In particular, we center our framework
around capabilities [4]. A capability is a form of fine-
grained specification for ML model behavior. It helps de-
fine concrete model behaviors in various scenarios which
are finer-grained and more holistic than standard evalua-
tion metrics. In our pedestrian detector example, different
capabilities can be used to express safety requirements
from different aspects, e.g., recognizing pedestrians in
wheelchairs, being robust to extreme weather, or being
fair to people from different age groups [2].

Similar to other ML engineering efforts, the term capa-
bility emerged specifically from (and is mostly used in)
model testing and debugging [4, 8]. However, its natural
link with expected model behaviors makes it ideal for ML
model specification which, akin to software specification,
(1) builds the root for the entire ML engineering cycle,
going from model design all the way to deployment and
maintenance, and (2) serves as the boundary object [10]
for different stakeholders to negotiate their (sometimes
conflicting) expectations of models. Moreover, capabili-
ties have the potential to reflect multiple essential factors
in ML engineering, e.g., distribution shift [11], robust-
ness [12], fairness [13] (see Tab. 1). However, capabilities

https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Chenyang Yang et al. CEUR Workshop Proceedings

Table 1

Example capabilities for pedestrian detection models. Capabilities commonly express what a human would expect from ML
models (common knowledge, robustness, human-style reasoning) and can reflect different model qualities (generalizability,
robustness, fairness). We also illustrate possible instantiation strategies to produce concrete examples from capabilities.

Capability Instantiation

Origin/Theory

Recognize pedestrians

in wheelchairs in wheelchairs
Robust to extreme weather

Detect pedestrians of all ages

Curate images w/ pedestrians

Transform sunny images to rainy

Slice test data by pedestrian age

Knowledge of important outliers

Robustness to anticipated distribution shift

Reasoning about concept variations

have yet to fulfill their potential due to several challenges,
e.g., it is not clear how to (1) best identify capabilities,
(2) instantiate abstract capabilities, and (3) operationalize
capabilities to maximize their utility.

We take the first step towards presenting the vision of
a capability-based framework that both unites existing ef-
forts and sheds light on future opportunities. Specifically,
we illustrate the broad applicability of the framework
from both the technical perspective and the practical
perspective, by (1) summarizing how existing ML engi-
neering concepts can be expressed with capabilities, and
(2) describing four usage scenarios with unique character-
istics (model debugging, collaboration, external quality
assurance, and model maintenance). We also conduct an
exploratory study to demonstrate the feasibility of our
vision. We conclude the paper by discussing challenges
and opportunities for capabilities’ integration into ML
engineering that emerge from our preliminary results.

2. Capabilities

Capability definition: ML “specification” A capa-
bility can roughly be defined as a fine-grained specifica-
tion of behaviors expected of an ML model. The key idea
is to go beyond just considering the overall accuracy of
a model but analyzing to what degree the model exhibits
specific kinds of expected behaviors. The term capability
was popularized by work on testing specific behaviors
of ML models [4], but similar concepts can be found in
other work on model testing (e.g., stress tests [14]) and
in various work exploring nuances of model misbehav-
ior and shortcut learning (e.g., underspecifications [15]).
Previous work [e.g., 4, 8] has shown that capabilities
can expose many systematic problems in state-of-the-art
models, are useful for interactive testing and debugging,
and can guide data augmentation to train better models.

Capabilities share similarities with traditional software
specifications (and functional requirements) in that both
prescribe how software should behave in specific scenar-
ios. These prescriptions are general concepts or descrip-
tions but can be concretized into a list of input-output
examples (i.e., test cases) for assessing models in the engi-

neering process. We refer to the process of deriving test
data from capabilities as instantiation. Capabilities can
be instantiated in many different ways, including slicing
existing data [7], transformation of existing data [16],
generating data from templates [4], and targeted cura-
tion of new data (possibly with crowdsourcing) [17] —
see examples in Tab. 1. Different instantiation strategies
have different costs and benefits, and it is often necessary
to make trade-offs between them.

However, capabilities also differ from traditional spec-
ifications in fundamental ways: Traditional software is
built using a deductive reasoning process. Their specifica-
tions are usually hard rules the software must satisfy —
a single input-output pair that violates the specification
will be considered a bug. In contrast, machine learning
uses inductive reasoning, where models are derived from
observations and are expected to make occasional mis-
takes [18]. As such, instead of declaring a model as buggy
for a single mistake related to a capability, we measure to
what degree the model has certain capabilities with a fail-
ure rate. In this sense, capability can be viewed as a soft
lower bound specification, and we use failure rates to look
for issues where a model systematically underperforms
with regard to a capability.

Capabilities as a unifying framework. There are
many existing efforts to support ML engineering, but they
are often scattered and unconnected. Evaluating models
on specific qualities like robustness, fairness, and gener-
alizability is extensively discussed [e.g., 19, 13, 20], but
they often focus exclusively on a narrow set of capabili-
ties (e.g., robust to word replacement [21], data shift [11],
and spurious correlations [22]). Different strategies for
model evaluation and data augmentation, from slicing [7],
counterfactuals [17, 23, 24], templates [4], to perturba-
tions [16] are widely explored, but there are very little
efforts on combining them, evaluating their relative costs
and effectiveness, and often such efforts are limited to
individual qualities (e.g., robustness [12]). Recent work
has shown interest in model debugging [8, 25] and error
analysis [7], but they often use different terminologies
despite the similar underlying ideas.

Chenyang Yang et al. CEUR Workshop Proceedings

Table 2

Example usage scenarios for capabilities. These scenarios
cover different ML engineering stages and stakeholders, show-
ing capabilities are beneficial across dimensions.

Scenario Stages Stakeholders

Model Debugging Development Data Scientists

Collaboration Requirements, Software Engineers,

Evaluation Data Scientists
External QA Evaluation External Evaluators,
Regulators
Model Maintenance ~ Deployment Data Scientists,

End Users

We argue that a capability is a generic abstraction that
can unify existing efforts. For example, different model
evaluation strategies can be seen as ways to instantiate
capabilities; different model qualities can be viewed as (a
series of) capabilities that might matter in specific sce-
narios; a model’s reliance on spurious correlations can be
interpreted as a lack of specific capabilities (e.g., ignoring
backgrounds for object detection [26]). Furthermore, as
we will argue, capabilities can go beyond existing liter-
ature to benefit engineering stages (e.g., requirements
engineering) and stakeholders (e.g., external evaluators
or software engineers) that are currently under-explored.

3. Capabilities for Better ML
Engineering

ML engineering effort happens at different development
stages, with different stakeholders in the loop, and tar-
gets different model qualities. We argue that capabilities
can help unify ML engineering efforts and lead to more
systematic practice because they can play important roles
in all these diverse dimensions.

Below, we describe four concrete ML engineering sce-
narios (summarized in Tab. 2), which cover different di-
mensions and highlight challenges and opportunities.

3.1. Hlustrative Scenarios

Scenario 1: Model Debugging. Alice is a data scien-
tist responsible for a chatbot used in her company. She is
now debugging the conversational model that performs
poorly on some inputs. She tries to understand what is
going wrong with these model mistakes. For each mis-
take, she speculates the potential issue behind it (e.g.,
input sentence contains numerical reasoning that the
current model does not handle well) and updates the
model accordingly. However, she finds the entire process
ad-hoc and does not always produce a better model.

Capabilities can systematize this process and help Al-
ice generalize from individual mistakes to systematic
problems. Instead of chasing mistakes, Alice now identi-
fies common capabilities from model mistakes. Then she
assesses the importance of different capabilities, instanti-
ates the prioritized ones, and uses the instantiated tests
for both training and evaluation. Alice now evaluates
the new model not only on some general test data, but
also on the test suites of different capabilities. She finds
that the new model handles numerical reasoning better
but is slightly worse on a different test suite that requires
complex co-reference resolution. She decides that this is
acceptable and releases the model.

Scenario 2: Collaboration. Bob is a software engi-
neer working in a government department, dealing with
classified information. The department has a contract
with an external data science team on a vision model for
satellite images, which is expected to be robust to vari-
ous attacks and stable across various environments. Due
to strict data security policies, the external data science
team relies on public datasets instead of actual produc-
tion data. Bob struggles to communicate requirements
and report useful feedback when the delivered model
does not work in production.

Capabilities can serve as a communication interface
between different stakeholders. Bob would be able to
clearly describe the failures in ways the data science team
can understand, if he abstracts concrete private data, and
identifies sharable capabilities from them. Or even better,
he can instantiate capabilities with public data points,
such that the data science team can develop the next
version of the model with a clear goal of improvement
in mind in terms of capability failure rates.

Scenario 3: External Quality Assurance. Carolyn
works for a quality assurance team that previously fo-
cused on testing traditional software components. Car-
olyn is now responsible for independently evaluating
models delivered by external contractors — this time a
model for fraud detection. Trained in traditional software
testing, Carolyn finds it challenging to move forward
without concrete specifications at hand, and is unsure
what to do beyond standard accuracy evaluations.
Capabilities provide a more holistic view of how mod-
els perform in different scenarios. Carolyn reuses known
capabilities for fraud detection, which her team devel-
oped for assessments on previous models, and evaluates
the model on instantiated test suites from these capabili-
ties, diving into specific capabilities of the model rather
than providing just a single broad accuracy measure. She
also looks at production data and past mistakes, and uses
them to identify new capabilities. Her final report com-
municates how the model performs on different capability

Chenyang Yang et al. CEUR Workshop Proceedings

test suites and highlights the model’s major weaknesses.

Scenario 4: Model Maintenance. Dan is a data scien-
tist for a social media platform. They are responsible for
a model that detects toxicity from user posts. The model
performs well on previously curated data, but its perfor-
mance degrades over time because of evolving trends in
user posts. Dan tries to update the model periodically to
cope with data shift. However, they find that the model
is still frequently suboptimal to unknown future shifts
even when trained with more recent data.

Capabilities can be used to track how data evolves
through time and characterize data shift. Dan now main-
tains a list of high-quality capability test suites as re-
gression tests. They regularly review new data to iden-
tify whether the model needs additional capabilities, or
whether the reliance on existing capabilities changes
over time. This way, Dan gets to track the capability shift
trajectory, anticipate (to some extent) what future shift
might look like, and can instantiate suitable capabilities
tests beforehand. With capabilities, Dan now builds and
selects models that are more robust to data shift.

Discussion. We described four different scenarios of
using capabilities for better ML engineering, illustrating
their broad applicability. As a recap,

« Capabilities can be used at different stages of ML engi-
neering. On the one hand, they provide specifications
for ML models, which is fundamental to (collabora-
tive) model design, development, and testing. On the
other hand, they also provide valuable abstractions for
concrete data points, serve as a form of data specifica-
tion, and allow for characterizing (possibly changing)
deployment environments. Notably, this potential for
data documentation/specification further enlarges ca-
pabilities’ impact on various stages that concern data,
e.g., data collection, dataset evaluation, etc.

« Different stakeholders can utilize capabilities.
Though data scientists, external evaluators, etc. in our
scenarios have different priorities in mind, they are
able to converge on the capability framing — whether
to use capabilities to exploit their hypotheses on model
mistakes, to communicate the characteristics of a non-
shareable deployment environment, or to utilize prior
training practices. Notably, as in the communication
case, such convergence enables knowledge sharing or
even negotiation between stakeholders, as everyone
can speak the same “language”

« Capabilities can relate to different qualities of ML
models, ranging from accuracy (e.g., in debugging),
robustness (e.g., in collaboration), fairness, to gener-
alizability (e.g., in maintenance). This enables multi-
faceted evaluation without more consistent metric
designs, which is valuable especially when multiple

Table 3

Capabilities and their instantitation keywords for sentiment
analysis, selected based on existing work [27]. We slice the
validation data on keywords to instantiate these capabilities,
and the % column represents the ratio of validation data that
is included in the slice.

Capability % Keywords

51.6
negation (v2) 18.7
shifter 4.5

negation not, n’t

no, never, neither, nobody, none, nor, nothing
refuse, reject, deny, doubt, abandon, miss,
question, abort, stop

would have, could have, should have

better, worse, than

but, however, though, although, despite, even
if, rather than, except that

kind of, all that, less, a little, somewhat, still
really, very, super, so, incredibly, extremely, at
all, whatsoever, much

modality 3.6
16.6
36.4

comparative
mixed

141
48.8

reducer
amplifier

model qualities have to be balanced.

Despite the promising future, these scenarios share
common challenges, from identifying, assessing, commu-
nicating, to instantiating capabilities. Yet different sce-
narios focus on different aspects and might have different
requirements for the same challenge. For example, all sce-
narios require identifying capabilities, but the ways they
are identified or expressed vary; a shared language would
be required for collaboration, but if different stakehold-
ers describe the same capabilities in different ways, or
have different instantiation ideas, then additional incon-
sistency arises and has to be mitigated. We will discuss
these practical barriers in the next section.

3.2. Exploratory Experiment

To explore the practicality of our envisioned capabil-
ity framework, we conducted an experiment to explore
whether capabilities are reflective of model generaliz-
ability. We focus on generalizability first because it is
a primary design goal for any ML model, and a model
quality essential for various use scenarios (e.g., the afore-
mentioned model maintenance and collaboration).

Experiment setup. We define “reflective” as the sta-
tistical correlation between model performance on cer-
tain capability tests, and their performance on out-of-
distribution data points.

Specifically, in the experiment, we repeatedly fine-
tuned BERT with different random seeds on the AMAZON-
wiLDs dataset [20], and obtained 100 sentiment analysis
models with similar source domain accuracy (Amazon

!'Experiment details can be found in an online appendix (https://
github.com/malusamayo/Capabilities-Experiment-Details) and are
not essential for the main vision outlined in this paper.

https://github.com/malusamayo/Capabilities-Experiment-Details
https://github.com/malusamayo/Capabilities-Experiment-Details

Chenyang Yang et al. CEUR Workshop Proceedings

capability

random noise

variable

random subset

f T T T T 1
0.0 0.1 0.2 0.3 0.4 0.5

Percentage of better predicted domains

Figure 1: Capabilities better help predict model generaliza-
tion compared to other baselines.

. > 0.10
gE
&3
o= 0.051
> o
= o
oS¢
S 5 0.004
Qs -
5 : . ; . ;
95 9% 97 98 99

Source-target domain distance

Figure 2: Predictive power improvement correlates with dis-
tribution distance. The further the distribution is, the better
capabilities could help predict generalization. We hypothesize
that this is because if a target distribution is too close to the
source distribution, there is little room left for improvement.

product reviews on HOME-AND-KITCHEN) but different
target domain accuracy on 10 domains (e.g., MOVIE-AND-
TV reviews). We also selected eight capabilities for sen-
timent analysis from an existing study [27], and instan-
tiated them into test suites through data slicing, as in
Tab. 3. For each target domain, we fit a linear model
to find correlations between the models’ target domain
accuracy (dependent variable), and the models’ source
domain accuracy, as well as their capability testing re-
sults (independent variables). We looked at adjusted R?
to see whether the model has a better fit when these test
results are part of the independent variable, compared to
otherwise (i.e., whether these extra variables help predict
out-of-distribution accuracy).

Results. Model performance on capability tests is a
strong signal for model’s generalizbability. We can confirm
results from prior capability-testing experiments: Even
fairly generic capabilities are somewhat helpful in pre-
dicting how well models generalize to out-of-distribution
data. In Fig. 1, on 50% of the target domains (5/10), having
capability tests adds a significant signal on models’ gener-
alizability to the target domain (i.e., significantly higher
adjusted RQ). In contrast, baselines with model perfor-
mances on randomly sliced subsets or random noise do
not provide similar improvement.

Capability tests especially helps predict how well models
generalize to further domains. We also mapped out the
approximated distances between each target domain and
the source domain, using a proxy A-distance [28]. As in

Fig. 2, we observe a positive slope between the distance
and the R? power. This shows that capabilities are par-
ticularly helpful for distributions that deviate more from
the training distribution, such as in Bob’s scenario where
distribution details could not be shared.

Discussion. Besides the positive signals, our experi-
ment also highlighted several challenges we faced when
using capabilities during ML engineering. In particu-
lar, we observe that vanilla capability identification and
instantiation have limited utility, for two reasons:

« Different capabilities add different amount of informa-
tion. Some capabilities (e.g., negation) produce too
many test cases, which leads to an uninformative dis-
tribution close to the source dataset, while others (e.g.,
modality) result in a rather distinct distribution, which
is more informative for predicting generalization.

« Different capabilities add different kinds of informa-
tion. Some capabilities are complementary but others
are highly correlated and add little additional infor-
mation over other capabilities. For example, in our
experiment, we found that using only shifter improves
predicting generalizability in 20% cases, but adding
modality further improves in 40% cases. At the same
time, capabilities could also add conflicting informa-
tion, where models perform or generalize worse if
they better support a capability, which is similar to
common tradeoffs between model accuracy and other
qualities (e.g., robustness).

In essence, the design space of capabilities and their
corresponding instantiations is massive. While prior
work has reported positive impacts of capabilities, as
well as success in scaffolding the identification and in-
stantiation process [4], few studies have comprehensively
evaluated the information gain of different capabilities,
the interactions between capabilities, and the effective-
ness of different identification / instantiation strategies.

In our experiment, we resolved to the most basic
and typical methods for identification and instantiation,
which has inherent limitations: We identified capabilities
by reusing domain knowledge from existing work, which
is not tailored for generalization to specific target distribu-
tion; we instantiated capabilities through coarse-grained
slicing on keywords, which does not always produce use-
ful test suites (e.g., negation). While we also considered
other identification and instantiation strategies, we even-
tually discarded them as they require much more manual
effort — a reflection on the reality that most people would
probably prefer simpler (if rather flawed) methods.

As a result, we argue that proper guidance needs to
be designed, such that different stakeholders can quickly
climb the rather steep learning curve for making capabil-
ities useful. We discuss future directions next.

Chenyang Yang et al. CEUR Workshop Proceedings

4. Challenges and Opportunities

To more systematically use capabilities, further research
is needed. We argue that ML engineering can gener-
ally benefit from software engineering disciplines, with
principles from requirements engineering and software
testing in particular. In the following, we identify promis-
ing research directions based on gaps in the literature
and our own observations in our experiment.

Identifying capabilities. It is challenging to identify
capabilities for concrete scenarios. Capabilities often dif-
fer across different modes (vision vs. language), different
tasks (sentiment analysis vs. natural language inference),
and different domains (product reviews vs. book reviews).
While we may develop a catalog of common capabili-
ties for general-purpose tasks, such as sentiment analy-
sis [27], we will likely need to identify specific capabilities
for each domain-specific problem. Existing strategies in-
clude using domain knowledge [16], performing error
analysis [14, 7, 25], and mining knowledge from existing
corpora [29]. Most strategies require extensive efforts of
domain experts or crowdsource workers, making them
hard to scale. They are also often conducted in an un-
systematic way and do not draw on classic requirement
elicitation and participatory design approaches. Future
work could explore:

RQ1 How could we support more effective discovery
and reuse of domain knowledge? When and how
can we automate discovery?

RQ2 What kinds of mechanisms could support more
efficient human-AI interaction in error analysis?

RQ3 How could we design a better process to help both
experts and non-experts identify capabilities?

Assessing capabilities. Capabilities often exhibit a hi-
erarchical structure. For example, understanding negation
is a very general capability, whereas understanding dou-
ble negation or handling modifiers as “hardly” and “never”
are more specific (sub-)capabilities. How fine-grained a
capability should be will likely depend on the specific
scenarios. More coarse capabilities are more reusable,
whereas finer-grained ones capture concrete concepts
that might be especially useful for the domain (but may
not transfer — e.g., concrete adjectives like “cold” is posi-
tive when describing refrigerators but not so much for
thermos). Their predictiveness also differs across scenar-
ios, as we observed in our experiments. When identifying
capabilities, we need to determine the proper granularity,
and evaluate their importance within the context:

RQ4 What is a good granularity for a capability?

RQ5 How do we evaluate/rank capabilities by context?

Communicating capabilities. Identified capabilities
need to be efficiently communicated between different

stakeholders, who might have different requirements and
potential conflicts, or may describe the same capabilities
in drastically different ways depending on their exper-
tise (e.g., an expert may say “invariant to environmental
conditions” when a lay user says “performs the same in
sunny, raining, stormy weathers.”) Common communi-
cation vocabularies and conflict resolution mechanisms,
possibly informed by existing requirements engineering
literature, would greatly facilitate the process.
RQ6 How can we develop a shared language or inter-
face to facilitate capability communication?
RQ7 How can capabilities support conflict resolution
between different stakeholders?

Instantiating capabilities. Abstract capabilities need
to be instantiated as concrete test cases, to be further
used as regression tests, examples for communication,
or augmentation data for training. Existing work has
explored different strategies for instantiating capabilities
(c.f. Sec. 2), but it remains unclear how different strategies
perform in different scenarios and whether they could be
combined in a meaningful way. These strategies are sim-
ilar to software testing (e.g., unit tests and metamorphic
testing [30]) and can be informed by existing software
engineering literature (e.g., test case generation, fuzzing,
prioritization, and requirements validation).

RQ8 How should we select instantiation strategies in
different scenarios? How to measure and trade
off costs and benefits?

RQ9 How do different instantiation strategies comple-
ment each other?

5. Conclusion

A capability is a generic abstraction that unifies exist-
ing efforts on model testing, debugging, and evaluation.
It can also benefit the entire ML engineering lifecycle
from data collection to model deployment, addressing the
needs of different stakeholders and model qualities. Our
exploratory experiments showed that capabilities could
provide strong signals for model generalizability, as well
as highlighted challenges in integrating them into the ML
engineering process. We hope future research will bet-
ter support identifying, assessing, communicating, and
instantiating capabilities.

Acknowledgments

Kistner and Yang’s work is supported in part by NSF
awards 1813598, 2131477, and 2206859 and support from
the SEI. Lewis’ and Brower-Sinning’s work was funded
and supported by the Department of Defense under Con-
tract No. FA8702-15-D-0002 with Carnegie Mellon Uni-
versity for the operation of the Software Engineering

Chenyang Yang et al. CEUR Workshop Proceedings

Institute, a federally funded research and development
center (DM22-1187).

References

(1]
(2]

(10]

(11]

K. Panetta, Gartner identifies the top strategic tech-
nology trends for 2021. (2020).

D. Ger6énimo, A. M. Lopez, A. D. Sappa, T. Graf,
Survey of pedestrian detection for advanced driver
assistance systems, IEEE Transactions on Pattern
Analysis and Machine Intelligence 32 (2010) 1239-
1258.

N. Nahar, S. Zhou, G. Lewis, C. Kistner, Collabo-
ration challenges in building ml-enabled systems:
Communication, documentation, engineering, and
process, in: 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE), 2022,
pp. 413-425.

M. T. Ribeiro, T. Wu, C. Guestrin, S. Singh, Be-
yond accuracy: Behavioral testing of NLP models
with CheckList, in: Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, Association for Computational Linguistics,
Online, 2020, pp. 4902-4912.

A. van Lamsweerde, Requirements Engineering:
From System Goals to UML Models to Software
Specifications, 1st ed., Wiley Publishing, 2009.
A.Burkov, Machine learning engineering, volume 1,
True Positive Incorporated, 2020.

T. Wu, M. T. Ribeiro, J. Heer, D. Weld, Errudite:
Scalable, reproducible, and testable error analysis,
in: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, Associ-
ation for Computational Linguistics, Florence, Italy,
2019, pp. 747-763.

M. T. Ribeiro, S. Lundberg, Adaptive testing and de-
bugging of NLP models, in: Proceedings of the 60th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), Associa-
tion for Computational Linguistics, Dublin, Ireland,
2022, pp. 3253-3267.

S. Mékinen, H. Skogstrém, E. Laaksonen, T. Mikko-
nen, Who needs mlops: What data scientists seek
to accomplish and how can mlops help?, 2021
IEEE/ACM 1st Workshop on Al Engineering - Soft-
ware Engineering for AT (WAIN) (2021) 109-112.
S. L. Star, The Structure of Ill-Structured Solutions:
Boundary Objects and Heterogeneous Distributed
Problem Solving, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1989, p. 37-54.

S. Rabanser, S. Giinnemann, Z. C. Lipton, Failing
Loudly: An Empirical Study of Methods for Detect-
ing Dataset Shift, Curran Associates Inc., Red Hook,
NY, USA, 2019.

(12]

[21]

K. Goel, N. F. Rajani, J. Vig, Z. Taschdjian, M. Bansal,
C. Ré, Robustness gym: Unifying the NLP evalu-
ation landscape, in: Proceedings of the 2021 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies: Demonstrations, Associ-
ation for Computational Linguistics, Online, 2021,
pp. 42-55.

D. S. Shah, H. A. Schwartz, D. Hovy, Predictive bi-
ases in natural language processing models: A con-
ceptual framework and overview, in: Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, Association for Compu-
tational Linguistics, Online, 2020, pp. 5248-5264.
A. Naik, A. Ravichander, N. Sadeh, C. Rose, G. Neu-
big, Stress test evaluation for natural language
inference, in: Proceedings of the 27th International
Conference on Computational Linguistics, Associa-
tion for Computational Linguistics, Santa Fe, New
Mexico, USA, 2018, pp. 2340-2353.

A.D’Amour, et al., Underspecification presents chal-
lenges for credibility in modern machine learning,
2020.

K. D. Dhole, et al., Nl-augmenter: A framework
for task-sensitive natural language augmentation,
2021.

D. Kaushik, E. Hovy, Z. Lipton, Learning the differ-
ence that makes a difference with counterfactually-
augmented data, in: International Conference on
Learning Representations, 2020.

C. Kaestner, Machine learning is requirements en-
gineering — on the role of bugs, verification, and
validation in machine learning, Blog, 2020.

J. Ebrahimi, D. Lowd, D. Dou, On adversarial exam-
ples for character-level neural machine translation,
in: Proceedings of the 27th International Confer-
ence on Computational Linguistics, Association for
Computational Linguistics, Santa Fe, New Mexico,
USA, 2018, pp. 653-663.

P. W.Koh, et al., Wilds: A benchmark of in-the-wild
distribution shifts, in: M. Meila, T. Zhang (Eds.),
Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, PMLR, 2021, pp. 5637-
5664.

Z. Sun, J. M. Zhang, Y. Xiong, M. Harman, M. Pa-
padakis, L. Zhang, Improving machine translation
systems via isotopic replacement, in: Proceedings
of the 44th International Conference on Software
Engineering, ICSE "22, Association for Computing
Machinery, New York, NY, USA, 2022, p. 1181-1192.
T. McCoy, E. Pavlick, T. Linzen, Right for the wrong
reasons: Diagnosing syntactic heuristics in natural
language inference, in: Proceedings of the 57th
Annual Meeting of the Association for Computa-

Chenyang Yang et al. CEUR Workshop Proceedings

(24]

tional Linguistics, Association for Computational
Linguistics, Florence, Italy, 2019, pp. 3428—-3448.
M. Gardner, et al., Evaluating models’ local decision
boundaries via contrast sets, in: Findings of the
Association for Computational Linguistics: EMNLP
2020, Association for Computational Linguistics,
Online, 2020, pp. 1307-1323.

T. Wu, M. T. Ribeiro, J. Heer, D. Weld, Polyjuice:
Generating counterfactuals for explaining, evaluat-
ing, and improving models, in: Proceedings of the
59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), Association for Computa-
tional Linguistics, Online, 2021, pp. 6707-6723.

A. A. Cabrera, A. J. Druck,]J. I. Hong, A. Perer,
Discovering and validating ai errors with crowd-
sourced failure reports, Proc. ACM Hum.-Comput.
Interact. 5 (2021).

S. Beery, G. Van Horn, P. Perona, Recognition
in terra incognita, in: Computer Vision - ECCV
2018: 15th European Conference, Munich, Ger-
many, September 8-14, 2018, Proceedings, Part
XVI, Springer-Verlag, Berlin, Heidelberg, 2018, p.
472-489.

J. Barnes, L. @vrelid, E. Velldal, Sentiment anal-
ysis is not solved! assessing and probing senti-
ment classification, in: Proceedings of the 2019
ACL Workshop BlackboxNLP: Analyzing and Inter-
preting Neural Networks for NLP, Association for
Computational Linguistics, Florence, Italy, 2019, pp.
12-23.

J. Blitzer, M. Dredze, F. Pereira, Biographies, Bolly-
wood, boom-boxes and blenders: Domain adapta-
tion for sentiment classification, in: Proceedings
of the 45th Annual Meeting of the Association of
Computational Linguistics, Association for Compu-
tational Linguistics, Prague, Czech Republic, 2007,
pp. 440-447.

H. Barzamini, M. Rahimi, M. Shahzad, H. Alhoori,
Improving generalizability of ml-enabled software
through domain specification, in: Proceedings of
the 1st International Conference on Al Engineering:
Software Engineering for AL, CAIN "22, Association
for Computing Machinery, New York, NY, USA,
2022, p. 181-192.

T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey,
T. H. Tse, Z. Q. Zhou, Metamorphic testing: A
review of challenges and opportunities, ACM Com-
put. Surv. 51 (2018).

	1 Introduction
	2 Capabilities
	3 Capabilities for Better ML Engineering
	3.1 Illustrative Scenarios
	3.2 Exploratory Experiment

	4 Challenges and Opportunities
	5 Conclusion

