Verifying Concurrent First Order Imperative Programs
with Separation Logic and Graphs

Carsten Varming

April 12, 2012

Contents
1 Motivation
2 Proposed Thesis

3 Separation Logic
3.1 Heap Safety
3.1.1 A pre-order on interference commands
3.2 Protocol Safety
3.2.1 Multiple Resources
3.3 Interaction between Protocol Safety and Heap Safety

4 Compositionality

5 Related Work
5.1 Permissions
5.2 Semantics
5.3 Higher-order Concurrent Separation Logic

54 Rely-Guaranteeo

6 Plan to complete thesis

11
12
18
21

24

25
25
26
27
27

28

1 Motivation

Reasoning about concurrent first-order programs can be difficult and time consuming.
Often the challenging part is to capture the programmer’s intuition about all the possible
executions of a set of concurrent processes. More specifically, it is often difficult to limit
the assumptions made about the interaction between a process and the environment it
executes in, i.e., the other processes concurrently executing.

Existing logics such as Concurrent Separation Logic and Rely-Guarantee both have a rigid
notion of the interaction between a process and its environment, and a programmer’s
intuition can be very different from this notion. For instance, in concurrent separation
logic a valid specification 7(X) : I F {P}c{@Q} assumes that the environment may acquire
and subsequently release the region r as many times as it pleases as long as the invariant [/ is
preserved separately. Similarly, the rely-relation used in Rely-Guarantee logics is required
to be reflexive and transitively closed, and any pre- or post-condition describing shared
state must be stable, i.e., invariant under the rely-relation. This condition implies that if
a process in the environment updates the shared state following some relation, then any
pre- and post-condition for the current process must remain valid no matter how many
times the environment updates the shared state. If a programmer wants to use a different
protocol for the interaction between his process and its environment, then he must encode
his protocol into the protocol specified by the logic he is using. CSL and Rely-Guarantee
logics enable such reasoning via auxiliary variables, but the encodings can be difficult and
time consuming to find. And the resulting specification of each process often ends up
encoding all the effects of the environment. Hence if you change the environment, then
you may need a new specification for each process.

We can illustrate these problems by trying to reason about a program first introduced by
Owicki [Owi75] to illustrate the need for auxiliary variables:

resource r in (with r do z := x + 1 |with r do 2 := x + 1)

If we start with a state where x is 0 and if we deem that r protects x, then you expect to
be able to deduce that x is 2 when the program terminates.

In CSL you must find an assertion I that is strong enough to imply x = 2 after both
processes have terminated, and is invariant under the action of each process. But if [
implies that x = v for any given v and [is invariant under x := x + 1, then I must imply
x > v and thus I must imply false. The problem is that when we try to give a specification
for the left process, CSL assumes that the right process may increment z an arbitrary
number of times. It is well-known that the solution to this problem is to add an auxiliary
variable that counts the number of times the right process increments x. This variable will
then be free in the invariant [for r. Symmetrically, we need to add an auxiliary variable
to keep track of the left process. As the invariant [is shared between both processes the
auxiliary variable needed to keep track of one process slips into the specification of the
other process.

In Rely-Guarantee logics the pre-condition must be stable under the rely-relation, i.e., the
effect of the other process, whence x = 0 is not a valid pre-condition. Again auxiliary
variables can be used to keep track of the processes in the environment, but then again the
auxiliary variables needed for one process slip into the specification of the other processes.

The problem is that the encoding of the protocol for updating x is part of the specification
of each process.

In the example above, it may appear easy to use auxiliary variables to to limit the assump-
tions about the interaction between the environment and a process, but with multiple
resources the complexity quickly increases. The following program illustrates the problem.
It uses two different resources ry and ry, and is safe when executed in isolation from a state
where ag = a; = 0:

(with ro do ag := 1; with ry do a; := 1) |
(With ri when a; # 0 do skip; with rg do if ag = 0 then crash else skip). (1.1)

Here crash is a command that aborts when executed from any state.! To show that the
program is safe, the following protocol must be encoded: ownership of a; is split between
the left process and ry, ownership of ag is split between the left process and ry, and a; is set
to 1 after ag has been set to 1. If we can encode the protocol, then we should be able to
deduce that ag # 0 after the right process has acquired ry, and we should be able to pass
this information on to the following if-statement, and hence to deduce that the program is
safe.

In concurrent separation logic we have the following problem: Let (1.2) be a template for
a CSL specification for (1.1) annotated with fresh auxiliary variables and commands ¢
and ¢y assigning to these auxiliary variables:

to: lo,ri: L1 H{-} (with ro do (ag := 1; ¢o); with ry do (a; = 1; cl)) I
(with r; when a; # 0 do c; {P} with ry do if ag = 0 then crash else skip) {—}, (1.2)

Let P be an assertion that must hold of the state local to the right process in between
its last release of r; and its first acquire of ry. As the specification above is supposed to
be derived in CSL, any variable free in P cannot be assigned in the left process (a side-
condition present in [O’HOT7], missing in [Bro04, Bro07], and enforced by the proof system
in [Broll]). Likewise, any variable free in I, cannot be assigned in cy. Hence any variable
that both P and I depend on cannot be assigned in the program, and thus reasoning
about the value of the auxiliary variables in Iy * P cannot directly be used to show ag # 0.

At first glance it might seem impossible to show Iy x P = ag # 0, but there are solutions.
One solution is to pass around a token represented as a precise formula 7' such that
T x T = false. For instance, if T'is x — —, Iy is (ap = 0AT)V (ag = 1 Aemp), and I; is

Lcrash could be dispose z; [2]:=0

(a =0ANb=0Aemp)V (a1 =1Ab=0AT)V (a3 =1Ab=1), then we can prove:

to: lo,ri: 1 F{ag=a, =b=0Aemp}
(with ry do ag := 1; with r; do a; :=1) |
(with r; when a; # 0 do b :=1; {T'} with ro do if ag = 0 then crash else skip)
{ag = a1 = b=1ANemp},

but this introduces a heap cell whose only purpose is to facilitate the encoding of the pro-
tocol for updating ay and a;. Reasoning with such encodings can quickly get complicated.

Finally we note that the program, being independent of the heap, fits in the programming
language from Owicki’s thesis [Owi75] and thus by her completeness theorem we can find
a proof that doesn’t use the heap. Unfortunately this also results in very complicated
proofs.?

In Rely-Guarantee logics the problem with multiple regions owning separate heaps is often
ignored. For example, in [DYDGT10, DFPV09, Fen09, FFS07, VP07] the shared state is
read and updated by atomic blocks of commands, i.e., commands executed in isolation.
This enables the programmer to give global specifications of the shared state, but it also
prevents him from reasoning about non-atomic changes to the shared state.

2 Proposed Thesis

I propose to develop a modular proof methodology for verification of first-order concurrent
programs operating on mutable state, based on a formalization of protocol safety and heap
safety as distinct properties. A key new idea is that it is possible to reason separately
about these two properties, and that this leads to proofs that can easily be reused with
many different environments.

I will introduce a new logic with two levels, a level to reason about heap safety and a level
to reason about protocol safety. 1 will use a trace semantics for the programming language
familiar from Brookes” works on concurrent separation logic [Bro07], and I will introduce
a semantics for each new component in the specifications used on each level. Then I will
define validity of the judgments of the logic and show soundness of the rules by showing
that they preserve validity. Finally, I will show that valid specifications can be used to
reason about the execution of programs using the semantics familiar from [Bro07].

I will show that encoding protocols for interaction between processes as graph structures
enables the programmer to directly represent the different phases that the shared state
passes through during execution and when processes must synchronize. Ideally, the ability
of the programmer to design concurrent programs by first specifying the protocol, i.e., the

2The proof constructed in [Owi75] uses non-trivial encodings of the commands in the environment.

intended interaction between processes, and then to find commands suitable for these pro-
cesses, will make it easier to write correct concurrent programs. And given a concurrent
program, the ability to express the interaction between processes directly as graph-like
structures will lead to more intuitive specifications and proofs. I intend to demonstrate
this method by reconstructing well-known concurrent programs such as Peterson’s mu-
tual exclusion algorithm, from specifications of their protocols. I will then compare the
proof and specifications to proofs and specifications for the same programs in Concurrent
Separation Logic and Rely-Guarantee logics.

3 Separation Logic

To show my thesis I will primarily use separation logic. First, I will give a program logic for
a concurrent first-order programming language with identifiers and a heap. The program
logic will relate an interference command L, expressing assumptions about changes to the
shared heap, to a Hoare triple. I will then give a logic to show that L satisfies a protocol
specified by the programmer using graph-like structures to represent a protocol abstractly.
This results in a two-step verification method for programs. The first step is to give a
proof of a Hoare triple annotated with an interference command L. Such a proof shows
heap safety under the assumption of protocol safety of L. The second step is then to show
protocol safety of L. The result of the second step can then be applied to the annotated
Hoare triple to get a simple Hoare triple that describes the behavior of the program when
executed in isolation.

The programming language that I will use is a concurrent first-order imperative language
with identifiers and a heap. Identifiers are statically scoped, and each free identifier stands
for a value of a given type. We use contexts, i.e., finite functions from identifiers to
types, to keep track of the type of each free identifier. We use I' to denote contexts.
The use of identifiers instead of assignable variables simplifies reasoning by eliminating
most side-conditions seen in CSL, and we do not lose any generality as we will extend the
programming language with the ability to read heap locations when evaluating boolean
expressions used in conditional critical regions and while loops. We do so by defining a
new class of extended boolean expressions. These extended expression will then replace
the boolean expressions in while-loops and conditional critical regions. Another effect of
using identifiers instead of variables is that communication between processes is conducted
exclusively via the heap.

The assertion logic is higher-order separation logic [BBTS07] extended with permissions
as in [BCOPO05]. This is a sub-structural logic with spatial connectives that is suitable for
specifying and reasoning about shared mutable data structures [Rey02]. As in [BBTS07]
assertions well-typed in a context I' will, given a store from the meaning of I', represent sets
of heaps. Notice that I use the word “store” instead of the more common “environment”,
as [will use the later word as a reference to processes executing concurrently with a given
process. The logic has spatial connectives: points-to e % ¢ and spatial conjunction P x Q).

The points-to assertion e v ¢’ is satisfied by the heap defined on the single location {e}
which is mapped to the value ¢ with permission p. The assertion P * () is satisfied by
any heap that can be split into two separate heaps such that the first heap satisfies P and
the second heap satisfies (). The separation between the two heaps is what enables the
compact treatment of aliasing found in separation logic [Rey02].

Unlike the language used in CSL, I introduce extended expressions that may lookup values
in the heap. This implies that an extended expression may abort. I introduce a simple
Separation Logic with specifications: - {P} e {\z : 7. Q} to reason about safety and the
value of an extended expression. Here, P is a pre-condition, e is an extended expression
that may lookup values in the heap, and @) is a post-condition. The binder Az : 7 names
the value of e in @ (see [KABT09)]).

The following is an example of a valid specification for an extended boolean expression
that looks up the value store at x and compares it to 2:

F{z =y} let z=[z] in 2 =2 {Ar:bool. sy Ar=(y=2)}

The pre-condition x < y is short for Ip. z > y * true. Validity of the Hoare triple shows
that the expression doesn’t abort when evaluated from a heap where location x has value y
with some permission p. The post-condition asserts that the expression evaluates to y = 2
and the heap still has value y at location z.

3.1 Heap Safety

Next I introduce a specification L F {P} ¢ {Q} to show heap safety of the command c.
Here, L is an interference command that specifies the assumptions of the shared heap
made by the programmer and the updates to the shared heap performed by ¢, P is the pre-
condition, and @ is the post-condition. The specification is well-typed in a context I' if and
only if each component is well-typed in I'. The specification L F { P} ¢ {Q} deems the heap
to be a separate union of a local heap and a shared heap. The Hoare-triple { P} ¢ {@Q} from
the specification is used to reason about the local heap and the interference command L
is used to reason about the shared heap.

The interference command L summarizes the effect on the shared heap of executing a
command. The simplest interference command is nil. It is used to indicate that a command
is independent of any environment and that the command doesn’t cause any interference.
The interference command with r do (I, P/, Q') is a triple (I, P’, Q') annotated with a
resource identifier . I will use r and r; to denote resource names and let r and 7’ be
identifiers ranging over resource names. The assertion ()’ is precise, i.e., for each heap h
and each store defining the values of the free variables in) at most one subheap of h can
be satisfied by)’. The context I'" binds in P’ and @)’ every identifier in dom(I"), and the
assertion dIV. P’ i.e., the assertion P’ with every identifier in [existential quantified, is
precise. The triple is well-typed in the context I' if and only if P’ and @)’ are well-typed

in I', TV, i.e., the context I' extended with every mapping = — 7 from I”. The triple
represents a partial function from heaps to sets of heaps. If such a function f is undefined
on a given heap h, then we say f aborts when executed from h, otherwise we say that f
is safe when executed from h. The partial function f represented by (I, P’, Q') is defined
as the local action (see [COYO07])

f(h) = |_|{Q’(U') x{h"} | AN h=hnWh" AN satisfies P'(0") A o' has type I},

whence f is defined on a heap h if and only if A can be split into separate heaps h’
and h” such that h' satisfies P’ for some store ¢’ defining the identifiers bound in I"". The
result f(h) is then a set of heaps where each member h, can be split into the heap h” and
a heap satisfying @) with the identifiers bound in I'” defined by the store ¢’. The store o’
may not be unique, in which case f(h) is a subset of every set Q)'(¢”) x {h”}. By precision
of AI. P', b’ and h” are unique. Notice that the result of an execution of a triple from
a shared heap is either abort or a set of heaps. The resource annotation r on the triple
shows that the triple is guarded by acquiring the resource r before the beginning of its
execution, and releasing r after the execution terminates. We say that the execution of
the triple has a duration starting when r is acquired and ending when r is released. To
capture that r guards a triple represented by f and the duration of the execution of f, we
will use a simple trace semantics with actions for acquiring and releasing resources. This
semantics is similar to the trace semantics found in [Bro04]. The acquire action will be
annotated with r and f and the release action will be annotated with r. The notion of
execution is then lifted to sets of traces.

Validity of the specification:
with do (I, P', Q") - { P} with r do ¢ {Q}

implies that if the local heap satisfies P and if after the process has acquired r the
triple (I, P', ") doesn’t abort when executed from the shared heap, and if ¢ terminates,
then before r is released the shared heap has a part satisfying " and the local heap sat-
isfies Q. The assumption that “(IV, P/, Q') doesn’t abort when executed from the shared
heap” captures the idea that when the program acquires r it assumes ownership of a part
of the shared heap that satisfies [S/I"]|P’ for some substitution S defined on I, by mov-
ing this part from the shared heap to its local heap. The body ¢ is then executed and if
it terminates, then the resulting local heap can be split into two parts, one part satisfy-
ing @ and one part satisfying [S/I]@Q’. The second part is then moved back to the shared
heap before r is released. If the result of executing the triple on the shared heap is non-
deterministic, i.e., [S/I"]Q)’ satisfies more than one heap, then ¢ can non-deterministically
choose which of the heaps it will transfer back to the shared heap. The transfer of own-
ership, i.e., the moving of heaps from the shared heap to the local heap and vice versa
only takes place in the logic (the specification L - {P} ¢ {Q} deems the global heap to
be a union of a local and a shared heap) as in [O’'HO7]. Precision of (3. P’) and @’
ensures that the ownership transfers are well-defined. Here dI” is the iterated existential

quantification over each mapping = +— 7 from I”. Notice that our notion of execution of
triples, and in general interference commands, is different from our notion of execution of
commands. The execution of a triple from a heap can either return a set of heaps or abort,
but the execution of a command ¢ can either not terminate, return a heap, or abort.

The following is an example of a valid specification for a program that acquires the re-
source ry, adds one to the shared value at location x, and then releases ry:

with ry do (j : int,z N Ay 1) F {emp} with ry do (let y=[z] in [z]:=y + 1) {emp}

The interference command with ry do (j : int, x iR j,x iR j+1) shows that the programmer
assumes that after the program has acquired ry, it can take ownership of a part of the shared
heap satisfying +> j for some j, i.e, a heap [— (7, T)] with a singleton domain {z}
whose element is mapped to j with full permission, and before the program releases ry,
ownership of a heap satisfying x iR j+ 1 is transferred back to the shared heap. Validity of
the specification implies that if the programmer’s assumption is valid for the shared heap,
then the Hoare triple is valid for the local heap. The specification above is an instance of
the rule for conditional critical regions:

F{P %P} e{A\b:bool. P"} nil = {[true/b]P"} ¢ {Q x Q'}
with r do (I, P', Q") = { P} with when e do ¢ {Q}

provided: (3I". P) is precise, @)’ is precise, and dom(I") Nfv(P,Q, e, c) = {}

Besides nil and the basic annotated triple, interference commands can be formed using
sequential composition: L; L and parallel composition: L| L. The traces of Ly; L; are the
traces of Ly concatenated with the traces of Ly. The traces of Ly | Ly are the interleavings
of the traces from Lq with the traces from L;. The notion of execution of sets of traces is
fairly simple. For example, the interference command

with rdo (j :int,z > j,z = j+ 1); with 7/ do (j :int, 2 v j,z +3 j+ 1V a s j +2)
will, when executed from the heap [x + (i, T)], return the set
{la—=(GE+2,T)),[x— (i+3,T)]},
and the interference command
T T 3 T T
with r do (j:int,z +— j,z+— j+1Va > j); with ' do (j:int,z > joz > j+ 1)

will abort when executed from [z ~— (i, T)] as the heap [z + (i,3)] is in the result of
executing the first triple, but the second triple aborts when executed from this heap. In
general, if L {P} ¢ {@Q} and the execution of L from the share heap returns a set X,

then every terminating execution of ¢ in isolation must terminate with a shared heap in X.

With the interleaving of traces, the duration of the execution of two triples with r do (', P, Q)
and with " do (I, P’, Q") may overlap, and in that case the two triples must be executed
in separate heaps. If r = r’ then the duration of the execution of the two triples will never
overlap. For example, the execution of the interference command:

with r do (j :int,z = j,z v j + 1) [with 7/ do (j : int, 2+ j, 2 +> j + 1)

from the heap [x — (i, T)] aborts when r # 1/, as there is an interleaving where the two

triples overlap and no heap is in x iR jxx iR j' for any j and j'. If r =7/, then the triples
will never overlap and the execution is safe.

We can use the parallel and sequential composition of interference commands to compose
specifications for commands. For instance, the following is a valid specification:

with ro do (j :int,x =5 j,z+5 j+ 1); with 1y do (j : int,z =5 j, 2 > j + 1)
F {emp} with rg do (let y=[z] in [x]:=y + 1); with r; do (let y=[x] in [z]:=y + 1) {emp}
The sequential composition of the triples indicate that the command will have released r

before it acquires r; and thus the interference caused in the first critical region is finished
before the interference from the second critical region begins.

Another valid specification is:

with 7 do (j :int,z /> j, 2 +> j + 1) | with v do (j : int,z +5 j,z s j + 1)
F {emp} with r do (let y=[x] in [z]:=y + 1) | with 7" do (let y=[z] in [z]:=y + 1) {emp}

In this case we have seen that the interference command aborts when executed from a heap
[z + (i, T)]. When this happens the meaning of the specification is essentially vacuously
true. The culprit is that validity of the specification assumes that the interference command
does not abort when executed from a shared heap. In the next section I will introduce
a logic to show the absence of such aborts, and we will see an easy proof for the case
where r = r’. And of course, there will not be a proof for the case where r # 7.

The specifications given above are instances of these two rules:

Lo {P} ¢ {1} LiF{I} c; {Q}
Lo; L1 E {P} co; c1 {Q}

Lo {Po} Co {Qo} L+ {Pl} 1 {Q1}
LO”Lll_{PO*Pl} C[)”Cl {QO*Ql}

10

3.1.1 A pre-order on interference commands

In a specification L = {P} ¢ {Q} the interference command L lets the programmer describe
the effect of ¢ on the shared heap. The description can contain a lot of information that
may not be needed. For instance, from the interference commands in the following valid
specification:

with 7 do (j :int,z /> j,z v j+ 1); with v’ do (j : int,y = j,y =5 j + 1)
- {emp} with r do (let z=[z] in [z]:=z 4 1); with ' do (let z=[y] in [y]:=2z + 1) {emp}

we can see that r is acquired and released before 1’ is acquired. This information may not
be relevant and in that case we can erase the information and still have a valid specification
by replacing the semi-colon with a parallel bar:

with 7 do (7 : int,x»Lj,x»Lj—i—l) | with v’ do (5 : int,yll>j,yli>j+l)
- {emp} with r do (let z=[z] in [z]:=2 + 1); with 7' do (let 2=[y] in [y]:=2 + 1) {emp}

With the parallel bar all we know is that the update to the shared heap, guarded by r, may
happen before, after, or concurrently with the update to the shared heap guarded by 7.
We say that

with r do (j:int,xgj,x;j—i—l)ﬂwith r’ do (j:int,y;j,y;j—i—l)
is above

: o T T, L - T T .

with 7 do (5 :int,x — j, 2z — j+ 1); with " do (5 :int,y — j,y— j+1).

I define L C L' when L is below L', i.e., when L’ is more non-deterministic than L or
when L’ aborts when executed from states that L is safe on. The relation — C — will be a
pre-order and I will define it in terms of the semantics of interference commands. Finally,
I will give inference rules to derive L C L.

Say we have an interference command L with an L-typed hole and L[z] is L with the hole
replaced with x well-typed in I'g. Then the interference command L{with r do (I, P', Q)] is
above the interference command L|with r do (I', P, Q)] if the triple (I, P’, Q"), well-typed
in 'y, is less deterministic or aborts on heaps that the triple (I', P,Q), also well-typed
in Ty, is safe on. We can show the triple (I, P',Q’) to be above the triple (I, P, Q) if
P' = dI'. (P R) and (II'. (@ * R)) = @', for some assertion R. The first condition
captures that if a heap h satisfies P’ then (I, P/, Q)") doesn’t abort when executed from h,
and thus (', P, Q) must not abort when executed from h, i.e., h must satisfy 3I". (P x R) for
some R. The second condition captures that the result of executing (I', P, Q) from h must
be a subset of the result of executing (I, P/, Q') from h, i.e., (I', P, Q) is less deterministic
than (I, P', Q").

11

Interference commands L[z] respect the pre-order — C —, i.e, L[Lo] C L[L4] if Ly C Ly, and
with transitivity of — C — we can easily give proofs of L C L' for compound expressions L
and L'. With a rule of consequence:

LF{P} c{Q}
L'E{P} c{Q}

when LC L', PP= P, and Q = Q'
we can easily weaken specifications L = {P} ¢ {Q} as described above.

3.2 Protocol Safety

Next I introduce a specification G I+ {An: 7. P} L {\n/: 7. Q} to show protocol safety
of L. Here, GG represents a protocol for the interaction between L and an environment.
The assertion P is the pre-condition, @) is the post-condition, the binder An : 7 binds the
identifier n in P and An’ binds n’ in Q.

A protocol is a quintuple consisting of:

e A set N of nodes.
e A finite set R of resource names and possibly a unit.

e A subset L of N x N x R defining the local edges.

A subset E of N x N x R defining the environment edges.

A function A of type N = R — Ppyrec(H), where Ppec(H) is the set of precise subsets
of the set H of heaps.

such that for all » and 7" from R and for all nodes n and n/, if r # 7’ and (n,n’/,r) e LU E,
then
A(n)(r') € A(n')(r'). (Pwi)

Given a node ng from N and a resource name ry from R, A(ng)(rg) contains the part of
the shared heap that at node ng is either owned by ry or a process that possesses ry. If
the unit element uu is a member of R then A(ng)(uu) contains the part of the shared heap
that is not owned by any resource or process. We will refer to A as the heap function of a
protocol.

We will let G range over protocol expressions, i.e., quintuples (7, R, [, e, A) where T is a type,
R is a type inhabited by a finite number of resources and possibly uu, [and e are expressions
of type (7 X 7 x R) set, and A is an expression of type 7 — R — passn. The meaning of a
quintuple GG, well-typed in a context I', is then a family of protocols indexed by the meaning
of I'. We will call such quintuples protocol expressions. A protocol expression (7, R, [, e, A)

12

is well-formed if for all » and 7’ of type R and n and n’ of type 7, if (n,n/,;r) e [Ue
and r # r’, then
A(n)(r') = A(n)(r').

When R contains more than one element the well-formedness condition (Pwf) is non-trivial,
and it ensures that if a process changes the heap owned by resource r, and thus takes us
from one node to another, then the predicates describing the heaps owned by the other
resources stay valid for these heaps. If R is a singleton, then (Pwf) holds vacuously.

The expression [defines the set of local edges for each pair of nodes. The boolean expres-
sion (n,n’,r) € [is true if and only if there is a local edge from n to n’ with a label r.
Likewise the expression e defines the set of environment edges.

The following is an example of a simple family G5 of protocols, parameterized by j, for the
resource ry:

({07 1} X {07 1}7 {r0}>
{(no,n1,7) | (m1(no) =0Am(n1) =1Am(ng) =ma(ny)) V
(7?2(710) =0A 7T2(Tl1) =1A 7T1(77,0) = Wl(nl))},

{1

Ang. A\r. x AR j+mi(ng) + 27T2(n0)).

We can depict the protocol by:

T . r T .
{I’O X j}(o}o) —0>{r0 x>)+ 1}(170)

N o

T . T .
{rorx=J+2 o1 —=1{r:z—Jj+3}a.

where {ry : —},, depicts at node n the constant function Ar : {ry}. x Yy G4 m (n) + 2ma(n),
i.e., the heap function of the protocol applied to node n. The arrows from node n to node n’
depict the local edges, and there are no environment edges. Since there are no environment
edges the protocol states the assumption that the environment will not perform any actions
on the shared heap. Furthermore the local process may update the shared heap from a

heap in z i to a heap in z Wi+ 1 for i = j or i = j + 2 by following the horizontal
arrows or from a heap satisfying x i to a heap satisfying x i 42 for i = jori=j5+1
by following the vertical arrows.

Let G be the protocol expression (7, R, [, e, A). We will use the specification
GIF{n:7. P} L{\W :7. Q}

to show that L follows the protocol described in G when executed in an environment that
follows the protocol described in G. This specification deems the shared heap at node n to

13

be a separation union of a heap from P that is currently local to L, and for each resource r
in R that is currently free, a heap from A(n)(r), and if uu € R, a heap from A(n)(uu).

The following is an example of a valid specification using the protocol Gjs:

Gs - {\n:{0,1} x {0,1}. n = (0,0) A emp}
with rg do (5 : int,x@j,x ll>j—i-1) | with rg do (j : int,x;j,x |I>j+2)
{An:{0,1} x{0,1}. n=(1,1) Aemp} (3.1)

The specification implies that if we start in node (0, 0) and the shared heap is in emp * AN J
and if we execute the interference command:

with ry do (5 : int,x;j,x;j—i-l) | with ro do (j:int,x;j,x;j—i—%,

then we don’t abort, and we end up in node (1, 1) with the shared heap in emp * x R Jj =+ 3.

To show this specification we must reason about the left interference command, with an
environment performing the the actions of the right interference command, and vice versa.
We first notice that (G3 was constructed such that the effect of the left interference command
can be seen as a transition along any horizontal edge, and the effect of the right interference
command can be seen as a transition along any vertical edge. Hence by dividing the local
edges in (G5 into two disjoint sets, the horizontal edges as new local edges, and the vertical
edges as new environment edges, we can construct a protocol GGy suitable to reason about

with rgdo (j : int, z AR j, AR j+1) with an environment with ro do (j : int, = iR j,x iR Jj+2):

({07 1} X {07 1}7 {r0}7
{(no,n1,7) | m(no) =0Am(n1)=1Am(ng) =ma(n1)},
{(no,n1,7) | ma(ng) =0Am(n1) =1Am(ng) =m(n1)},

Ang. Ar. x Ly J+ m(ng) + 272(”0))

which can be depicted by:

T . T .
{I’g X j}((],o) —r0> {I’Q T r =) + 1}(170) (32)
v v
T . T .
{ro:o =+ 201 —=1{ro: o= j+ 3},
where the full arrows are the local edges and the dotted arrows are the environment edges.
From the picture of G it should be easy to see how (G encodes the protocol that rg

owns the heap location x and the [ocal process may add one to the value at location x
concurrently with an environment that adds two to the value at location x. Later we will

14

show:

Gy IF{\n:{0,1} x {0,1}. n = (0,0) A emp}
with ry do (7 : int,x;j,x rI>j—|—1)
{Mn:{0,1} x {0,1}. (n=(1,1)Vn =(1,0)) Aemp} (3.3)
using a structural rule for annotated triples. We can interpret the specification (3.3)

as follows: If we start in node (0,0) then the local process will terminate in either
node (1,0) or node (1,1). By inspecting G; we can see that this implies that if we execute

with rg do (j : int, z iR 7,x N j+ 1) from a shared heap satisfying x N J in an environ-
ment that may acquire rg, add two to the value at x, and release rg, then we don’t abort

and if we terminate then the shared heap will satisfy either x iR j+1lorx AR J+3.

Symmetrically we can show:

GoIF s {0,1) x {0,1}. n = (0,0) A emp}
with ry do (7 : int,erj,x rI>j+2)
{An:{0,1} x {0,1}. (n=(1,1)vn=(0,1)) Aemp} (3.4)

where G5 is the protocol:

({0,1} x {0,1},{ro},

{(no,nl, 7“) ’ 7TQ<TL()> =0A 7T2(n1) =1A m(no) = Wl(nl)},

{(ng,n1,7) | m(no) =0Am(n1)=1Am(ng) =ma(n1)},

Ano,). x AR Jj+mi(ng) + 27?2(710))
which can be depicted by (3.2) where the full arrows are the environment edges and the
dotted arrows are the local edges.

We will then use a structural rule for parallel composition and a rule of consequence to
derive (3.1). The parallel composition rule will spatially conjoin the pre-conditions and the
post-conditions, intersect the sets of environment edges, and union the sets of local edges,
and we get:

G5 IF {An:{0,1} x {0,1}. (n = (0,0) Aemp) * (n = (0,0) A emp)}
with rg do (5 : int,z V> j,2 |I>j—|—1) | with rg do (5 : int,z Vs §,2 |I>j+2)
{An:{0,1} x{0,1}. (n=(1,1)Vn = (0,1)) Aemp) x ((n = (1,1) Vn = (1,0)) Aemp)}

15

where G is:

({07 1} X {07 1}7 {r0}7

{(no,nl,r) | (Wl(no) :0/\7T1(n1) = 1/\7T2(7”L()) :Wz(nl))}u
{(no,n1,7) | ma(ng) =0Am(n1) =1Am(ng) =m(n1)},
{(no,n1,7) | ma(ng) =0Am(n1) =1Am(ng) =m(n1)}N
{(no,n1,7) | m(ng) =0AT(n1) =1Ame(ng) = ma(n1)},
A(ng, 7). x ANy T1(ng) + 2m2(no)).

G is just another representation of Gs, i.e., G4 and G5 have the same nodes, edges, etc.,
and thus we can use the rule of consequence (RoC) given below to conclude (3.1).

The parallel rule has some important side-conditions. First we must ensure that the ac-

tions of with ry do (j : int,x AR 7,x AR j + 2) are captured by the environment edges
in GG;. This condition holds if the local edges of G5 are a subset of the environment

edges of Gy. Secondly, even after with ry do (j : int,z AR j,x R j + 1) has terminated in a

node n, with ro do (j : int, x iR j,x AR j + 2) may continue and terminate in a node n'. If
this happens then it is important that the post-condition in (3.3) in not invalidated by this
last action. One simple way to ensure this is to require that for every environment edge
from node n to node n’ in Gy, if the post-condition in (3.3) holds at n for some heap h,
then it holds at n’ for the same heap h. With these two side-condition and their symmetric
counterparts we have a sound reasoning principle for parallel interference commands (see
RfP’ on page 17).

The Rule of Consequence (RoC) is a non-structural rule that allows the programmer to
strengthen the pre-condition, weaken the post-condition, extend the set of local edges, and
contract the set of environment edges:

P=r (r, R U, A)IF{An:7. P’} L{\n': 7. Q'} Q = Q
(r,R,le,A)I-{ n:7. P} L {\: 7. Q} (RoC)

provided I’ C I, and e C ¢

Strengthening the pre-condition An. P’ to An. P means that P implies P’ for every n. In
other words, the set of nodes satisfying P for some heap h is smaller than the set of nodes
satisfying P’ for h. Hence the set of possible start nodes got smaller. Likewise weakening
the post-condition may extend the set of nodes that we may terminate in. Adding local
edges is also sound, as these extra edges are simply not used, and making the set of
environment edges smaller is sound as we are simply limiting the possible actions of the
environment.

The Rule for Parallel composition (RfP) is a structural rule enabling reasoning about

16

parallel composition of interference commands:

(r,R,l,e, A) IF{\n:7. P} L {\n/: 7. Q}
(r, R,U',e', A) Ik { 7. P’} L' {\ : 7. Q'}

(r,RIUl,ene A)IE{ \n:7. Px P} L|L {\n/: 7. QxQ'} (RfP)

provided [C¢', forall (n,n') e connected(e), n/n']Q * Q" = Q * true
' Ce, and for all (n,n’) e connected(e'), [n/n'|Q" * Q = Q' * true

The set connected(e) is the transitive closure of {(n,n’) | Ir. (n,n',r) € e}. Hence the
pair (ng,n1) is in connected (e) if and only if there exists a path from ny to ny such that
3r. (n,n’) € e(r) for every edge (n,n’) in the path. The condition {" C e in the rule (RfP)
ensures that in the proof for L, the effect of L’ is captured by e. The condition

for all pairs (n,n’) e connected(e), [n/n'|Q x Q" = [n'/n|Q * true

ensures that if L terminates in node n and L’ terminates in node n’, then) doesn’t exclude
the possibility that L | L’ might terminate in n’. With the analogous condition for €’ it is
safe to conclude that L | L’ will terminate in node n for some n such that @ * Q" holds.

If @ is closed under connected (e), i.e., if for all edges (n,n’) such that Ir. (n,n’) € e(r), @
holds for heap h at node n implies that @) holds for heap h at node n’, then we can derive
the simpler, but weaker, rule (RfP’):

(1, R, l,e, A) IF{\n:7. P} L {\n': 7. Q}
(r, R, U',e', A) I { 7. P’} L' {\W:7.Q'}

(r,RIUlene,A)IF{\n:7. P+« P} L|L {\n/:7.Q«Q'} (RfP')

provided I D ¢, [n/n']Q = @Q for all (n,n',r)ce
I'De, [n/n]Q = @ forall (n,n',r)ece

Notice that the post-conditions in (3.3) and (3.4) are easily shown to satisfy these side-

conditions, thus we can use this simpler rule to reason about the parallel composition in
that example.

Finally we should look back at (3.3). The specification claims that if we start in node (0, 0),
then we will terminate safely in either node (0, 1) or node (1, 1). To show this we will first
show:
G1lF{ n:{0,1} x {0,1}. (n=(0,1) Vn =(0,0)) Aemp}
with ro do (j @ int, 2 > j, 2 v j + 1)
{An:{0,1} x {0,1}. (n=(1,1) Vn = (1,0)) Aemp} (3.5)
and then use the rule of consequence to conclude (3.3). Notice that the pre-condition

(n=1(0,1) Vn=1(0,0)) Aemp implies (n' = (0,1) Vn' = (0,0)) Aemp for every environ-
ment edge from n to n’ in Gy (the only such environment edge goes from node (0,0)

17

to (0,1)). This means that if at node n we have a heap h satisfying the pre-condition and
the environment takes us to a node n’, then the pre-condition also holds for h at node n/'.
Hence the action of the environment doesn’t invalidate the description of the heap currently

local to with rg do (5 : int,x iR j,x R j +1). In general, in the rule to show
(1,R,l,e, A) IF {\n. P} with r do (I, P, Q") {\n'. Q}

this property of P is guaranteed by the side-condition P = [n'/n]P for all (n,n’,r’) € e.
Next we need to show that with ro do (j : int, iR J,x K j+1) doesn’t abort when executed
from the separate union of the shared heap owned by ry at node n, in the general case, a
heap in A(n)(r), and the heap currently local to the process, in the general case, a heap
from P. This holds if this heap can be split into two separate heaps such that one of them
is in # > j for some j. In the general case, we require a proof of A(n)(r)«P = [S/T'|P'xY
for some substitution S and assertion Y. The part of the heap from Y is preserved by
the triple and thus if the triple terminates with a set X of heaps, then every heap in X
must be in [S/T']Q" x Y. Next we must show that for every heap in X there is a local
edge from node n to some node n’ such that the heap can be split into a heap satisfying
the post-condition at node n’ and a heap satisfying the assertion for r at node n/, i.e.,
S/TQ Y = 3n'. (n,n',r) e INA()(r) * Q.

We can summarize these conditions in the rule for annotated triples:

Px A(n)(r) = [S/T'|P'xY [S/TQ «Y = 3In'. (n,n',r) e LN A(n)(r) * Q
(1,R,l,e,A) IF {\n. P} with r do (I'", P, Q") {\n'. Q}

provided r € R and P = [n//n]P for all (n,n’,7’) € e.
(Res)

3.2.1 Multiple Resources

Defining protocols for more than one resource name is fairly easy. The program (1.1)
on page 4 is not in our programming language because it uses assignable variables, but a
slightly different program has the exact same problem and is in our programming language:

resource ro, ry in
(with ry do [ag):=1; with r; do [a;]:=1) |
(with ry when [a;] # 0 do skip; with ro do if [ag] = 0 then crash else skip). (3.6)

Let L be:
(with ro do (—, ap B —ag o 1); with r; do (—, a; B —ap 1)) I

(with ri do (j :int, a4 iR j,aq iR Jj A7 #0); with rg do (—, ag iR 1, a9 iR 1)>

18

Then the following specification is valid:
L+ {emp} ¢ {emp} (3.7)

where resource ro,r; in ¢ is the command in (3.6). Notice how the condition [a;] # 0 is
represented in the interference command:

with r; do (5 :int, a1 = j,a1 > j A j % 0).

This interference command aborts after it has acquired ry, unless the shared heap has a
part satisfying a, |I>j for some j, and it terminates if and only if j # 0, i.e., [a1] is not 0.
Hence if [a1] # 0 is false then the interference command will neither abort nor terminate.

Next we would like to specify that the value at a; is initially 0 and is updated after
the value at aq is set to 1. Before we can encode this as a protocol we must provide
appropriate ownership information. As the triples annotated with ro in the interference
command assumes full ownership over location ag we will let ry have full ownership of the
location ag. Likewise we will let r; have full ownership of the location a;. This way of
deeming ownership of ag and a; works only when ag # a;. If a9 = a; then the program
aborts as the right process may read from the heap cell a; while the left process writes to
the heap cell ag. The specification (3.7) is still valid, but L aborts.

One way to encode the protocol is the following G:

c NP ro T, T,
{ro-ao'—>— r1'a1'—>0}0—>{r0:a0»—>1 r:a;+—

|
——
=
= S

This protocol can be represented by:

<{0, 1}, {ro,ri}, AMn,n',r). (n=0Ar=ro) Vn=1)An' =1,\(n,n',r). false,
A(n,r). n=0A (r:ro/\aO»L—VT:rl/\alrL()) V
nzl/\(r:ro/\aOII>1V7":r1/\a1»I>—>>.
One might also use a protocol with three nodes:

{I’()Z(IOPL— rlzalrLO}OL{rO:aorI)l r1:a1r1>()}1

jrl ro
ﬂ
T T

{rolaof—>1 r1:a1|—>—}2

r

19

but as a process transitioning an r-edge can only update the part of the shared heap owned
by r, little information is gained by the extra node.

As the R-set in the protocol G contains multiple resource names we must check that the
protocol is well-defined, i.e., satisfy (Pwf) on page 12. As there is only one non-trivial edge

and a; 50 = ai s — this is fairly trivial by case analysis on r.

To show the specification:
GlIF{ n:{0,1}. n=0Aemp} L {\n:{0,1}. n=1Aemp} (3.8)

we will first show:

G1lF {An. n=0Aemp} with r; do (j:int,a1»1>j,a1 »I>j/\j7£0);

with rg do (—, ag s 1, ag v 1) {A\n.n=1Aemp} (3.9)
where (&1 is the protocol:

ro r
/;7

{I’o D agp 'I> — rn:a 'LO}(] """ f'P,.»>{I’0 : CL(); L 'I> _}1
ri

where the dotted arrows are environment edges and the solid arrows are local edges. The
protocol specifies that the environment may take us from the first to the second node by
updating the value at ag to 1 while possessing rg, and subsequently take us from the second
node to itself while updating the value at a; and possessing ry, and the local process will
not perform any actions on the first node.

A key point to show validity of (3.9) is that the post-condition in the with r; do — clause
is false when j is 0 and thus the right process waits until we are in the seconds node (in
the first node the pre-condition is only valid when j is 0). This is captured by the rule for
annotated triples on page 18 which we instantiate with a substitution mapping j to the
node n and the assertion Y to emp, and we conclude:

GilF{\n. (n=0Vn=1)Aemp}
with r; do (5 : int, a4 »I>j,a1 |I>j/\j #0) {\n.n=1Aemp}.
With a specification for the other half of L using the protocol where the solid arrows are

environment edges and the dotted arrows are local edges, we can use the parallel rule to
conclude:

G'IF{\n. (n=0Aemp)x (n=0Aemp)} L {\n. (n=1Aemp)x(n=1Aemp)}

20

for the protocol G':
ro r
T T ro T T g
{I’()Z(l()f—>— rlzalr—>0}0—>{r0:a0f—>1 r11a1P—>—}1
n
where solid arrows are [ocal edges and the dotted arrows are environment edges. We can
then use the rule of consequence to show (3.8) by dropping the environment edge.

3.3 Interaction between Protocol Safety and Heap Safety

In section 3.1 and section 3.2 we saw how an interference command is the medium between
the logic for heap safety and the logic for protocol safety, and we saw that in a proof of
LE{P} ¢ {Q} only the conditional critical regions contributed with non-trivial informa-
tion to L. Sometimes it is useful to add information to L without trying to acquire a critical
region. For instance, if a protocol requires that a process must wait for some non-trivial
condition to be true, then we might need to move information between the local heap and
the shared heap. Say a program must wait until the extended boolean expression [a] = 0
holds of the heap owned by ry or [b] = 0 holds of the heap owned by ry. If initially g
and 1 points to 1 then the following program performs such a wait:

while (([zo] # 0) A ([21] # 0)) do
(with ry do let z{=l[a] in [xo]:=x};
with r; do let 2 =[0] in [z,]:=2))

We can move the termination condition for the while-loop into the interference specification
by deeming half ownership of 3 and z; to the local process and the other half to the shared
heap. We can show:

- {ao — b) (] £0) A (1] £0)
{\r 2 bool. 3z, 2. wo V> xfh * 1 > 2 A ((z) # 0) A (2} #0)) =7}

and

1 1
L& {3xy, 2} wo ¥ xyx o1 V& 2 A (2 £ 0) A (2] #0)}

with ro do (let zg=[a] in [zo):=xy); with ry do (let z}=[b] in [x1]:=2))

where L is
T 3 T L
with rg do (—,a —~ — * 29 > —,a > — x 19 > —);

1 1
. T 3 T 2
with ry do (—, b — %z ¥ — b — % x1 5 —).

21

Next we can use the rule for while loops:
FA{I} e {\b: bool. I'} L= {[true/b]I'} ¢ {I}
L* = {I} while e do ¢ {[false/b]I"}

where L* is equivalent to (L; L*) + nil, and conclude:

L*l_{flf(]'z)—*xlig—}
while ([zo] # 0 A [z1] # 0) do
(with ry do let zp=[a] in [zo]:=x(;
with ry do let zi=[b] in [z{]:=2))

1 1
(B, f. w0 5w x a1 % af A (2 # 0 A af #0) = false).

To move the fact that the command terminates when [xo] # 0 A [x1] # 0 is false, I will
introduce the possibility of an atomic repartition of the separation between the local and the
shared heap. I will extend the syntax for interference expressions with with uu do (', P, Q).
The unit uu is used only in protocols and interference commands where it indicates that
the repartitioning is atomic and not related to any particular resource. I provide two rules
to introduce repartitionings

L+ {P} c{Q}
with uu do (I', Py, P,); L+ {P'} ¢ {Q}

provided P' x Py = Py x P, dom(T") Nfv(P, P, Q) = {},
(3. Fy) is precise, and P is precise

L+{P} c{Q}
L; with uu do (I', Qo, Q1) F {P} c {Q'}

provided @ * Qo = @1 *x @', dom(T") Nfv(P, P',Q) = {},
(dTr'. Qo) is precise, and @y is precise
I can then use the first rule to move information about the termination of the while loop
into the interference command:

1 1 1 1
L*; (zg : int, @) s int, zg ¥ @ * 21 V> @), 10 F> g x 1 >) A (25 =0V 2] =0))
1 1
F{ag ¥ — x> —}
while ([zo] # 0 A [z1] # 0) do
(with ro do let zy=la] in [zo]:=xy;
with ry do let z|=[b] in [z1]:=x)

1 1
{Fap, 2. wo > apx 2y S) A (2 =0V a2, =0)}.

22

Given a protocol G:

fo,r fo,r

N T T ro T T 7
{ro:am— — rlib'—>—}0—>{r0:aH0 rn:b——}h
{rg:a;— rlzb;O}g

\\S

we can then prove that if we start in node 0, then the interference command doesn’t abort
and if it terminates then it must terminate in node 1 or 2. We want to show

Tor

1
GIE{\n. (n=0Axzo> 1%z,

D}

1

1
*, A /oL / 2 / 2 / 2 / !

=
|=

|

1 1
M. (n=1Azg> 0%z > —)V(n=2Ax

lw\w (@]

a5 0))
using the rule for sequential composition:
GlIF{An. P} Ly {An. R} GIF{ n. R} L, {\n. Q}
G- { n. P} Lo; Ly {\n. Q}

where R will be

|—=

1
An. (n=0A3zy, o). w0 xp*xx > Ty Axy £ 0N #£0)V

N

1 1 1 1

(mM=1Azg+> 0%z > =)V (n=2Azg > —xx1 > 0).
Notice that at node 0 the assertion R insists that xg and x; both points to non-zero values.
Hence when we apply the triple

1 1 1
ro oL ! 2,/ 20/ 2, ./ r r_
(xg @ int, 2 rint, kg = xg * 21 = X, 20 = T kx> 2y A (2 =0V 2 =0))

N|=

to any heap from R at node 0, the post-condition of the triple is false, and thus the triple
does not terminate at node 0, and thus the original while loop cannot have terminated at
node 0.

We introduce a simple rule

G Ik {An. [S/T]P} with uu do (T', P, Q) {\n. [S/T|Q}

to encapsulate and generalize the above reasoning. Notice that with this rule an atomic
repartitioning can only interact with the part of the shared heap that is currently local

23

to the interference command. If the programmer has specified atomic repartitions in his
protocol, then he should use the rule for annotated triples (Res on page 18).

Finally we should give a rule to reason about L*, i.e., an arbitrary number of sequential

iterations of L:
G- {An. P} L {\n. P}

G IF {\n. P} L* {\n. P}

4 Compositionality

The goal of modularity of a program logic is to enable the programmer to divide his
program into separate components, give each component a specification, and then derive
specifications of entire programs by composing the specifications of the components used
in his program. Compositionality of a program logic, i.e., the property that a proof in the
program logic follows the syntax for programs, is often seen as way to provide modularity
to program logics.

CSL and Rely-Guarantee are compositional program logics and as parallel composition
is a simple syntactic construction, it is often said that these logics are thread modular,
i.e., you should be able to give a specification for each thread and then compose these
specification into a specification for the entire program. But as we have seen in section 1
the specifications of threads often need to encode the actions of the environment, i.e., the
other threads in the program. Hence the specification you need for a given thread depends
on the other threads (or modules) used in the program, and thus the programmer often
needs to look at the command of a thread, i.e., open the module, to give a proof of the
needed specification. In other words, thread modularity of CSL and Rely-Guarantee does
not enable the programmer to forget about the implementations of the threads in the
environment.

In the examples given in the previous sections, i.e., the running example in section 3.1
and the example in section 3.2.1, the two level logic enabled us to give local specifications
L F {P} ¢ {Q} that can be used with many different environments. The specifications
were local in the sense that they never referenced properties of the environment. Instead
the interference command L encoded the assumptions that the programmer made about
the shared heap. Only at the level with specifications G |- {\z. P} L {\y. Q} did we use
properties of the environment. These properties were then encoded in the protocol G,
and unlike CSL we often enabled the programmer to simplify the protocol after he has
composed specifications of multiple threads (or modules). Hence in the proposed logic,
we can often reuse specifications of the form L - {P} ¢ {Q} and thus obtain true thread
modularity on that level, and protocols do not always need to expose every detail of the
computation performed by an interference command.

24

5 Related Work

The introduction of Separation Logic [I001, Rey02] by O’Hearn and Reynolds simplified
reasoning about heap manipulating sequential programs. Separation logic enables the
programmer to implicitly specify non-aliasing constraints using spatial logical connectives:
points-to e +— €', and separating conjunction P * (). Separation logic has since been
extended to a higher-order logic by Biering et al. [BBTS07], enabling the programmer
to define inductive data structures directly in the logic, to reason about commands in a
context of procedures with abstract specifications, and to reason polymorphically about
data structures.

With concurrent separation logic (CSL) O'Hearn [O’H07] showed how separation logic can
be used to reason about concurrent first-order programs with heaps. O’Hearn extended the
programming language defined by Owicki in [Owi75] where interaction between processes
is limited to conditional critical regions parametrized by a resource name, with operations
for looking up values and storing values in a heap. He noticed that if two commands are
executing on spatially separated heaps, then they can safely execute in parallel, whence
his version of Owicki’s rule for parallel composition uses separating conjunction instead
of ordinary conjunction. The semantics of the language guarantees that the execution
of any two conditional critical regions for the same resource name cannot overlap. To
reason about the interaction between processes O’Hearn required, as Owicki did, that
every resource has an invariant assertion and a list of variables protected by that resource,
i.e., a list of variables where each variable is changed by a process only when the resource
is possessed by that process. When entering a critical region the programmer can then
assume the invariant for that region holds separately from his current local heap and upon
exiting a critical region he must show that the local heap can be split into a new local
heap and separately a heap that holds of the invariant. Again, O’Hearn’s adoption of
Owicki’s parallel rule uses separating conjunction instead of ordinary conjunction. With
the introduction of separation logic came also the notion of ownership transfer [OYR04] and
in CSL ownership transfer happens when entering and exiting critical regions. Reynolds
had discovered [OYRO04] that precision of invariants is needed to reason soundly about
ownership transfer, and soon after Brookes gave a proof of soundness of CSL using trace
semantics [Bro04, Bro07, Broll|. This proof makes it clear how precision of the resource

invariants ensures that the transfer of ownership of heap cells from a process to a resource
is well-defined.

5.1 Permissions

Extensions of Concurrent Separation Logic with Boyland’s fractional permissions [Boy03]
and Bornat’s counting permissions [BCOP05], enables the programmer to better keep track
of “ownership transfer” and “read only” locations and variables. In the programming
language of CSL the scope of a variable is static and the rules of CSL has static side-
conditions for proper treatment of variables. With the introduction of permissions on

25

variables [BCY06, PBCO06] the logic was changed such that it treated variables in much
the same way it treated heap cells, i.e., ownership or permission to a variable can change
dynamically as the program executes. This created a mismatch between the treatment of
variables in the logic and in the programming language which has recently been cleaned up
by Reddy and Reynolds with syntactic control of interference for separation logic [RR12].

The separation logic proposed in section 3 combines the higher-order separation logic from
[BBT'S07] with fractional permissions as in [BCOPO05] to get a separation logic suitable
to keep track of ownership transfer and abstract specifications of commands. Permissions
are easily embedded into the higher-order logic by defining a type perm of permissions
and suitable constants and operations on perm. The triple (I', P, Q) used to reason about
the command in a conditional critical region is essentially an abstract specification of the
command, in the sense of [BBTS07].

5.2 Semantics

In the sections above we hinted at the semantics underlying the programming language and
the interference commands. Following Brookes [Bro07], the semantics of the programming
language is a trace semantics with actions for every little step of the execution of a com-
mand. In this semantics only some traces correspond to possible executions from a given
store and heap. Brookes defined a global enabling relation to capture if a trace is enabled
from a given store, heap, and set of currently possessed resources, and to describe the effect
of an enabled trace of such a configuration. This semantics is known as a global semantics
and it is independent of the logic. Brookes also defined a local enabling relation that ac-
counts for properties of the logic such as ownership transfers and the isolation of processes
with the exception of critical regions. He then defined validity of CSL judgments using the
local enabling relation and showed soundness of the rules. Next he showed how to lift this
result to the global enabling relation. Hence we can use CSL to reason about the execution
of programs. I have taken similar steps to show soundness of the logic in section 3. I have
defined a trace semantics for commands and a global enabling relation that is independent
of the logic. I have defined a trace semantics for interference commands and I have defined
a local enabling relation that connects a trace of a command to a trace of an interference
command. This local enabling relation is then used to define validity of the judgment
LE{P} ¢ {Q}. The semantics of interference commands uses a special class of best local
actions (see [COY07]) to give meaning to triples (I', P, Q). Local actions [COYO07] are a
special class of functions defined on heaps that can be used to represent non-deterministic
commands that satisfy safety monotonicity and the frame property. 1 will further restrict
the class of local actions to represent the precision of (3. P) and), whence members of
this class can be used to reason uniquely about ownership transfers. Next, I have defined a
local enabling relation that relates a trace of an interference command to a protocol. This
relation is used to define validity of the judgment G I+ {An. P} L {\n'. Q}.

26

5.3 Higher-order Concurrent Separation Logic

In [JP11] Jacobs and Piessens introduced a higher-order version of concurrent separation
logic (HCSL). The ability to quantify over commands and specifications enables them to
freely compose HCSL specifications (CSL specifications in a context) in the same way that
we compose L F {P} ¢ {Q} specifications. The constraints of CSL are represented as types
in a context, and one can obtain a CSL specification by substituting terms for the variables
in this context. This enables them to quantify over predicates describing auxiliary state,
resource invariants, commands that update auxiliary state, and specifications of these
commands. Hence by introducing numerous variables ranging over predicates, commands,
and specifications, they can delay the choice of these until the programmer wants to bind
a resource r. At this point they must substitute a precise predicate for the invariant of r
and thus determine a protocol for interaction via r. This pattern of specifications provides
thread- and procedure-modularity to CSL at the expense of a large number of constraints
in a context. A solution to these constraints results in a specification valid in CSL, and
thus finding such solutions is as difficult as finding a CSL specification of the program in
the first place. The constraints could also be inconsistent, and in that case we cannot
construct a CSL specification from the HCSL specification. This is similar to the logic in
section 3.1 where the interference commands may abort from the shared heap.

5.4 Rely-Guarantee

In the last few years there has been a major effort aimed at the development of Rely-
Guarantee logics for concurrent first-order programs with mutable state. At first, sep-
aration logic was used to extend the assertions and relations to range over heaps. Rely-
Guarantee was traditionally used to reason about concurrent programs with a single shared
store [Owi75, Jon81, Jon83a, Jon83b|, but in [VP07] and [FFS07] the heap was split into
a local part and a shared part. Assertions described each heap as a separate union of a
local heap and a shared heap, and the x-operator was defined as ordinary conjunction on
the shared heap and separation conjunction on the local heap. This definition enables the
programmer to reason about the local heap much like he would in separation logic for se-
quential programs and special care had to be taken only when reasoning about the shared
heap. In [VPO07] this was limited to the special atom(c) program construction. When giving
specifications for this construction the programmer is allowed access to the shared heap
and as a result the machinery of Rely-Guarantee logics such as Rely sets, Guarantee sets,
and, stability checks, are specified using separation logic assertions. With respect to the
use of auxiliary variables the logics presented in [VP07] and [FFS07] are only slightly better
than CSL. As these logics do not describe the shared state using invariants, but instead
describe the shared state in the pre- and post-conditions, subject to stability conditions,
the programmer needs auxiliary variables only to limit the effect of the environment be-
yond what can be described by a reflexive and transitively closed binary relation on heaps.
For instance, if the programmer assumes that the shared variable x is greater than 0 and

27

he increments x in an environment that also increments x, then he can conclude that x is
greater than 1. This can be shown without the use of auxiliary variables as the assertions
x >0 and z > 1 are stable under the reflexive and transitive closure of {(i,i+ 1) | i € Z}.
But if the programmer want to show that the effect of the program and its environment is
to add two to the value of x, then he must limit the specification of the environment to a
single transition along the relation {(¢,i4 1) | i € Z}. For this he needs auxiliary variables.
To minimize the need for auxiliary variables Dodds et. al. introduced Deny-Guarantee
Reasoning [DFPV09], a version of RGSep [VP07] where features of a protocol are baked
into the language for specifying rely and guarantee relations. The authors notice that the
interference caused by a command may change as the command executes, and thus the
rely- and guarantee-relations need to develop as the command executes. They blame this
on the dynamically-scoped threads in their language, but I believe this problem is present
in any concurrent language where the programmer can synchronize threads executing in
parallel. The Deny-Guarantee logic still needs auxiliary variables to reason about the pro-
gram that increments x twice in parallel, and thus the problems with modularity caused
by the use of auxiliary variables is still present.

To obtain better modularity of Rely-Guarantee logics Wickerson et. al. [WDP10] extended
RGSep with explicit rely-sets where assertions are either weakened or strengthened to
become stable with respect to some rely-set. Modularity is then obtained by quantifying
over the explicit rely-sets using higher-order separation logic [BBTS07] in much the same
way that Jacobs and Piessens quantified over resource invariants in [JP11].

Another descendant of RGSep is Concurrent Abstract Predicates [DYDG™10], where each
shared resource is annotated with a set of actions that a process may perform on the
shared state associated with the resource. The actions a process can perform on the state
owned by a shared resource is further restricted by labels being passed around like heap
cells. A process can only perform an action A if it has access to the label representing A.
This enables the programmer to specify complicated protocols without the use of auxiliary
variables. For instance, in [DYDG™10] there is an example where a client of a module for
a shared lock can only perform an unlock action after it has performed a lock action or
just after the lock has been created.

6 Plan to complete thesis

I intend to complete my thesis in a year and a half.

Programming Language: I intend to use much of the semantics developed by Brookes
for his soundness proof of CSL [Bro04, Bro07, Broll]. This semantics is resource
sensitive and in my initial work I discovered that the resource sensitivity causes a
problem in the proof of associativity of parallel composition. I will need to either
address this issue or use a slightly different semantics.

28

I will also need to design a semantics for interference commands. I intend to use a
trace semantics with actions for acquiring and releasing resources, and performing
atomic repartitionings. The effect of a command on the shared state while possessing
a resource will be summarized as a local action from a special class of local actions
that ensure unique splits of heaps when transferring ownership.

I believe I can work out the required semantics in less than five months.

Logic: All the concepts used in the logic and most of the rules have been presented in
this proposal, but the semantics of the judgments, i.e., validity of the judgments
and necessary enabling relations, needs to be formally defined. I intend to use a
local enabling relation in the style of Brookes [Bro04] to define validity of the judg-
ment L - {P} ¢ {Q}, and thus I must show an agreement theorem between the local
enabling relation and the global enabling relation used to define the execution of a
command in isolation. Likewise I intend to give a local enabling relation to define
validity of the judgment G IF {An. P} L {A\n'.Q}. The meaning of interference com-
mands uses a special class of local actions that ensures unique splits of heaps. Again,
I will intend to formally define this class. Finally I must show soundness of the rules,
i.e., that each inference rule preserve validity. I expect to spend about five months
on this.

Examples: I intend to show usability of the proposed logic by giving valid specifications
of interesting programs. I have already worked out a proof sketch of a specification
of Petersen’s mutual exclusion algorithm and I intend to find more interesting con-
current algorithms. This could include concurrent updates to B-trees or concurrent
garbage collection. In this phase I also intend to find a way to present proofs in a
form more readable than trees. I intend to develop a notion of annotated programs
which correspond to proof trees. This is supposed to be similar to what Reynolds
has proposed for separation logic [Rey08|.

I intend to spend about four months on finding examples, giving specifications to
them, and finding a nice way to present the proofs.

Limitations and future work: I intend to investigate the limitations and the possibili-
ties opened by this framework. I intend to compare proofs in Concurrent Separation
Logic and Rely-Guarantee to proofs in this framework. I suspect that every spec-
ification and proof in CSL correspond directly to a specification and proof in this
framework. Likewise I suspect that every specification and proof in RGSep corre-
spond to a specification and proof in this framework, but this correspondence will be
more complicated than the correspondence to CSL.

In the future I would like to see what benefits the framework can bring to specifi-
cations of modules, i.e., lists of procedures with access to resources and heap cells
shared exclusively between the procedures of a fixed collection. And I would like to
investigate the connection with total correctness. I suspect that a notion of fairness

29

expressed directly on the graph-like structures of a protocol can be used to express
total correctness of concurrent programs under the assumption of a fair scheduler.

I intend to spend two to three month on these investigations.

Finishing up thesis, tying loose ends: Finally, I intend to spend less than two months
tying up any loose ends before submitting my thesis.

30

References

[BBTS07]

[BCOPO5]

[BCYO6]

[Boy03]

[Bro04]

[Bro07]

[Brol1]

[BS11]

[COY07]

[DFPV09)

Bodil Biering, Lars Birkedal, and Noah Torp-Smith, BIl-hyperdoctrines,
higher-order separation logic, and abstraction, ACM Trans. Program. Lang.
Syst. 29 (2007).

Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J.
Parkinson, Permission accounting in separation logic, Proceedings of the
32nd ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages (Jens Palsberg and Martin Abadi, eds.), POPL, ACM, 2005, pp. 259
270.

Richard Bornat, Cristiano Calcagno, and Hongseok Yang, Variables as Re-
source in Separation Logic, Electr. Notes Theor. Comput. Sci. 155 (2006),
247-276.

John Boyland, Checking interference with fractional permissions, SAS (Rad-
hia Cousot, ed.), Lecture Notes in Computer Science, vol. 2694, Springer,
2003, pp. 55-T72.

Stephen Brookes, A Semantics for Concurrent Separation Logic, CONCUR
(Philippa Gardner and Nobuko Yoshida, eds.), Lecture Notes in Computer
Science, vol. 3170, Springer, 2004, pp. 16-34.

Stephen Brookes, A semantics for concurrent separation logic, Theor. Com-
put. Sci. 375 (2007), no. 1-3, 227-270.

, A Revisionist History of Concurrent Separation Logic, Electronic
Notes in Theoretical Computer Science (2011), Proceedings of the 27th
Conference on the Mathematical Foundations of Programming Semantics

(MFPS).

Thomas Ball and Mooly Sagiv (eds.), Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ACM, 2011.

Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang, Local action and
abstract separation logic, LICS ’07: Proceedings of the 22nd Annual IEEE
Symposium on Logic in Computer Science (Washington, DC, USA), IEEE
Computer Society, 2007, pp. 366-378.

Mike Dodds, Xinyu Feng, Matthew J. Parkinson, and Viktor Vafeiadis, Deny-
Guarantee Reasoning, ESOP (Giuseppe Castagna, ed.), Lecture Notes in
Computer Science, vol. 5502, Springer, 2009, pp. 363-377.

31

[DYDG'10] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkin-

[Fen09]

[FFS07]

[1001]

[Jon81]

[Jon83al

[Jon83b]

[JP11]

[KAB*09]

[O'HOT]

[OwiT5]

[OYRO4]

son, and Viktor Vafeiadis, Concurrent Abstract Predicates, ECOOP (Theo
D’Hondt, ed.), Lecture Notes in Computer Science, vol. 6183, Springer, 2010,
pp- 504-528.

Xinyu Feng, Local rely-guarantee reasoning, POPL (Zhong Shao and Ben-
jamin C. Pierce, eds.), ACM, 2009, pp. 315-327.

Xinyu Feng, Rodrigo Ferreira, and Zhong Shao, On the Relationship Be-
tween Concurrent Separation Logic and Assume-Guarantee Reasoning, ESOP
(Rocco De Nicola, ed.), Lecture Notes in Computer Science, vol. 4421,
Springer, 2007, pp. 173-188.

Samin S. Ishtiaq and Peter W. O’Hearn, BI as an assertion language for
mutable data structures, Proceedings of the 28th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (New York, NY, USA),
POPL, ACM, 2001, pp. 14-26.

C. B. Jones, Development methods for computer programs including a no-
tion of interference, Ph.D. thesis, Oxford University, June 1981, Printed as:
Programming Research Group, Technical Monograph 25.

, Specification and design of (parallel) programs, Proceedings of
IFIP’83, North-Holland, 1983, pp. 321-332.

, Tentative steps toward a development method for interfering pro-
grams, Transactions on Programming Languages and System 5 (1983), no. 4,
596-619.

Bart Jacobs and Frank Piessens, Expressive modular fine-grained concurrency
specification, in Ball and Sagiv [BS11], pp. 271-282.

Neelakantan R. Krishnaswami, Jonathan Aldrich, Lars Birkedal, Kasper
Svendsen, and Alexandre Buisse, Design patterns in separation logic, Pro-

ceedings of the 4th international workshop on Types in language design and
implementation (New York, NY, USA), TLDI ’09, ACM, 2009, pp. 105-116.

Peter W. O’Hearn, Resources, concurrency, and local reasoning, Theor. Com-
put. Sci. 375 (2007), no. 1-3, 271-307.

Susan S. Owicki, Axziomatic Proof Techniques for Parallel Programs, Out-
standing Dissertations in the Computer Sciences, Garland Publishing, New
York, 1975.

Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds, Separation and
information hiding, POPL (Neil D. Jones and Xavier Leroy, eds.), ACM, 2004,
pp. 268-280.

32

[PBCO6]

[Rey02]

[Rey08]

[RR12]

[VP07]

[WDP10]

Matthew J. Parkinson, Richard Bornat, and Cristiano Calcagno, Variables as
Resource in Hoare Logics, LICS, IEEE Computer Society, 2006, pp. 137-146.

John C. Reynolds, Separation Logic: A Logic for Shared Mutable Data Struc-
tures, LICS, IEEE Computer Society, 2002, pp. 55-74.

, Readable formal proofs, VSTTE (Natarajan Shankar and Jim Wood-
cock, eds.), Lecture Notes in Computer Science, vol. 5295, Springer, 2008,

p. 1.

Uday S. Reddy and John C. Reynolds, Syntactic Control of Interference for
Separation Logic, to appear at POPL, ACM, 2012.

Viktor Vafeiadis and Matthew J. Parkinson, A Marriage of Rely/Guarantee
and Separation Logic, CONCUR (Luis Caires and Vasco Thudichum Vascon-
celos, eds.), Lecture Notes in Computer Science, vol. 4703, Springer, 2007,
pp. 256-271.

John Wickerson, Mike Dodds, and Matthew J. Parkinson, Fxplicit stabilisa-
tion for modular rely-quarantee reasoning, ESOP (Andrew D. Gordon, ed.),
Lecture Notes in Computer Science, vol. 6012, Springer, 2010, pp. 610-629.

33

